氨基糖核苷酸的酶法合成研究及其在糖缀合物制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体内存在两种重要的氨基己糖,分别是N-乙酰氨基葡萄糖(GlcNAc)和N-乙酰氨基半乳糖(GalNAc),在结构和功能方面均发挥重要的作用。它们不仅是细菌细胞壁骨架和糖胺聚糖的基本组分,还存在于具有重要生物功能的糖蛋白或糖脂的糖链部分的核心结构中。合成含有这两种氨基己糖及其结构类似物的糖缀合物,对研究它们参与介导的生物过程及糖类药物开发具有重要的意义。
     研究糖链的生物学功能,首先需要获得结构明确且均一的糖缀合物。直接从生物来源分离得到的糖或糖缀合物的结构具有微不均一性;利用有机化学法合成糖缀合物的步骤复杂,且收率较低。利用糖基转移酶催化的反应具有高度区位特异性和立体特异性的特点,模拟生物体内糖链的合成步骤,在体外用酶法制备结构均一的糖链成为有机化学合成法的有效替代途径。
     但利用Leloir型糖基转移酶在体外大量制备生物活性寡糖仍然存在两个问题:1)用于寡糖合成的糖基转移酶的数量和种类有限;2)糖核苷酸供体底物数量有限、难以获得且价格昂贵。这两个制约糖生物学研究发展的问题已经严重阻碍了糖及糖缀合物在医药领域的研究和应用。
     糖核苷酸在化学结构上是核苷二磷酸或核苷一磷酸与不同单糖的异头碳羟基连接形成的衍生物,是单糖的活化形式,能够被糖基转移酶识别并添加到糖链中。实现糖核苷酸衍生物的体外大量制备,为生物活性寡糖的体外制备提供原材料,对糖生物工程重要产品开发、糖缀合物生理生化功能研究及药物开发具有重大意义。
     论文的目标之一是氨基糖核苷酸及其衍生物的酶法合成研究。主要是酶法高效合成UDP-GlcNAc/UDP-GalNAc结构类似物。人源的UDP-GalNAc焦磷酸化酶(Homo sapiens UDP-GalNAc pyrophosphorylase, AGX1)对GalNAc-1-P具有极高的催化活性,通过一步反应能催化合成UDP-GalNAc.通过构建重组载体,AGX1在原核表达系统中获得了高纯度的可溶性表达。论文中系统研究了AGX1的生物化学性质,AGX1在含有10mM MgCl2的pH8.0100mM Tris-HCl缓冲液中具有最佳活性,最适反应温度为37℃。AGX1对不同核苷三磷酸的底物适应性研究发现,该酶可以利用UTP/dUTP/dTTP作为底物,而对同样是嘧啶类核苷酸的CTP则完全没有催化能力。结合该酶的晶体结构,推测核苷三磷酸底物中的碱基部分C4-位环外氧原子与AGX1的特定氨基酸位点之间形成氢键相互作用从而能够与酶结合。CTP的C4-位上氨基的存在阻碍了氢键的形成,影响了底物与酶的结合。AGX1对不同糖-1-磷酸的底物适应性研究发现,C2-乙酰氨基在酶与底物识别结合过程中发挥重要作用。不含N-乙酰氨基的Glc-1-P不能被AGX1利用。酶动力学研究发现,当以UTP/dUTP/dTTP为NTP供体时,AGX1利用GalNAc-1-P的能力略高于GlcNAc-1-P。对核苷三磷酸的喜好顺序为:UTP>dUTP>dTTP。通常情况下,真核来源的焦磷酸化酶的底物适应性都比较有限,而AGX1却具有较为广泛的底物适应性,这是一个非常重要的发现,其意义在于可以利用该酶广泛的底物适应性在体外合成多种稀有核苷酸,对于糖基转移酶的生化性质研究和糖核苷酸物质库的丰富具有重要意义。基于AGX1的底物利用广泛性特点,我们研究了利用AGX1体外合成稀有糖核苷酸的技术路线,制备了2种稀有糖核苷酸,dUDP-GalNAc和dTDP-GalNAc,这些产物可以用于相关糖基转移酶的性质研究。
     空肠弯曲菌(Campylobacter jejuni)是第一个被发现含有蛋白N-糖基化过程的原核生物。论文第三章通过对空肠弯曲菌糖基化途径的分析,找到一种新型的UDP-GlcNAc焦磷酸化酶(Campylobacter jejuni UDP-GlcNAc pyrophosphorylase, CjGlmU)。CjGlmU在原核表达系统中得到了高纯度的可溶性表达。CjGlmU对不同糖-1-P底物适应性的研究发现,CjGlmU对Glc-1-P同样具有较高的反应产率,这表明C2-位N-乙酰基不是酶对底物识别的关键位点。但随着N-乙酰基上修饰基团空间位阻的变大,CjGlmU的催化能力也随之减弱,分析可能是较大的空间位阻影响了酶与底物的相互结合。C4-位羟基的构型是影响酶与底物识别及催化能力的关键因素,同样是以UTP作为供体底物,CjGlmU对GalNAc-1-P的催化效率仅为GlcNAc-1-P的12%左右。CjGlmU对不同核苷三磷酸底物的适应性的研究表明,CjGlmU对嘧啶类核苷酸底物的利用率要远远高于嘌呤类核苷酸底物。与EcGlmU(Escherichia coli K12来源的UDP-GlcNAc焦磷酸化酶)相比,CjGlmU具有更广泛的核苷三磷酸底物适应性。CTP能够很好地被CjGlmU利用,合成CDP-GlcNAc的效率在60%以上。CjGlmU可以催化合成16种稀有糖核苷酸,其中对7种稀有糖核苷酸的产率能够达到60%以上,其他的9种也均在20%左右。基于该酶广泛的底物适应性,我们在体外成功地制备了3种UDP-GlcNAc的衍生物,分别是CDP-GlcNAc, UDP-GlcNBu和UDP-GlcNPr。CjGlmU的研究工作为体外大量制备非天然糖核苷酸奠定了基础,利用该酶的催化反应,能够合成数十种稀有糖核苷酸。通过对产物的分离纯化,极大丰富了糖核苷酸化合物库,为糖基转移酶的活性研究和含非天然糖残基的糖缀合物的合成研究提供了丰富的供体底物。
     氨基糖核苷酸作为Leloir型糖基转移酶的糖供体,参与了生物体内重要糖缀合物的合成过程。论文的另一部分工作重点就是将合成制备的氨基糖核苷酸及其衍生物用于糖基转移酶合成复杂糖缀合物的研究中。糖基转移酶是体外制备生物活性寡糖的一类重要的工具酶,探索不同种来源的糖基转移酶并研究其生物化学性质,能够极大地促进糖生物学的研究和糖类药物的开发。论文第四章,我们克隆了一种来源于幽门螺杆菌(Helicobacter pylori)的p1,3-GlcNAc糖基转移酶(β1,3-N-acetylglucosaminyltransferase, HpLgtA),该酶以UDP-GlcNAc为糖供体,催化将GlcNAc以β1,3键连接到半乳糖残基上。该酶也是poly-LacNAc合成中的一个关键酶。在大肠杆菌表达系统中,该酶被过量表达为带有N-端MBP标签和C-端His6标签的可溶性蛋白。实验中使用了34种糖核苷酸研究HpLgtA的底物适应性,并对比了已知活性的来源于脑膜炎奈瑟氏球菌(Neisseria meningitidis)的同功能的糖基转移酶(NmLgtA)。HpLgtA与NmLgtA都可以利用其中的8种糖核苷酸作为底物,但利用特异性上存在差异。二者均对N-酰基带有修饰基团的UDP-GlcNAc结构类似物具有催化活性;N-酰基上取代基团空间位阻的不断增大使酶的催化活性逐渐降低。除此之外,HpLgtA还可以利用C6-位带有修饰基团的结构类似物。UDP-Glc和UDP-GalNAc均不是这两种糖基转移酶的合适底物。由此推测,N-酰基的存在及C4-羟基的构型是影响酶与底物相互作用的关键位点。二者氨基酸序列上38%的相似性也可以揭示这一发现。对其中3种底物的酶动力学研究表明,HpLgtA比NmLgtA具有稍高的催化效率,UDP-GlcNAc是二者的最适底物。随着N-酰基上修饰基团的空间位阻逐渐变大,二者的催化效率也逐渐降低。利用该酶较广泛的底物适应性,可以在体外制备含有GlcNAc结构类似物的糖链(poly-LacNAc),并对糖链功能的改变做进一步的研究。
     透明质酸(Hyaluronan, HA)是最简单的一种糖胺聚糖,以游离形式(不与蛋白共价结合)存在于生物体内。具有良好的水溶性与粘弹性,已经广泛应用在医药,美容等领域。透明质酸糖链的长度的和不同的化学修饰都能影响其生物学功能。论文第五章,利用来源于A型巴斯德氏菌(Pasteurella multocida)的透明质酸合酶(hyaluronan synthase, PmHAS)作为工具,以生物素标记的葡萄糖醛酸(GlcA-Biotin)作为受体底物,采用逐步合成的方法在体外制备了生物素标记的透明质酸二糖,三糖。并进一步选用单糖,二糖和三糖作为前体对PmHAS的聚合能力进行了研究。研究工作发现,PmHAS对单糖(GlcA或GlcNAc)不具有聚合能力。但能以生物素标记的单糖、二糖及三糖作为前体物质,利用UDP-GlcA和UDP-GlcNAc作为糖基供体,通过聚合反应,最终生成HA糖链。而且以三糖为前体时的聚合速率要远远高于二糖和单糖,前体的糖链长度越大,越有利于PmHAS催化的聚合反应的进行。
     综上所述,本论文建立了一套高效的酶法合成制备UDP-GlcNAc/GalNAc结构类似物的体系。利用真核来源的AGX1和原核来源的CjGlmU分别合成了6种和16种UDP-GlcNAc/GalNAc的结构类似物。同时系统研究了一种新型的幽门螺杆菌来源的p1,3-GlcNAc糖基转移酶的底物适应性。利用A型巴斯德氏菌来源的透明质酸合酶(PmHAS)在体外合成并分离制备了生物素衍生化的透明质酸二糖和三糖,并进一步研究了PmHAS的生物化学性质。
Carbohydrate (or glycans), including monosaccharide, oligosaccharide, polysaccharide and glycoconjugates are wildly existing in all living organisms. They are not only essential components of cells but also participate in various important biopathways.
     There are two common N-acetylhexosamines in living orgamism. They are N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc). They are not only essential components of bacterial cell walls and glycosaminoglycans, but also prevalent in the core structures of glycans in glycoproteins and glycolipids. Besides, they play important roles in various metabolic processes. Such as O-GlcNAcylation involved in regulating signaling pathways, and glycolipids which have GalNAc residues involved in cellular interaction, differentiation and other processes. Studying oligosaccharides, polysaccharides and glycoconjugates which containing these two monosaccharides or their derivatives will help us to understand physiological and pathological processes as well as developing pharmaceuticals.
     In order to research the biological roles of glycans, we need to prepare glycans which have defined and homogeneous structures. The structures of glycans isolated from biological sources have microheterogeneity. Chemical approach for synthesizing glycans has tedious process, strict conditions and often has low yield. Enzymatic synthesis, which mimics the biosynthetic pathway, is considered more attractive with the advantages of strone regio-and stereo-specificity, high conversion percentage, and mild reaction conditions.
     In the enzymatic synthesis approach, Leloir type glycosyltransferases (GT) are mainly used. But there still are two unsolved problems:1) Few GT which has broad substrate specificity could be used for large scale synthesis of glycans;2) Sugar nucleotides are expensive and hard to obtain.
     Sugar nucleotides, also known as active sugars, are constructed by linking the anometic carbon of monosaccharides to nucleotide diphosphates or nucleotide monophosphates. They are sugar donors of Leloir type glycosyltransferases, and important precursors in biological synthesis of glycans. Analogs of natural sugar nucleotides could be used to study the structure-function relationship of glycosyltransferases and medicinal chemistry. Due to the easier and fewer steps of de novo pathway of sugar nucleotide synthesis, it has been the common stratege for preparing sugar nucleotides.
     One aim of this thesis is to enzymatically synthesize UDP-GalNAc/GlcNAc and their derivatives. UDP-GalNAc pyrophosphorylase from Homo sapiens (AGX1) can catalyze the generation of UDP-GalNAc from GalNAc-1-P and UTP in one step. It shows higher enzymatic activity towards GalNAc-1-P. In Chapter2, AGX1was cloned and overexpressed in Escherichia coli BL21(DE3) with a N-terminal His6-tag. After purification by Ni-column, the purity of recombinant AGX1was higher than95%. The enzyme exhibited maximum activity in pH8.5Tris-HCl buffer with the presence of10mM Mg2+at37℃. Then we systematically studied nucleotide substrate specificity of AGX1during its uridyltransfer reaction, AGX1could use dUTP and dTTP as substrates and to generate their corresponding nucleotide sugars. AGX1had a finite NTP substrates tolerance when using GalNAc-1-P and GlcNAc-1-P as its sugar-1-P substrates. From the substrate specificity of AGX1and the crystal structure, we presumed that the exocyclic oxygen04of uracil base was crucial for substrate binding and enzyme catalysis. Small changes of2'-hydroxyl group at ribose (dUTP/dTTP) make no differences in substrate recognition, but lead to slight decrease in the enzyme catalysis. When using purine nucleotide triphoshpate substrates, the enzyme-substrate binding and enzymatic activity was affected due to the large steric hindrance.
     Camphylobacter jejuni contains a post-translation N-glycosylation system. In Chapter3, we study the substrate specificity of a novel UDP-GlcNAc pyropyosphorylase from C. jejuni (CjGlmU), which has34%amino acid sequence similarity with UDP-GlcNAc pyrophosphoylase from E. coli K12 (EcGlmU). This enzyme show high enzymatic activity after one-step Ni-NTA purification. CjGlmU exhibited broader substrate spcificity than EcGlmU. It could use7kinds of NTPs as substrates, especially for CTP, the conversion percentage could reach62%. This enzyme prefer pyrimidine nucleotide triphosphate than purine nucleotide triphosphate. The sugar-1-P substrate specificity showed that this enzyme could tolerate N-acetyl modified GlcNAc-1-P derivatives. Finally,3kinds of unnatural sugar nucleotides were synthesized. We have set up a relatively easy strategy to prepare unnatural sugar nucleotides.
     Poly-N-acetyllactosamine (poly-LacNAc) is the most common and important sugar structure of cell-surface of membrane glycoconjugates which play a significant role in cell-cell interactions and cell-matrix adhesion. β-1,3-N-acetylglucosaminyltransferase (LgtA) from Helicobater pylori and Neisseria meningitidis have ever been widely used in the enzymatic and chemoenzymatic synthesis of poly-LacNAc both in vivo and in vitro. We show here the cloning and expressing of HpLgtA and NmLgtA as an N-MBP and C-His6-tagged fusion protein in E. coli. The basic characteristics of both LgtAs were systematically studied. In addition, a library of34UDP-sugars was used to study the donor substrate specificity of HpLgtA as well as NmLgtA. Overall, HpLgtA and NmLgtA have quite different tolerance toward substrate modifications. Both HpLgtA and NmLgtA can use uridine5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc), and some of its C2'-modified derivatives as donor substrates. Besides, HpLgtA could also use several derivatives with C6'-modifications. The kinetics study shows that HpLgtA has a relatively higher enzymatic efficiency than NmLgtA. The donor substrate promiscuity of HpLgtA and NmLgtA will allow efficient chemoenzymatic synthesis of diverse poly-LacNAc derivatives for binding study with galectins and for studies of their possible therapeutic applications.
     Hyaluronan is one kinds of important glycosaminoglycans, it takes various important parts in several biopathways. In chapter5, we use the hyaluronan synthase from Pasteurella multocida (Type A)(PmHAS) as a tool, use GlcA-Biotin as starting material for synthesizing biotinylated hyaluronan oligosaccharides by stepwise. We successfully synthesized HA disaccharide and trisaccharide. Furthmore, these HA oligosaccharides were used to study the relationship between acceptor length and PmHAS catalytic activity. PmHAS exhibited the highest activity toward trisaccharide, and showed no activit towards no modified monosaccharide:GlcA and GlcNAc. This new discovery will help us to better understand the catalytic mechanism of PmHAS.
     In summary, this thesis established a strategy of enzymatic synthesis and chromatographical preparation of UDP-GlcNAc/GalNAc derivatives with one enzyme from bacteria and one enzyme from human.5kinds of unnatural sugar nucleotides were prepared in vitro. We also study the sugar nuclotides substrate specificity of a novel glycosyltransferase from H. pylori. Besides, we successfully synthesized biotinylated hyaluronan oligosaccharides by stepwise stratege, also used them to study the relationship between accetpor length and PmHAS catalytic activity.
引文
1 Ball, S. G. & Morell, M. K. From bacterial glycogen to starch:understanding the biogenesis of the plant starch granule. Annual review of plant biology 54,207-233, doi:10.1146/annurev.arplant.54.031902.134927 (2003).
    2 Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126,855-867, doi:10.1016/j.cell.2006.08.019 (2006).
    3 Kansas, G. S. Selectins and their ligands:current concepts and controversies. Blood 88,3259-3287 (1996).
    4 Geijtenbeek, T. B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100,575-585 (2000).
    5 Vacquier, V. D. & Moy, G. W. The fucose sulfate polymer of egg jelly binds to sperm REJ and is the inducer of the sea urchin sperm acrosome reaction. Developmental biology 192,125-135, doi:10.1006/dbio.1997.8729 (1997).
    6 Tiemeyer, M. & Goodman, C. S. Gliolectin is a novel carbohydrate-binding protein expressed by a subset of glia in the embryonic Drosophila nervous system. Development 122,925-936 (1996).
    7 Ratner, D. M., Adams, E. W., Disney, M. D. & Seeberger, P. H. Tools for glycomics: mapping interactions of carbohydrates in biological systems. Chembiochem:a European journal of chemical biology 5,1375-1383, doi:10.1002/cbic.200400106 (2004).
    8 Gahmberg, C. G. & Tolvanen, M. Why mammalian cell surface proteins are glycoproteins. Trends in biochemical sciences 21,308-311 (1996).
    9 Sacchettini, J. C., Baum, L. G. & Brewer, C. F. Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40,3009-3015 (2001).
    10 Este, J. A. Virus entry as a target for anti-HIV intervention. Current medicinal chemistry 10,1617-1632 (2003).
    11 Durand, G. & Seta, N. Protein glycosylation and diseases:blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clinical chemistry 46,795-805 (2000).
    12 Martin-Rendon, E. & Blake, D. J. Protein glycosylation in disease:new insights into the congenital muscular dystrophies. Trends in pharmacological sciences 24, 178-183, doi:10.1016/S0165-6147(03)00050-6 (2003).
    13 Dube, D. H. & Bertozzi, C. R. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nature reviews. Drug discovery 4,477-488, doi:10.1038/nrd1751 (2005).
    14 Ragupathi, G. et al. On the power of chemical synthesis:immunological evaluation of models for multiantigenic carbohydrate-based cancer vaccines. Proceedings of the National Academy of Sciences of the United States of America 99,13699-13704, doi:10.1073/pnas.202427599 (2002).
    15 van Heijenoort, J. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11,25R-36R (2001).
    16 Kuhn, H. M., Meier-Dieter, U. & Mayer, H. EC A, the enterobacterial common antigen. FEMS microbiology reviews 4,195-222 (1988).
    17 Laurent, T. C. & Fraser, J. R. Hyaluronan. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 6,2397-2404 (1992).
    18 Salmivirta, M., Lidholt, K. & Lindahl, U. Heparan sulfate:a piece of information. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 10,1270-1279 (1996).
    19 Brockhausen, I., Narasimhan, S. & Schachter, H. The biosynthesis of highly branched N-glycans:studies on the sequential pathway and functional role of N-acetylglucosaminyltransferases I, II, III, IV, V and VI. Biochimie 70,1521-1533 (1988).
    20 Hart, G. W., Housley, M. P. & Slawson, C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446,1017-1022, doi:10.1038/nature05815 (2007).
    21 Lindahl, U. & Hook, M. Glycosaminoglycans and their binding to biological macromolecules. Annual review of biochemistry 47,385-417, doi:10.1146/annurev.bi.47.070178.002125(1978).
    22 Hakomori, S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annual review of biochemistry 50,733-764, doi:10.1146/annurev.bi.50.070181.003505 (1981).
    23 Koeller, K. M. & Wong, C. H. Complex carbohydrate synthesis tools for glycobiologists:enzyme-based approach and programmable one-pot strategies. Glycobiology 10,1157-1169 (2000).
    24 Burkhart, F., Zhang, Z., Wacowich-Sgarbi, S. & Wong, C. H. Synthesis of the Globo H Hexasaccharide Using the Programmable Reactivity-Based One-Pot Strategy This research was supported by the National Institutes of Health. F.B. thanks the Deutsche Forschungsgemeinschaft for a fellowship. Angewandte Chemie 40,1274-1277 (2001).
    25 Mong, T. K., Lee, H. K., Duron, S. G. & Wong, C. H. Reactivity-based one-pot total synthesis of fucose GM1 oligosaccharide:a sialylated antigenic epitope of small-cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America 100,797-802, doi:10.1073/pnas.0337590100 (2003).
    26 Wang, Z., Zhou, L., El-Boubbou, K., Ye, X. S. & Huang, X. Multi-component one-pot synthesis of the tumor-associated carbohydrate antigen Globo-H based on preactivation of thioglycosyl donors. The Journal of organic chemistry 72, 6409-6420, doi:10.1021/jo070585g (2007).
    27 Seeberger, P. H. Automated oligosaccharide synthesis. Chemical Society reviews 37, 19-28, doi:10.1039/b511197h (2008).
    28 Murata, T. & Usui, T. Enzymatic synthesis of oligosaccharides and neoglycoconjugates. Bioscience, biotechnology, and biochemistry 70,1049-1059 (2006).
    29 Kobayashi, A. & Cheung, B. Detection of cerebral oxyhaemoglobin changes during vestibular Coriolis cross-coupling stimulation using near infrared spectroscopy. Neuroscience letters 394,83-87, doi:10.1016/j.neulet.2005.10.016 (2006).
    30 Ly, H. D. & Withers, S. G. Mutagenesis of glycosidases. Annual review of biochemistry 68,487-522, doi:10.1146/annurev.biochem.68.1.487 (1999).
    31 Shaikh, F. A. & Withers, S. G. Teaching old enzymes new tricks:engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. Biochemistry and cell biology=Biochimie et biologie cellulaire 86, 169-177, doi:10.1139/007-149 (2008).
    32 Watkins, W. M. Glycosyltransferases. Early history, development and future prospects. Carbohydrate research 149,1-12 (1986).
    33 Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annual review of biochemistry 77,521-555, doi:10.1146/annurev.biochem.76.061005.092322(2008).
    34 Leloir, L. F. Two decades of research on the biosynthesis of saccharides. Science 172,1299-1303 (1971).
    35 Weijers, C. A., Franssen, M. C. & Visser, G. M. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnology advances 26,436-456, doi:10.1016/j.biotechadv.2008.05.001 (2008).
    36 Williams, G. J., Gantt, R. W. & Thorson, J. S. The impact of enzyme engineering upon natural product glycodiversification. Current opinion in chemical biology 12, 556-564, doi:10.1016/j.cbpa.2008.07.013 (2008).
    37 Chen, X. et al. Reassembled biosynthetic pathway for large-scale carbohydrate synthesis:alpha-Gal epitope producing "superbug". Chembiochem:a European journal of chemical biology 3,47-53 (2002).
    38 Shao, J., Zhang, J., Kowal, P., Lu, Y. & Wang, P. G. Overexpression and biochemical characterization of beta-1,3-N-acetylgalactosaminyltransferase LgtD from Haemophilus influenzae strain Rd. Biochemical and biophysical research communications 295,1-8 (2002).
    39 Zhang, J. et al. Synthesis of galactose-containing oligosaccharides through superbeads and superbug approaches:substrate recognition along different biosynthetic pathways. Methods in enzymology 362,106-124, doi:10.1016/S0076-6879(03)01009-7 (2003).
    40 Leimkuhler, C. et al. Characterization of rhodosaminyl transfer by the AknS/AknT glycosylation complex and its use in reconstituting the biosynthetic pathway of aclacinomycin A. Journal of the American Chemical Society 129,10546-10550, doi:10.1021/ja072909o (2007).
    41 Ostash, B. et al. Complete characterization of the seventeen step moenomycin biosynthetic pathway. Biochemistry 48,8830-8841, doi:10.1021/bi901018q (2009).
    42 Hong, L., Zhao, Z. & Liu, H. W. Characterization of SpnQ from the spinosyn biosynthetic pathway of Saccharopolyspora spinosa:mechanistic and evolutionary implications for C-3 deoxygenation in deoxysugar biosynthesis. Journal of the American Chemical Society 128,14262-14263, doi:10.1021/ja0649670 (2006).
    43 Hong, L., Zhao, Z., Melancon, C. E.,3rd, Zhang, H. & Liu, H. W. In vitro characterization of the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa. Journal of the American Chemical Society 130,4954-4967, doi:10.1021/ja0771383 (2008).
    44 Wu, Q., Liu, Y. N., Chen, H., Molitor, E. J. & Liu, H. W. A retro-evolution study of CDP-6-deoxy-D-glycero-L-threo-4-hexulose-3-dehydrase (El) from Yersinia pseudotuberculosis:implications for C-3 deoxygenation in the biosynthesis of 3,6-dideoxyhexoses. Biochemistry 46,3759-3767, doi:10.1021/bi602352g (2007).
    45 Zhang, C. et al. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313,1291-1294, doi:10.1126/science.1130028 (2006).
    46 Sawa, M. et al. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proceedings of the National Academy of Sciences of the United States of America 103,12371-12376, doi:10.1073/pnas.0605418103 (2006).
    47 Marchesan, S. & Macmillan, D. Chemoenzymatic synthesis of GDP-azidodeoxymannoses:non-radioactive probes for mannosyltransferase activity. Chemical communications,4321-4323, doi:10.1039/b807016d (2008).
    48 Cabib, E., Carminatti, H. & Woyskovsky, N. M. Phosphorolysis of the Pyrophosphate Bond of Sugar Nucleotides. Ii. Purification and Properties of the Enzyme. The Journal of biological chemistry 240,2114-2121 (1965).
    49 Carminatti, H. & Cabib, E. Phosphorolysis of the Pyrophosphate Bond of Sugar Nucleotides. I. Characterization and Stoichiometry of the Reaction. The Journal of biological chemistry 240,2110-2113 (1965).
    50 Ishiyama, N., Creuzenet, C., Lam, J. S. & Berghuis, A. M. Crystal structure of WbpP, a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa:substrate specificity in udp-hexose 4-epimerases. The Journal of biological chemistry 279,22635-22642, doi:10.1074/jbc.M401642200 (2004).
    51 Kowal, P. & Wang, P. G. New UDP-GlcNAc C4 epimerase involved in the biosynthesis of 2-acetamino-2-deoxy-L-altruronic acid in the O-antigen repeating units of Plesiomonas shigelloides 017. Biochemistry 41,15410-15414 (2002).
    52 Guo, H., Li, L. & Wang, P. G. Biochemical characterization of UDP-GlcNAc/Glc 4-epimerase from Escherichia coli O86:B7. Biochemistry 45,13760-13768, doi:10.1021/bi0612770 (2006).
    53 Bernatchez, S. et al. A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. The Journal of biological chemistry 280,4792-4802, doi:10.1074/jbc.M407767200 (2005).
    54 Wagner, G. K., Pesnot, T. & Field, R. A. A survey of chemical methods for sugar-nucleotide synthesis. Natural product reports 26,1172-1194, doi:10.1039/b909621n (2009).
    55 Burkart, M. D. et al. Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyltransferases. Bioorganic& medicinal chemistry 8,1937-1946 (2000).
    56 Namboori, S. C. & Graham, D. E. Acetamido sugar biosynthesis in the Euryarchaea. Journal of bacteriology 190,2987-2996, doi:10.1128/JB.01970-07 (2008).
    57 Bulik, D. A. et al. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryotic cell 2,886-900 (2003).
    58 Mio, T., Yabe, T., Arisawa, M. & Yamada-Okabe, H. The eukaryotic UDP-N-acetylglucosamine pyrophosphorylases. Gene cloning, protein expression, and catalytic mechanism. The Journal of biological chemistry 273,14392-14397 (1998).
    59 Milewski, S., Gabriel, I. & Olchowy, J. Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast 23,1-14, doi:10.1002/yea.1337 (2006).
    60 Yamada-Okabe, T., Sakamori, Y., Mio, T. & Yamada-Okabe, H. Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans. European journal of biochemistry/FEBS 268,2498-2505 (2001).
    61 Skarlatos, P. & Dahl, M. K. The glucose kinase of Bacillus subtilis. Journal of bacteriology 180,3222-3226 (1998).
    62 Okuyama, K., Hamamoto, T., Ishige, K., Takenouchi, K. & Noguchi, T. An efficient method for production of uridine 5'-diphospho-N-acetylglucosamine. Bioscience, biotechnology, and biochemistry 64,386-392 (2000).
    63 Yamamoto, K., Kawai, H. & Tochikura, T. Preparation of uridine diphosphate-N-acetylgalactosamine from uridine diphosphate-N-acetylglucosamine by using microbial enzymes. Applied and environmental microbiology 41,392-395 (1981).
    64 Pastuszak, I., Drake, R. & Elbein, A. D. Kidney N-acetylgalactosamine (GalNAc)-1-phosphate kinase, a new pathway of GalNAc activation. The Journal of biological chemistry 271,20776-20782 (1996).
    65 Pastuszak, I., O'Donnell, J. & Elbein, A. D. Identification of the GalNAc kinase amino acid sequence. The Journal of biological chemistry 271,23653-23656 (1996).
    66 Wang-Gillam, A., Pastuszak, I. & Elbein, A. D. A 17-amino acid insert changes UDP-N-acetylhexosamine pyrophosphorylase specificity from UDP-GalNAc to UDP-GlcNAc. The Journal of biological chemistry 273,27055-27057 (1998).
    67 Szumilo, T. et al. Purification to homogeneity and properties of UDP-GlcNAc (GalNAc) pyrophosphorylase. The Journal of biological chemistry 271, 13147-13154(1996).
    68 Bourgeaux, V., Piller, F. & Piller, V. Two-step enzymatic synthesis of UDP-N-acetylgalactosamine. Bioorganic & medicinal chemistry letters 15, 5459-5462, doi:10.1016/j.bmcl.2005.08.088 (2005).
    69 Sunthankar, P. et al. Synthesis of 5-azido-UDP-N-acetylhexosamine photoaffinity analogs and radiolabeled UDP-N-acetylhexosamines. Analytical biochemistry 258, 195-201, doi:10.1006/abio.1998.2600 (1998).
    70 Barbucci, R. et al. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23,4503-4513 (2002).
    71 Neo, H., Ishimaru, J. Ⅰ., Kurita, K. & Goss, A. N. The effect of hyaluronic acid on experimental temporomandibular joint osteoarthrosis in the sheep. Journal of oral and maxillofacial surgery:official journal of the American Association of Oral and Maxillofacial Surgeons 55,1114-1119 (1997).
    72 Balazs, E. A., Laurent, T. C. & Jeanloz, R. W. Nomenclature of hyaluronic acid. The Biochemical journal 235,903 (1986).
    73 Hascall, V. C. et al. Intracellular hyaluronan:a new frontier for inflammation? Biochimica et biophysica acta 1673,3-12, doi:10.1016/j.bbagen.2004.02.013 (2004).
    74 Toole, B. P., Wight, T. N. & Tammi, M. I. Hyaluronan-cell interactions in cancer and vascular disease. The Journal of biological chemistry 277,4593-4596, doi:10.1074/jbc.R100039200(2002).
    75 Turley, E. A., Noble, P. W. & Bourguignon, L. Y. Signaling properties of hyaluronan receptors. The Journal of biological chemistry 277,4589-4592, doi:10.1074/jbc.R100038200(2002).
    76 Tzircotis, G., Thorne, R. F. & Isacke, C. M. Chemotaxis towards hyaluronan is dependent on CD44 expression and modulated by cell type variation in CD44-hyaluronan binding. Journal of cell science 118,5119-5128, doi:10.1242/jcs.02629 (2005).
    77 Underhill, C. CD44:the hyaluronan receptor. Journal of cell science 103 (Pt 2), 293-298 (1992).
    78 Toole, B. P. Hyaluronan in morphogenesis. Journal of internal medicine 242,35-40 (1997).
    79 Thomas, L., Etoh, T., Stamenkovic, I., Mihm, M. C., Jr. & Byers, H. R. Migration of human melanoma cells on hyaluronate is related to CD44 expression. The Journal of investigative dermatology 100,115-120 (1993).
    80 Ohno, S., Im, H. J., Knudson, C. B. & Knudson, W. Hyaluronan oligosaccharide-induced activation of transcription factors in bovine articular chondrocytes. Arthritis and rheumatism 52,800-809, doi:10.1002/art.20937 (2005).
    81 Luo, Y. & Prestwich, G. D. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjugate chemistry 10,755-763 (1999).
    82 Brown, M. B. & Jones, S. A. Hyaluronic acid:a unique topical vehicle for the localized delivery of drugs to the skin. Journal of the European Academy of Dermatology and Venereology:JEADV 19,308-318, doi:10.1111/j.1468-3083.2004.01180.x(2005).
    83 Hadidian, Z. & Pirie, N. W. The preparation and some properties of hyaluronic acid from human umbilical cord. The Biochemical journal 42,260-265 (1948).
    84 Follett, A. E. Preparation and some properties of hyaluronic acid from umbilical cord of the pig. The Journal of biological chemistry 176,177-184 (1948).
    85 Warren, G. H., Williams, E. C. & et al. Rous chicken sarcoma as a source for hyaluronic acid. Archives of biochemistry 20,300-304 (1949).
    86 Alburn, H. E. & Williams, E. C. Preparation of hyaluronic acid from various animal sources. Annals of the New York Academy of Sciences 52,971-976 (1950).
    87 Roseman, S., Moses, F. E., Ludowieg, J. & Dorfman, A. The biosynthesis of hyaluronic acid by group A Streptococcus. I. Utilization of 1-C14-glucose. The Journal of biological chemistry 203,213-225 (1953).
    88 DeAngelis, P. L., Papaconstantinou, J. & Weigel, P. H. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. The Journal of biological chemistry 268,14568-14571 (1993).
    89 DeAngelis, P. L. Hyaluronan synthases:fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cellular and molecular life sciences:CMLS 56,670-682 (1999).
    90 Weigel, P. H. & DeAngelis, P. L. Hyaluronan synthases:a decade-plus of novel glycosyltransferases. The Journal of biological chemistry 282,36777-36781, doi:10.1074/jbc.R700036200(2007).
    91 DeAngelis, P. L., Oatman, L. C. & Gay, D. F. Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. The Journal of biological chemistry 278,35199-35203, doi:10.1074/jbc.M306431200 (2003).
    92 Jing, W. & DeAngelis, P. L. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. The Journal of biological chemistry 279, 42345-42349, doi:10.1074/jbc.M402744200 (2004).
    93 Sugahara, K. et al. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Current opinion in structural biology 13,612-620 (2003).
    94 Brockhausen I., S. H., Stanley P. O-GalNAc Glycans. In:Varki A., Cummings R. D., Esko J. D., et al., editors. Essentials of Glycobiology.2nd edition. Cold Spring Harbor (NY):Cold Spring Harbor Laboratory Press; 2009. Chaper 9. (2009).
    95 Carraway, K. L. & Hull, S. R. Cell surface mucin-type glycoproteins and mucin-like domains. Glycobiology 1,131-138 (1991).
    96 Lee, C. Y. & Scocca, J. R. A common structural unit in asparagine-oligosaccharides of several glycoproteins from different sources. The Journal of biological chemistry 247,5753-5758 (1972).
    97 Thibodeaux, C. J., Melancon, C. E. & Liu, H. W. Unusual sugar biosynthesis and natural product glycodiversification. Nature 446,1008-1016, doi:10.1038/nature05814 (2007).
    98 Michael Smith, J. G. M., H. G. Khorana. Carbodiimides. VIII. Observations on the reaction of carbodiimides with acids and some new applications in the synthesis of phosphoric acid esters. J. Am. Chem. Soc 60 (1958).
    99 Lazarevic, D. & Thiem, J. Syntheses of unnatural N-substituted UDP-galactosamines as alternative substrates for N-acetylgalactosaminyl transferases. Carbohydrate research 337,2187-2194 (2002).
    100 Carlson, D. M., Swanson, A. L. & Roseman, S. Preparation Of Crystalline Alpha-D-Galactosamine-1-Phosphoric Acid And Its Conversion To Udp-N-Acetylgalactosamine. Biochemistry 3,402-405 (1964).
    101 Guan, W., Cai, L., Fang, J., Wu, B. & George Wang, P. Enzymatic synthesis of UDP-GlcNAc/UDP-GalNAc analogs using N-acetylglucosamine 1-phosphate uridyltransferase (GlmU). Chemical communications,6976-6978, doi:10.1039/b917573c (2009).
    102 Nishimoto, M. & Kitaoka, M. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Applied and environmental microbiology 73,6444-6449, doi:10.1128/AEM.01425-07 (2007).
    103 Fang, J. et al. Systematic study on the broad nucleotide triphosphate specificity of the pyrophosphorylase domain of the N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12. Bioorganic & medicinal chemistry letters 19,6429-6432, doi:10.1016/j.bmcl.2009.09.039 (2009).
    104 Guan, W., Cai, L. & Wang, P. G. Highly efficient synthesis of UDP-GalNAc/GlcNAc analogues with promiscuous recombinant human UDP-GalNAc pyrophosphorylase AGX1. Chemistry 16,13343-13345, doi:10.1002/chem.201002315(2010).
    105 Diekman, A. B. & Goldberg, E. Characterization of a human antigen with sera from infertile patients. Biology of reproduction 50,1087-1093 (1994).
    106 Bourgeaux, V, Cadene, M., Piller, F. & Piller, V. Efficient enzymatic glycosylation of peptides and oligosaccharides from GalNAc and UTP. Chembiochem:a European journal of chemical biology 8,37-40, doi:10.1002/cbic.200600369 (2007).
    107 Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72,248-254 (1976).
    108 Peneff, C. et al. Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc:role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. The EMBO journal 20, 6191-6202, doi:10.1093/emboj/20.22.6191 (2001).
    109 Wang-Gillam, A., Pastuszak, Ⅰ., Stewart, M., Drake, R. R. & Elbein, A. D. Identification and modification of the uridine-binding site of the UDP-GalNAc (GlcNAc) pyrophosphorylase. The Journal of biological chemistry 275,1433-1438 (2000).
    110 Vijayakumar, S. et al. Cj1121c, a novel UDP-4-keto-6-deoxy-GlcNAc C-4 aminotransferase essential for protein glycosylation and virulence in Campylobacter jejuni. The Journal of biological chemistry 281,27733-27743, doi:10.1074/jbc.M511714200(2006).
    111 Petreikov, M. et al. Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpLl) leads to increased enzyme activity in developing tomato fruit. Planta 224,1465-1479, doi:10.1007/s00425-006-0316-y (2006).
    112 Giraud, M. F., Leonard, G. A., Field, R. A., Berlind, C. & Naismith, J. H. RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Nature structural biology 7,398-402, doi:10.1038/75178 (2000).
    113 Barbosa, M. D., Yang, G., Fang, J., Kurilla, M. G. & Pompliano, D. L. Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrobial agents and chemotherapy 46,943-946 (2002).
    114 Ha, S., Walker, D., Shi, Y. & Walker, S. The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein science:a publication of the Protein Society 9,1045-1052, doi:10.1110/ps.9.6.1045 (2000).
    115 Creuzenet, C. & Lam, J. S. Topological and functional characterization of WbpM, an inner membrane UDP-GlcNAc C6 dehydratase essential for lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Molecular microbiology 41,1295-1310 (2001).
    116 Lazarevic, D. & Thiem, J. Artificial N-functionalized UDP-glucosamine analogues as modified substrates for N-acetylglucosaminyl transferases. Carbohydrate research 341,569-576, doi:10.1016/j.carres.2006.01.017 (2006).
    117 Mengin-Lecreulx, D. & van Heijenoort, J. Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. Journal of bacteriology 175,6150-6157 (1993).
    118 Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298,1790-1793, doi:10.1126/science.298.5599.1790 (2002).
    119 Young, N. M. et al. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. The Journal of biological chemistry 277,42530-42539, doi:10.1074/jbc.M206114200 (2002).
    120 Brown, K. et al. Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli:a paradigm for the related pyrophosphorylase superfamily. The EMBO journal 18,4096-4107, doi:10.1093/emboj/18.15.4096(1999).
    121 Sulzenbacher, G., Gal, L., Peneff, C., Fassy, F. & Bourne, Y. Crystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture. The Journal of biological chemistry 276,11844-11851, doi:10.1074/jbc.M011225200 (2001).
    122 Feizi, T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314,53-57 (1985).
    123 Fukuda, M. Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochimica et biophysica acta 780,119-150 (1985).
    124 Fukuda, M. Possible roles of tumor-associated carbohydrate antigens. Cancer research 56,2237-2244 (1996).
    125 McEver, R. P. & Cummings, R. D. Perspectives series:cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. The Journal of clinical investigation 100,485-491, doi:10.1172/JCI119556 (1997).
    126 Blixt, O., van Die, Ⅰ., Norberg, T. & van den Eijnden, D. H. High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAc beta 1->3Gal and GalNAc beta 1->3Gal linkages. Glycobiology 9, 1061-1071 (1999).
    127 Cummings, R. D. & Kornfeld, S. The distribution of repeating [Gal beta 1,4GlcNAc beta 1,3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. The Journal of biological chemistry 259,6253-6260 (1984).
    128 Fukuda, M., Dell, A., Oates, J. E. & Fukuda, M. N. Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. The Journal of biological chemistry 259,8260-8273 (1984).
    129 Fukuda, M., Carlsson, S. R., Klock, J. C. & Dell, A. Structures of O-linked oligosaccharides isolated from normal granulocytes, chronic myelogenous leukemia cells, and acute myelogenous leukemia cells. The Journal of biological chemistry 261,12796-12806 (1986).
    130 Wilkins, P. P., McEver, R. P. & Cummings, R. D. Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. The Journal of biological chemistry 271,18732-18742 (1996).
    131 Ujita, M. et al. Poly-N-acetyllactosamine synthesis in branched N-glycans is controlled by complemental branch specificity of I-extension enzyme and betal,4-galactosyltransferase I. The Journal of biological chemistry 274, 16717-16726(1999).
    132 Ujita, M., Misra, A. K., McAuliffe, J., Hindsgaul, O. & Fukuda, M. Poly-N-acetyllactosamine extension in N-glycans and core 2- and core 4-branched O-glycans is differentially controlled by i-extension enzyme and different members of the beta 1,4-galactosyltransferase gene family. The Journal of biological chemistry 275,15868-15875, doi:10.1074/jbc.M001034200 (2000).
    133 Logan, S. M. et al. Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Glycobiology 15,721-733, doi:10.1093/glycob/cwi057 (2005).
    134 Togayachi, A. et al. Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proceedings of the National Academy of Sciences of the United States of America 104,15829-15834, doi:10.1073/pnas.0707426104(2007).
    135 Srinivasan, N., Bane, S. M., Ahire, S. D., Ingle, A. D. & Kalraiya, R. D. Poly N-acetyllactosamine substitutions on N-and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconjugate journal 26,445-456, doi:10.1007/s10719-008-9194-9(2009).
    136 Leppanen, A., Penttila, L., Renkonen, O., McEver, R. P. & Cummings, R. D. Glycosulfopeptides with O-glycans containing sialylated and polyfucosylated polylactosamine bind with low affinity to P-selectin. The Journal of biological chemistry 277,39749-39759, doi:10.1074/jbc.M206281200 (2002).
    137 Misra, A. K., Fukuda, M. & Hindsgaul, O. Efficient synthesis of lactosaminylated core-2 O-glycans. Bioorganic & medicinal chemistry letters 11,2667-2669 (2001).
    138 Buskas, T., Li, Y. & Boons, G. J. Synthesis of a dimeric Lewis antigen and the evaluation of the epitope specificity of antibodies elicited in mice. Chemistry 11, 5457-5467, doi:10.1002/chem.200500412 (2005).
    139 McAuliffe, J. C., Fukuda, M. & Hindsgaul, O. Expedient synthesis of a series of N-acetyllactosamines. Bioorganic & medicinal chemistry letters 9,2855-2858 (1999).
    140 Korekane, H. et al. Purification and cDNA cloning of UDP-GlcNAc:GlcNAcbetal-3Galbetal-4Glc(NAc)-R [GlcNAc to Gal]betal,6N-acetylglucosaminyltransferase from rat small intestine:a major carrier of dIGnT activity in rat small intestine. Glycobiology 13,387-400, doi:10.1093/glycob/cwg044 (2003).
    141 Togayachi, A. et al. Beta3GnT2 (B3GNT2), a major polylactosamine synthase: analysis of B3GNT2-deficient mice. Methods in enzymology 479,185-204, doi:10.1016/S0076-6879(10)79011-Ⅹ(2010).
    142 Seppo, A. et al. Enzymatic synthesis of octadecameric saccharides of multiply branched blood group I-type, carrying four distal alpha 1,3-galactose or beta 1,3-GlcNAc residues. Biochemistry 34,4655-4661 (1995).
    143 Leppanen, A. et al. In vitro biosynthesis of a decasaccharide prototype of multiply branched polylactosaminoglycan backbones. Biochemistry 36,7026-7036, doi:10.1021/bi9627673 (1997).
    144 Dunn, B. E., Cohen, H. & Blaser, M. J. Helicobacter pylori. Clinical microbiology reviews 10,720-741 (1997).
    145 Suerbaum, S. & Michetti, P. Helicobacter pylori infection. The New England journal of medicine 347,1175-1186, doi:10.1056/NEJMra020542 (2002).
    146 Monteiro, M. A. et al. Lipopolysaccharide structures of Helicobacter pylori genomic strains 26695 and J99, mouse model H. pylori Sydney strain, H. pylori P466 carrying sialyl Lewis X, and H. pylori UA915 expressing Lewis B classification of H. pylori lipopolysaccharides into glycotype families. European journal of biochemistry/FEBS 267,305-320 (2000).
    147 Monteiro, M. A. et al. Helicobacter pylori from asymptomatic hosts expressing heptoglycan but lacking Lewis O-chains:Lewis blood-group O-chains may play a role in Helicobacter pylori induced pathology. Biochemistry and cell biology= Biochimie et biologie cellulaire 79,449-459 (2001).
    148 Sauerzapfe, B. et al. Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconjugate journal 26, 141-159, doi:10.1007/s10719-008-9172-2 (2009).
    149 Gebus, C., Cottin, C., Randriantsoa, M., Drouillard, S. & Samain, E. Synthesis of alpha-galactosyl epitopes by metabolically engineered Escherichia coli. Carbohydrate research 361,83-90, doi:10.1016/j.carres.2012.05.015 (2012).
    150 Peng, W. et al. Helicobacter pylori betal,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology 22,1453-1464, doi:10.1093/glycob/cws101 (2012).
    151 Jennings, M. P., Hood, D. W., Peak, I. R., Virji, M. & Moxon, E. R. Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Molecular microbiology 18,729-740 (1995).
    152 Wakarchuk, W., Martin, A., Jennings, M. P., Moxon, E. R. & Richards, J. C. Functional relationships of the genetic locus encoding the glycosyltransferase enzymes involved in expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. The Journal of biological chemistry 271,19166-19173 (1996).
    153 Guan, W. et al. Combining carbochips and mass spectrometry to study the donor specificity for the Neisseria meningitidis betal,3-N-acetylglucosaminyltransferase LgtA. Bioorganic & medicinal chemistry letters 21,5025-5028, doi:10.1016/j.bmcl.2011.04.100(2011).
    154 Day, A. J. & de la Motte, C. A. Hyaluronan cross-linking:a protective mechanism in inflammation? Trends in immunology 26,637-643, doi:10.1016/j.it.2005.09.009 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700