酪蛋白活性肽对乳酸菌生长代谢及酸乳发酵影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于乳酸菌缺乏某些生物合成途径,不能合成其生长所必需的一些维生素和氨基酸等物质,对营养要求苛刻。另一方面由于乳酸菌对蛋白的水解能力有限,牛乳中游离氨基酸及寡肽含量很低,导致乳酸菌在牛乳中生长缓慢,造成酸乳发酵时间较长。嗜热链球菌(球菌)和德氏乳杆菌保加利亚亚种(杆菌)是酸乳最常用的发酵剂菌株。本文以酪蛋白为原料,通过五种的蛋白酶(碱性蛋白酶、风味蛋白酶、中性蛋白酶、木瓜蛋白酶和胰蛋白酶)进行酶解并对其酶解特性进行了研究,利用促进乳酸菌(球菌和杆菌1:1)生长活性实验评价了五种酪蛋白水解物的生物活性。从乳酸菌生长代谢机制出发,考察了不同酪蛋白酶解物对乳酸菌生长状态、产乳酸、生物合成胞外多糖(EPS)及乳酸菌发酵酸乳的影响。进一步研究了酪蛋白酶解物在乳酸菌发酵过程中对涉及乳酸菌乳酸生物合成途径,即糖酵解途径和EPS生物合成途径中关键酶活性的影响。最后,利用膜分离、大孔吸附树脂色谱、凝胶渗透色谱和高效液相色谱(HPLC)一系列分离技术从活性最强的酪蛋白酶解物中分离纯化得到了具有促乳酸菌生长活性的酪蛋白肽,并利用液相色谱质谱联用(HPLC-MS/MS)技术结合氨基酸分析对纯化后的肽进行了一级序列结构鉴定。
     分别采用碱性蛋白酶、风味蛋白酶、中性蛋白酶、木瓜蛋白酶和胰蛋白酶对酪蛋白进行酶解,以促进乳酸菌生长活性为指标,筛选出各种蛋白酶的最佳水解条件,得到促生长活性最好的酪蛋白水解物。进一步将酪蛋白酶解物进行膜分离,得到分子量段不同的酪蛋白水解物,并评价了不同分子量段的酪蛋白水解物促乳酸菌的增殖活性。研究了不同蛋白酶、水解度、分子量和氨基酸组成对水解物的促乳酸菌增殖作用的影响。结果表明,酪蛋白水解物的水解度与促生长活性没有明显的相关性;酪蛋白分别用碱性蛋白酶、风味蛋白酶、中性蛋白酶和胰蛋白酶进行水解12 h(CHA、CHF、CHN和CHT)以及用木瓜蛋白酶水解8 h (CHP)得到促生长活性较强的水解物;分子量(Mw)小于3 kDa段的各种酪蛋白活性肽(CHA-Ⅳ、CHF-Ⅳ、CHN-Ⅳ、CHP-Ⅳ和CHT-Ⅳ)具有比其它分子量段更好的促生长活性;酪蛋白水解物中富含的亲水性氨基酸(组氨酸、赖氨酸、谷氨酸和丝氨酸)对乳酸菌的生长具有更好促生长作用,而含硫氨基酸(半胱氨酸和甲硫氨酸)对水解物的促生长活性没有明显的影响。
     研究了五种Mw < 3 kDa段酪蛋白水解物(CHA-Ⅳ、CHF-Ⅳ、CHN-Ⅳ、CHP-Ⅳ和CHT-Ⅳ)对乳酸菌在72 h发酵过程中乳酸菌活菌数、乳酸生成、葡萄糖消耗以及糖酵解关键酶(葡萄糖激酶、磷酸果糖激酶、丙酮酸激酶和乳酸脱氢酶)活性的影响。结果表明,五种酪蛋白活性肽段(Mw < 3 kDa)的添加均能够提高球菌的活菌数,尤其是在对数生长期的影响更显著,而对此阶段杆菌活菌数没有太大的影响;酪蛋白活性肽能够减缓乳酸菌活菌数在生长后期的下降趋势;对乳酸菌发酵液菌体量都有不同程度的提高作用,其中CHP-Ⅳ的影响最显著;与此同时,由于各种酪蛋白肽段的添加发酵液pH下降趋势均有不同程度的加剧,加速了发酵过程葡萄糖的消耗速度,其中以CHP-Ⅳ的影响最明显;酪蛋白活性肽段的添加明显提高了丙酮酸激酶和磷酸果糖激酶这两种酶活性,但是对葡萄糖激酶和乳酸脱氢酶的酶活性影响不大,并且,丙酮酸激酶和磷酸果糖激酶的酶活性与乳酸菌产乳酸量有很好的相关性。
     考察了CHA-Ⅳ、CHF-Ⅳ、CHN-Ⅳ、CHP-Ⅳ和CHT-Ⅳ对乳酸菌72 h发酵过程中胞外多糖(EPS)产量、单糖组分和EPS合成途径中关键酶(α-磷酸葡糖糖变位酶、β-磷酸葡糖糖变位酶、TDP-葡糖糖焦磷酸化酶、UDP-葡糖糖焦磷酸化酶和UDP-半乳糖-4-异构酶)活性的影响。结果表明,五种酪蛋白活性肽段(Mw < 3 kDa)的添加都能提高乳酸菌EPS产量,但对EPS产量的影响不同;乳酸菌EPS主要是由葡萄糖、半乳糖和鼠李糖组成,其单糖组成比例随着发酵时间的变化而有所不同,各种酪蛋白活性肽段(Mw < 3 kDa)的添加对EPS单糖组成比例没有影响;α-磷酸葡萄糖变位酶、TDP-葡萄糖焦磷酸化酶和UDP-葡萄糖焦磷酸化酶影响乳酸菌EPS发酵过程中的产量。UDP-半乳糖-4-异构酶和β-磷酸酪蛋白活性肽段(Mw < 3 kDa)变位酶对EPS产量没有影响。Mw < 3 kDa段酪蛋白活性肽的添加能够提高α-磷酸葡糖糖变位酶、TDP-葡糖糖焦磷酸化酶、UDP-葡糖糖焦磷酸化酶和UDP-半乳糖-4-异构酶这四种酶活性,而对β-磷酸葡糖糖变位酶活性没有影响。
     研究了Mw < 3 kDa段木瓜蛋白酶水解酪蛋白活性肽(CHP-Ⅳ)对酸乳发酵过程的影响(发酵过程中pH值,凝乳时间,产酸量和产酸速度以及发酵时间等发酵参数)以及对发酵乳储藏期品质的影响,包括对发酵乳质构特性、稳定性、后酸化和乳酸菌活性变化的影响。结果表明,在一定添加量范围内(1.5-3.0%等量蛋白替代, w/w),CHP-Ⅳ对酸乳促发酵能力随着添加量的增加而增强。在3.0%(w/w)的等量蛋白替代下,酸乳发酵时间缩短了21.9%;超过了3.0%(w/w)的添加量,即在6.0%(w/w)的添加量下,该水解物的促发酵效果不明显;在3.0%(w/w)的添加量下能够明显延缓酸乳在储藏期的后酸化;能够明显提高酸乳储藏期间球菌的活性,但是对杆菌的活性有轻微的抑制作用;该水解物不仅能够明显提高酸乳储藏期间的活菌总数而且还改变了球/杆菌数比例;对储藏期酸乳的硬度没有明显的改变,但是可以提高酸乳的粘度,明显提高酸乳的感官质量。
     通过大孔吸附树脂色谱、凝胶渗透色谱和反相高效液相色谱等系列分离技术,分别根据酪蛋白肽的亲疏水性、分子量大小和极性大小等性质的不同对Mw < 3 kDa段的酪蛋白木瓜蛋白酶水解物(CHP-Ⅳ)进行逐级分离纯化,同时评价了各级分离产物的促乳酸菌生长活性,以HPLC-MS/MS结合氨基酸分析对纯化得到的功能肽的氨基酸序列结构进行鉴定,首次分离得到三个具有显著促乳酸菌生长活性的酪蛋白肽CHP-Ⅳ-F1-G1-H2 (Asn-Pro-Ser-Lys-Glu-Asn-Leu)、CHP-Ⅳ-F2-P2-Hb (Asp-Ile-Pro-Asn- Pro-Ile)和CHP-Ⅳ-F2-P2-Hc (Pro-Ile-Val-Leu-Asn-Pro)。
A characteristic of lactic acid bacteria (LAB) is their fastidious requirements for growth and biological activities, particularly amino acids. The pool of free amino acids and peptides in milk is not enough to guarantee optimum bacterial growth in this substrate. Lactobacillus delbrueckii subsp. bulgaricus (LB) and Streptococcus thermophilus (ST) are the most comMon yoghurt starter. On the basis of these findings, we reported a new promising nitrogen source, casein hydrolysates. Casein protein was respectively hydrolyzed with different proteolytic enzymes (alcalase, flavorzyme, neutrase, papain and trypsin) and the effect of ultrafiltered fractions with different molecular mass from five casein hydrolysates (CH) on the growth performance and lactic acid production of LAB (St and Lb 1:1) in MRS broth medium was determined. Besides, the influence of five peptides fractions (< 3 kDa) of CH on the production of lactic acid and exopolysaccharides (EPS), glucose consumption, EPS monomeric composition, the enzymatic activities of LAB and yoghurt fermentation was evaluated. Finally, the peptides with growth-promoting activity for LAB originated by CH was isolate and purified using ultrafiltration, macroporous adsorption resin chromatography, gel filtration chromatography and high performance liquid chromatography (HPLC), sequentially. And, the purified peptides were identified by HPLC-ESI-MS/MS.
     The growth performance of Lb and St was determined in the presence of casein hydrolysates produced by the action of five proteolytic enzymes (alcalase, flavorzyme, neutrase, papain and trypsin) with various degree of hydrolysis (DH). The CH respectively treated with alcalase, flavorzyme, neutrase, and Trypsin for 12 h and the CHs (CHA, CHF, CHN and CHT) with high growth-promoting activity were obtained. The casein was hydrolyzed by papain for 8 h (CHP) to obtain the hydrolysates with high growth-promoting activity. In addition, these five kinds of CHs were fractionated by ultrafiltration and the influence of the amino acid composition of the peptides fractions on the growth and lactic acid yield of LAB was studied. The results showed that the ultrafiltered fractions with molecular mass less than 3 kDa (CHA-IV, CHF-IV, CHN-IV, CHP-IV and CHT-IV) were the determinant stimulator in crude hydrolysates, respectively. Furthermore, the hydrophilic amino acid residua including His, Lys, Glu and Ser were beneficial for bacterial growth.
     The influence of CHA-IV, CHF-IV, CHN-IV, CHP-IV and CHT-IV on cell viability, lactic acid production, glucose consumption and the activities of enzymes (glucokinase, phosphofrutokinase, pyruvate kinase and lactate dehydrogenase) involved in the glycolysis pathway in the mixed cultures of St and Lb. The viability of St was respectively improved by all the peptides fractions, especially during the exponential growth phase, but there was no enhancement for Lb was observed. The addition of the peptides fractions could slow down the decrease in bacterial viability during the decline phase. Besides, the cell density of LAB could be improved by all the fractions, especially CHP-IV. The consumption of glucose by LAB was inordinately exacerbated by the different addition. The activities of phosphofrutokinase and pyruvatekinase were improved by the addition of peptides fractions, but the activities of glucokinase and lactate dehydrogenase were not influenced. In addition, there was a good correlation between lactic acid production and the activities of phosphofrutokinase and pyruvatekinase.
     The influence of different CH (< 3 kDa) on EPS production and the activity of the enzymes involved in the synthesis of EPS by LAB was evaluated. The highest EPS production (138.2 mg/l) was obtained on CHP-IV at 24 h when the EPS produced in all fermentations was composed of galacose, glucose and rhamnose in a ratio of 1.0: 2.4: 1.5. The sugar composition just changed according to the fermentation times. The activity ofα-phosphoglucomutase, UDP-glucose pyrophosphorylase and UDP-galactose 4-epimerase was associated with EPS production. Moreover, the activity ofβ-phosphoglucomutase and dTDP-glucose pyrophosphorylase implicated in rhamnose synthesis was very low at exponential growth phase and could not be detected at other given period.
     The effect of CHP-IV on the fermentation kinetics, microbiological survival and physicochemical properties in yoghurt was determined. The value of TpH4.5 (time necessary to reach pH 4.5) of yoghurt fortified with CHP-IV reduced from 5.21 h to 4.29 h and the total counts of LAB present in the final products was increased by the addition at nitrogen replaced ratio of 3.0% (w/w). Moreover, the yoghurt exhibited lower post-acidification power, higher viscosity and sensory evaluation scores than did the control product during storage period.
     A series of separation methods including ultrafiltration, macroporous adsorption resin chromatography, gel filtration chromatography and HPLC were applied to isolate and purify the peptide(s), which were mainly responsible for the activity. Finally, three novel growth-stimulating peptides, CHP-IV-F1-G1-H2, CHP-IV-F2-P2-Hc and CHP-IV -F2-P2-Hb corresponding to amino acid residues 29-35 and 103-108 of bovineαS2–casein and 181-186 of bovineαS1–casein, respectively, were obtained.
引文
[1]凌代文,东秀珠.乳酸菌细菌分类鉴定及实验方法[M].北京:中国轻工业出版社,1998: 6
    [2]云月英,王文龙.乳酸菌与健康[J].农产品加工.2009, 1: 67–68
    [3] Wood B. J. B., Holzapfel, W. H. The genera of lactic acid bacteria [M]. London: Blackie Academic & Professional, 1995
    [4]杨洁彬,郭兴华,张蔑等.乳酸菌-生物学基础及应用[M].北京:中国轻工业出版社,1996: 18–30
    [5]施安辉,周波.乳酸菌分类、生理特性及在食品酿造工业上的应用[J].中国调味品.2001, 11: 3–4
    [6] Lima K. G. C., Kruger M. F., Behrens J., et al. Evaluation of culture media for enumeration of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium animalis in the presence of Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus[J]. LWT Food Science and Technology. 2009, 42: 491–495
    [7]陈瑞娟.肠内菌丛与健康长寿[J].食品与发酵工业.1992, 2: 69–71
    [8]刘艳姿.乳酸菌的生理特性及应用的研究[D].燕山大学硕士论文,秦皇岛, 2009
    [9] Gilland S. E. Acidophilus milk porduets-A review of potential benefits to consumers [J].Journal of dairy science.1989, 72(10): 24831–2494
    [10] Gilland S. E., Speck M. L. Deconjugation of bile acids by intestinal lactobillus [J]. Applied Environmental Microbiology.1977, 33: 15–18
    [11]肖琳琳,董明盛.西藏干酪乳酸菌降胆固醇特性研究[J].食品科学. 2003,249(10): 142–145
    [12]敬思群.优质乳酸菌的应用[J].中国乳品工业. 2002, 6: 18–20
    [13]陈世化,夏延斌,聂乾忠.发酵菜中乳酸菌抑菌性的研究[J].食品工程. 2007, 2: 6
    [14] Aylnerieh T.,Garriga M.,Ylla J., et al. Application of enterocins as biopreservatives against Listeria innocua in meat product [J]. Journal of Food Protection. 2000, 6: 721–726
    [15]张江巍,曹郁生,李海星,等.乳酸菌抗氧化活性及检测方法[J].中国乳品工业.2005, 33(9): 53–56
    [16]刘冬梅,李理,梁世忠,等.直投式酸奶发酵剂研究进展[J].中国乳品工业.2005, 33: 29–34
    [17]张兰威,鄂志强,万海峰,等.乳酸菌增菌培养基的筛选及干燥保护剂的选择[J].中国乳品工业. 2000, 28(2): 7–9
    [18]王博彦,金其荣.发酵有机酸生产与应用手册[M].北京:中国轻工业出版社, 2000
    [19]刘伟,高年发.乳酸生产菌性能的比较[J].发酵科技通讯. 2002, 31(3): 9–11
    [20]柴俊,郤翠仙,张以芳.乳酸杆菌主要代谢产物种类及其特性[J].食品工业科技. 2007, 8: 257–261
    [21]杜连祥,赵征.乳酸菌及其发酵制品生产技术[M].天津:天津科技出版社, 1999
    [22]徐忠,汪群慧.L-乳酸的制备及其应用的研究进展[J].化学与粘合.2004, 4:214–217
    [23]金其荣,张继民,徐勤.有机酸发酵工艺学(第一版)[M].北京:中国轻工业出版社.1989: 339–406
    [24]穆守元.国内外乳酸及其衍生品的应用和市场前景[J].化工技术经济.2001,3: 10–14
    [25] Van Den Berg D. J. C., Smits A., Pot B., et al. Isolation, screening and identification of lactic acid bacteria from traditional food fermentation processes and culture collections [J]. Food Biotechnology. 1993, 7: 189–205
    [26] Smit G., Van Hylckama Vlieg J. E. T., Smit E. T., et al. Fermentative formation of flavour compounds by lactic acid bacteria[J]. Australian Journal of Dairy Technology. 2002, 57: 61–68
    [27]李元莉,吕欣,陈晓红,等.功能性乳酸菌发酵剂在食品发酵工业中的应用[J].中国乳品工业.2006, 34(1): 35–38
    [28] Hols P., Kleerebezem M., Schank A. N., et al. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering[J]. Nature Biotechnology. 1999, 17: 588–592
    [29]钟颜麟,彭志英,赵谋明等.乳酸菌胞外多糖的研究[J].中国乳品工业. 1999,7(4): 7–10
    [30]赵玉臣,王迎俊,王忠凤.乳酸菌胞外多糖[J].中国乳业,2003(4): 32–35
    [31]杨贞耐.乳酸菌胞外多糖的生物合成和结构特性[J].农产食品科技,2006(创刊号):12–15
    [32]艾连中,郭本恒,张灏,等.乳酸菌胞外多糖的研究[J].乳业科学与技术. 2007,l: l–3
    [33] Faber E. J., Kamerling J. P., Vliegenthart J. F. Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus 291[J]. Carbohydrate Research. 2001, 331: 183–194
    [34] Staaf M., Yang Z., Huttunen E., et al. Structural elucidation of the viscous exopolysaccharide produced by Lactobacillus helveticus Lb161[J]. Carbohydrate Research. 2000, 326: 113–119
    [35] Yang A., Staaf M., Huttunen E., et al. Strcuture of a viscous exopolysaccharide produced by Lactobacilus helveticus K16[J]. Carbohydrate Research. 2000, 329: 465–469
    [36] Vanhaverbeke C., Bosso C., Colin-Morel P., et al. (1998). Structure of an extracellular polysaccharide produced by Lactobacillus rhamnosus strain C83[J]. Carbohydrate Research. 1998, 314: 211–220
    [37] Vincent S. J. F., Faber E. J., Neeser J. R., et al. Structure of the exopolysaccharide produced by Streptococcus macedonius Sc136[J]. Glycobiology. 2001, 11: 131–139
    [38] Navarini L., Abatangelo A., Bertocchi C., et al. Isolation andcharact erization of the exopolysaccharide produced by Streptococcus thermophilus SFi20[J]. International Journal of Biological Macromolecules. 2001, 28: 219–226
    [39] Faber E. J., Zoon P., Kamerling J. P., et al. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures[J]. Carbohydrate Research. 1998, 310: 269–276
    [40] Low D., Ahlgren J. A., Horne D., et al. Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention[J]. Applied Environmental Microbiology. 1998, 64: 2147–2151
    [41] Faber E. J., van den Haak M. J., Kamerling J. P., et al. Structure of the exopolysaccharide produced by Streptococcus thermophilus S3[J]. Carbohydrate Research. 2001, 331: 173–182
    [42] Faber E. J. Investigation of the structure of exopolysaccharides produced by lactic acid bacteria[D]. Ph.D. Thesis, University of Utrecht, The Netherlands. 2000
    [43] Marshall V. M., Dunn H., Elvin M., et al. Structural characterisation of the exopolysaccharide produced by Streptococcus thermophilus EU20[J]. Carbohydrate Research. 2001, 331: 413–422
    [44] van Casteren W. H. M., Dijkema C., Schols H. A., et al. Structural characterisation and enzymatic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B39[J]. Carbohydrate Research. 2000, 324: 170–181
    [45] van Casteren W. H. M., de Waard P., Dijkema C., et al. Structural characterisation and enzymatic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891[J]. Carbohydrate Research. 2000, 327: 411–422
    [46] Gassem M. A., Schmidtand K. A., Frank J. F. Exopolysaccharide production from whey lactose by fermentation with Lactobacillus delbrueckii ssp. bulgaricus [J] Journal of Food Science. 1997,207: 171–173
    [47]林颖,吴毓敏,吴雯等.天然产物中的糖含量测定方法正确性的研究[J].天然产物研究与开发. 1996, 8(3): 5–8
    [48] Degeest B., De Vuyst L. Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium[J]. Applied Environmental Microbiolology. 1999, 65: 2863–2870
    [49] Cening J., Bouillane C.,Landon M., et al. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria [J]. Journal of Dairy Science. 1992, 75: 692–699
    [50] De Vuyst L., Zamfir M., Mozzi F., et al. Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks[J]. International Dairy Journal. 2003, 13: 707–717
    [51]顾笑梅,王富生,孔键等.乳酸菌Z222产胞外多糖对免疫细胞功能的影响[J].中华微生物学和免疫学杂志. 2003, 23(6): 442–445
    [52]刘宇,孟祥晨.乳酸菌胞外多糖及其抗肿瘤活性[J].中国乳品工业. 2008, 36(1): 39–44
    [53] Kitazawa H., Ishii Y., Uemura J., et al. Augmentation of macrophage functions by an xxtracellular phosphpolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus [J]. Food Microbiology. 2000, 17: 109–118
    [54] Amrouche T., Boutin Y., Prioult G., et al. Effects of bifidobacterical cytoplasm,cell wall and expolysaccharide on mouse lymphocyte proliferation and cytokine production [J]. International Dairy Journal. 2006, 16: 70–80
    [55]吴荣荣,王敏,朱会霞,等.德氏乳杆菌保加利亚亚种胞外多糖合成条件的优化及其在发酵乳中的应用[J].中国乳品工业. 2008, 2: 8–12
    [56]张秀丽.戊糖乳杆菌胞外多糖合成条件优化及在酸乳中应用研究[D].北京林业大学硕士论文,北京, 2009
    [57] Ezzat N., El-Doda M.,Boullane D.,et al. Cell wall associated proteinases in Lactobacillus helveticus, Lactobacillus bulgaricus and lactobacillus lactis[J]. Milchwissenschaft. 1985, 40: 140-147
    [58] Thomas T. D., Mills D. E. Nitrogen source for growth of lactic streptococci in milk[J]. New Zealand Journal of Dairy Science and Technology. 1981, 16: 13-20
    [59] Atlan E.,Laloi P., Portalier R. Isolation and characterisation of aminopeptidase-deficent Lactobacillus bulgaricus mutants[J]. Applied Environmental Microbiology. 1989, 55: 1717–1723
    [60]钱铭镛.发酵工程最优化控制[M].南京江苏科学技术出版社, 1998.
    [61]熊宗贵.发酵工艺原理[M].北京中国医药科技出版社, 1995.
    [62]闫丽莉,韩建春.姬松茸多糖对乳酸菌生长的影响[J].中国乳品工业. 2008, 36(12): 7–10
    [63]刘海燕,李应彪,徐幸莲,等.德氏乳杆菌增殖培养基的优化研究[J].现代食品科技. 2008,24(11): 1160–1163
    [64]谭欢,侯爱香,周传云.乳酸菌高效增殖条件的探索[J].中国酿造. 2007, 170: 49–52
    [65]田洪涛,贾英民,马雯等.嗜热链球菌促生长物质研究及增殖培养基优化筛选[J].食品科学. 2002, 23(5): 60–62
    [66]李志成,徐怀德,王敏,等.嗜热链球菌和德氏乳杆菌保加利亚亚种增菌培养研究[J].西北农林科技大学学报(自然科学版). 2001, 30(1): 50–52
    [67]张蓉真,李珑等.大豆水解蛋白对乳酸菌增殖的促进作用[J].中国粮油学报.1997, 12(6): 40–43
    [68]赵谋明,刘宏锋,林伟锋等.酪蛋白水解物对酸奶发酵的促进作用及其对酸奶质构的影响[J].食品工业科技. 2005, 7: 78–52
    [69] Gaudreau H., Champagne C. P., Jelen P. The use of crude cellular extracts of Lactobacillus delbrueckii ssp. bulgaricus 11842 to stimulate growth of a probiotic Lactobacillus rhamnosus culture in milk[J]. Enzyme and Microbial Technology. 2005, 36: 83–90
    [70] Etoh S. I., Asamura K., Obu A., et al. Purification and identification of a growth-stimulating peptide for Bifidobacterium bifidum from natural rubber serum powder[J].Bioscience, Biotechnology and Biochemistry. 2000, 64: 2083–2088
    [71] Yuan X. P., Wang J., Yao H. Y. Feruloyl oligosaccharides stimulate the growth of Bifidobacterium bifidum[J]. Food microbiology. 2005, 11: 225–229
    [72] Xu G. Q., Chu J., Zhuang Y. P., et al. Effects of vitamins on the lactic acid biosynthesis of Lactobacillus paracasei NERCB 0401[J]. Biochemical Engineering Journal. 2008, 38: 189–197
    [73] Dave R. I., Shah N. P. Effectiveness of ascorbic acid as anoxygen scavenger in improving viability of probiotic bacteria in yoghurt made with comMercialstarter cultures[J]. International Dairy Journal. 1997, 7: 435–443
    [74] Bouhallab S., Favrot C., Maubois J. L. Growth-promoting activity of tryptic digest of caseinomacropeptide for Lactococcus lactis subsp lactis[J]. Lait. 1993, 73: 73–77
    [75] Fiat A. M., Migliore D., Jollès P. Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and imMunostimulating activities[J]. Journal of Dairy Science. 1993, 76(1): 301–310
    [76] Fiat A. M., Jollès, P. Caseins of various origins and biologically active casein peptides and oligosaccharides: Structural and physiological aspects[J]. Molecular and Cellular Biochemistry. 1989, 87(1): 5–30
    [77] Jollès P., Levy-Toledano S., Fiat A. M., et al. Analogy between fibrinogen and casein: Effect of an undecapeptide isolated from kcasein on platelet function[J]. European Journal of Biochemistry. 1986, 158(2): 379–382
    [78] SchlimMe E., Meisel, H. Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects[J]. Die Nahrung. 1995, 39(1): 1–20
    [79] Maruyama S., Suzuki, H. A peptide inhibitor of angiotensin I-converting enzyme in the tryptic hydrolysate of casein[J]. Agricultural and Biological Chemistry. 1982, 46: 1393–1394
    [80] Maruyama S. H., Mitachi H., Awaja J., et al. Angiotensin I-converting enzyme inhibitor activity of the C-terminal hexapeptide ofαS1-casein[J]. Agricultural and Biological Chemistry. 1987, 51: 2557–2561
    [81] Meisel H., SchlimMe E. Inhibitors of angiotensin converting-enzyme derived from bovine casein (casokinins). In V. Brantl, & H. Teschemacher (Eds.),β-Casomorphins and related peptides: Recent developments (pp. 27–33). Weinheim: VCH, Germany, 1994
    [82] Gòmez-Ruiz J. A., Ramos M., Recio, I. Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures[J]. International Dairy Journal. 2002, 12(8): 697–706
    [83] Pihlanto-Lepp?l? A., Rokka T., Korhonen H. Angiotensin I-converting enzyme inhibitorypeptides derived from bovine milk proteins[J]. International Dairy Journal. 1998, 8(4): 325–331
    [84] Tauzin J., Miclo L., Gaillard J. L. Angiotensin-Iconverting enzyme inhibitory peptides from tryptic hydrolysate of bovineαS2-casein[J]. FEBS Letters. 2002, 531(2): 369–374
    [85] Maeno M., Yamamoto N., Takano T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus Cp790[J]. Journal of Dairy Science. 1996, 79(8): 1316–1321
    [86] Nakamura Y., Yamamoto N., Sakai K., et al. Purification and characterization of angiotensin-I-converting enzyme inhibitors from sour milk[J]. Journal of Dairy Science. 1995, 78(4): 777–783
    [87] Perpetuo E. A., Juliano L., Lebrun I. Biochemical and pharmacological aspects of two bradykinin-potentiating peptides obtained from tryptic hydrolysis of casein[J]. Journal of Protein Chemistry. 2003, 22: 601–606
    [88] Loukas S., Varoucha D., Zioudrou C., et al. Opioid activities and structures ofα-casein-derived exorphins[J]. Biochemistry. 1993, 22(19): 4567–4573
    [89] Xu R. J. Bioactive peptides in milk and their biological and health implications[J]. Food Reviews International. 1998, 14(1): 1–16
    [90] Minkiewicz P., Slangen C. J., Dziuba J., et al. Identification of peptides obtained via hydrolysis of bovine casein by chymosin using HPLC and mass spectrometer[J]. Milchwissenschaft. 2000, 55(1): 14–17
    [91] Migloire-Samour D., Jollès P. Casein, a pro-hormone with imMunomodulating role to the newborn?[J]. Experientia. 1988, 44(3): 188–193
    [92] Parker F., Migliore-Samour D., Floch F., et al. ImMunostimulating hexapeptide from human casein: Amino acid sequence, synthesis and biological properties[J]. European Journal of Biochemistry. 1984, 145(3): 677–682
    [93] Hata I., Ueda J., Otani H. (1999). ImMunostimulatory action of a comMercially available casein phosphopeptide preparation, CPPIII, in cell cultures[J]. Milchwissenschaft. 1999, 54(1): 3–7
    [94] Lahov E., Regelson W. Antibacterial and imMunostimulating casein-derived substances from milk: Caseicidin, isracidin peptides[J]. Food and Chemical Toxicology. 1996, 34(1): 131–145
    [95] Recio I., Visser S. Identification of two distinct antibacterial domains within the sequence of bovineαS2-casein[J]. Biochimica et Biophysica Acta. 1999, 1428: 314–326
    [96] Zucht H. D., Raida M., Adermann K., et al. Casocidin-I: A caseinαS2-derived peptideexhibits antibacterial activity[J]. FEBS Letters. 1995, 372: 185–188
    [97] Sandre C., Gleizes A., Forestier F., et al. A peptide derived from bovineβ-casein modulates functional properties of bone marrow-derived macrophages from germfree and human flora-associated mice[J]. The Journal of Nutrition. 2001, 131(11): 2936–2942
    [98]宫霞,郭本恒,李云飞,等.酶解酪蛋白生产生物活性肽的研究现状及开发前景[J]。中国乳品工业. 2005, 137(33): 4447
    [99]郭清泉,张兰威.食品中活性肽的研究[J].食品与机械. 1999, 74(6): 12–14
    [100]王秋蕴.酶解牛乳酪蛋白筛选免疫活性肽的研究[D].天津商学院,天津, 2002
    [101] Adler-Nissen J. Enzymic Hydrolysis of Food Protein [M]. Elsevier Applied Science Publishers, 1986: 1–8
    [102] Mullally M.M., Meisel H., FitzGerald R.J. Angiotensin I-converting enzyme inhibitory activities of gastric and pancreatic proteinase diegests of whey protein [J]. International Dairy Journal. 1997, 7: 299–303
    [103] Hattori M., Yamaji T.K., Kumagai H., et al. Antioxidative activity of soluble elastin peptides[J]. Journal of Agricultural and Food Chemistry. 1998, 46(6): 2167–2170
    [104] Saiga A., Tanabe S., Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment[J]. Journal of Agricultural and Food Chemistry. 2003, 51(12): 3661–3667
    [105]蒲首丞,王金水.酶解蛋白制备生物活性肽的进展分析[J].粮食加工. 2005, 4: 48–50
    [106]胡春林,潘月平.大豆蛋白质酶解前处理方法的研究[J].食品与药品. 2007, 9(3): 27–29
    [107]李素芬,贾庄德,田金强. Protamex酶解玉米蛋白质制备生物活性玉米肽的研究[J].农产品加工学刊. 2007, (6): 30–32
    [108]任娇艳.草鱼蛋白源抗疲劳生物活性肽的制备分离及鉴定技术研究[D].华南理工大学博士论文,广州, 2008
    [109]吴梧桐.生物制药工艺学[M].北京:中国医药科技出版社, 1993: 290
    [110] Wilce M. C. J., Aguilar M. T., Hearn M. T. et al. High performance liquid chromatography of amino acids, peptide and proteins. CV II. Analysis of group retention contributions for peptides separated high performance liquid chromatography[J]. Journal of Chromatography. 1991, 536: 165–171
    [111] Henderson D. E., Mello J. A. Physicochemical studies of biologically active pep tide bylow temperature reverse-phase high performance liquid chromatography[J]. Journal of Chromatography. 1990, 499: 79-87
    [112] Li S., Chen H., Zhuang Y., et al. Preparation of functional oligopeptides by enzymic hydrolysis of soybean protein[J]. Shi Pin Ke Xue. 2000, 21(12): 90–93
    [113] Burilngame A. L., Baille T. A., Russell D. H. Mass spectrometry[J]. Analytical Chemistry. 1992, 64: 467R–502R
    [114] Tsuji K., Bacaynskyl L., Bronson G. E. Capillary electrophoresis-electrospray mass spectrometry for the analysis of recombinant bovine and porcine somatotropins[J]. Analytical Chemistry. 1992, 64:1864–1871
    [115] McCann K. B., Shiell B. J., Michalski W. P., et al. Isolation and characterisation of antibacterial peptides derived from the f(164–207) region of bovineαS2-casein[J]. International Dairy Journal. 2005, 15: 133–143
    [116] Matsui T., Li C., Osajima Y. Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ[J]. Journal of Peptides Science. 1999, 5(7): 289–297
    [117]赵锐,顾谦群,管华诗.多肽物质分离与分析方法研究进展[J].中国海洋药物. 2000, 75(3): 48–53
    [118]郭本恒.酸奶[M].北京:中国轻工业出版社, 2001:186–187
    [119]陈洁.中温发酵酸乳品质的研究[D].江南大学硕士学位论文,无锡, 2008
    [1] Wood B. J. B., Holzapfel W. H. The genera of lactic acid bacteria[M]. London: Blackie Academic & Professional, 1995
    [3] Leroy F., De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation and industry[J]. Trends in Food Science and Technology. 2004, 15: 67–78
    [4] Dave R. I., Shah, N. P. Ingredient supplementation effects on viability of probiotic bacteria in yoghurt[J]. Journal of Dairy Science. 1998, 81: 2804–2816
    [5] Driessen F. M.著.顾瑞霞译.发酵乳科学与技术[M].东南大学出版社,1991, 100–105
    [6] Rasic J. L. The role of dairy foods containing bifido and acidophilus bacteria in nutrition and health[J]. North European Dairy Journal. 1983, 4: 1–5
    [7] Lima K. G. C., Kruger M. F., Behrens J., et al. Evaluation of culture media for enumeration of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium animalis in the presence of Lactobacillus delbrueckii subsp bulgaricus and Streptococcusthermophilus[J]. LWT Food Science and Technology. 2009, 42: 491–495
    [8] Varga L. Effect of acacia (Robinia pseudo-acacia L.) honey on the characteristic microflora of yogurt during refrigerated storage[J]. International Journal of Food Microbiology. 2006, 108: 272–275
    [9] Sodini I., Lucas A., Tissier J. P., et al. Physical properties and microstructure of yoghurts supplemented with milk protein hydrolysates[J]. International Dairy Journal. 2005, 15: 29–35
    [10] Rajagopal S. N., Sandine W. E. Associative growth and proteolysis of streptococcus thermophilus and lactobacillus bulgaricus in skim milk[J]. Journal of Dairy Science. 1990, 73: 894–899
    [11] Yuan X. P., Wang J., Yao H. Y. Feruloyl oligosaccharides stimulate the growth of Bifidobacterium bifidum[J]. Anaerobe. 2005, 11: 225–229
    [12] Xu G. Q., Chu J., Zhuang Y. P., et al. Effects of vitamins on the lactic acid biosynthesis of Lactobacillus paracasei NERCB 0401[J]. Biochemical Engineering Journal. 2008, 38: 189–197
    [13] Etoh S. I., Asamura K., Obu A., et al. Purification and identification of a growth-stimulating peptide for Bifidobacterium bifidum from natural rubber serum powder[J]. Bioscience Biotechnology and Biochemistry. 2000, 64: 2083–2088
    [14] Degeest B., De Vuyst L. Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium[J]. Applied Environmental Microbiology. 1999, 65: 2863–2870
    [15]大连轻工学院,华南理工大学,郑州轻工业学院等.食品分析[M].北京:中国轻工业出版社,1994
    [16] Dong S. Y., Zeng M. Y., Wang D. F., et al. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix)[J]. Food Chemistry. 2008, 107: 1485–1493
    [17] Kunji E. R. S., Mierau I., Hagting A., et al. The proteolytic systems of lactic acid bacteria[J]. Antonie van Leeuwenhoek. 1996, 70: 187–221
    [18] Azuma N., Yamauchi K., Mitsuoka, T. Bifidus growth-promoting activity of a glycomacropeptide derived from humanк-casein[J]. Agriculturre and Biological Chemistry. 1984, 48: 2159–2162
    [19] St-Gelais D., Roy D., HachéS., et al. Growth of nonproteolytic Lactococcus lactis in culture medium supplemented with different casein hydrolyzates[J]. Journal of Dairy Science.1993, 76: 3327–3337
    [20] Proulx M., Ward P., Gauthier S. F., et al. Comparison of bifidobacterial growth-promoting activity of ultrafiltered casein hydrolyzate fractions[J]. Lait. 1994, 74: 139–152
    [21] Bard C., Pouliot Y., Gauthier S. F. Two-step ultrafiltration of casein hydrolyzate: effect of enzyme specificity and membrane retentivity, Proceeding of Engineering of membrane processes. Germany: Garmish-Partenkirchen, 1992
    [22] Shankar P. A., Davies, F. L. Amino acid and peptide utilization by Streptococcus thermophilus in relation to yoghurt manufacture[J]. Journal of Applied Bacteriologyl. 1997, 43: viii
    [23] Poch M., Bezkorovainy, A. Bovine Milk K-Casein Trypsin Digest is a growth enhancer for the genus Bifidobacterium[J]. Journal of Agricultural and Food Chemistry. 1991, 39: 73–77
    [24] Liu S. Q., Holland R., Crow V. L. The potential of dairy lactic acid bacteria to metabolise amino acids via non-transaminating reactions and endogenous transamination[J]. Inernational Journal of Food Microbioogy. 2003, 86: 257– 269
    [1]刘勇军.细菌L-乳酸发酵的研究[D].天津科技大学硕士论文,天津,2003
    [2]王海燕,刘铭,王化军,等.乳酸生产中的微生物代谢工程[J].过程工程学报. 2006, 6(3):512–516
    [3] Leroy F., De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation and industry[J]. Trends in Food Science and Technology. 2004, 15: 67–78
    [4] Fu W., Mathews, A. P. Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen[J]. Biochemical Engineering Journal. 1999, 3: 163–170
    [5] Erbas M., Uslu M. K., Erbas M. O., et al. Effects of fermentation and storage on the organic and fatty acid contents of tarhana, a Turkish fermented cereal food[J]. Journal of Food Composition and Analysis. 2006: 19, 294–301
    [6]李可伟.温度对乳酸通量的调节规律研究[D].天津商业大学硕士论文,天津, 2008
    [7]孟武.乳酸生成菌的乳酸发酵调控及分子改造[D].山东轻工学院硕士论文,济南, 2010
    [8]王镜岩,朱圣庚,俆长法.生物化学[M].北京:高等教育出版社, 2002
    [9] Flint H. J., Tateson R. W., Barthelmess I. B., et al. Control of the arginine flux in the arginine pathway of Neurosporacrassa [J]. Biochemistry Journal. 1981, 200: 231–246
    [10]大连轻工学院,华南理工大学,郑州轻工业学院等.食品分析[M].北京:中国轻工业出版社,1994
    [11] Oliveira M. N., Sodini I., Remeuf F., et al. Effect of milk supplementation and culture composition on acidification, textural properties and microbiological stability of fermented milks containing probiotic bacteria[J]. International Dairy Journal. 2001, 11: 935–942
    [12] Zhang Q. L., Zhao M. M., Qu D. J., et al. Effect of papain-hydrolysed casein peptides on the fermentation kinetics, microbiological survival and physicochemical properties of yoghurt[J]. International Journal of Food Science & Technology. 2010, 45: 2379-2386
    [13] Walling E., Dols-Lafargue M., Lonvaud-Funel A. Glucose fermentation kinetics and exopolysaccharide production by ropy Pediococcus damnosus IOEB8801[J]. Food Microbiology. 2005, 22: 71–78
    [14] Petit C., Grill J. P., Maazouzi, N., et al. Regulation of polysaccharide formation by Streptococcus thermophilus in batch and fedbatch cultures[J]. Applied Microbiology Biotechnology. 1991, 36: 216–221
    [15] Grobben G. J., Smith M. R., Sikkema J., et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. Bulgaricus NCFB 2772[J]. Applied and Environmental Microbiology. 1996, 46: 279–284
    [16] Lowry O. H., Rosebrough N. J., Farr A. L., et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry. 1951, 193: 265–275
    [17]白凤翎.蛋白水解物促乳酸菌增殖及高密度培养体系研究[D].北京林业大学博士论文,北京, 2010
    [18] Rajagopal S. N., Sandine, W. E. Associative growth and proteolysis of Streptococcus thermophilus and Lactobacillus bulgaricus in skim milk[J]. Journal of Dairy Science. 1990, 73: 894–899
    [19] Radke-Mitchell L. C., Sandine, W. E. Influence of temperature on associative growth of Streptococcus thermophilus and Lactobacillus bulgaricus[J]. Journal of Dairy Science. 1986, 69: 2558–2568
    [20] Kunji E. R. S., Mierau I., Hagting A., et al. The proteolytic systems of lactic acid bacteria[J]. Antonie van Leeuwenhoek. 1996, 70: 187–221
    [21] Maret R., Sozzi T., Bohren, H. Proteolytic activity of different strains of lactic acid bacteria XIX. International Dairy Congress, IE. 1974: 371
    [22] Almeida K. E., Tamime A.Y., Oliveira M. N. Influence of total solids contents of milk whey on the acidifying profile and viability of various lactic acid bacteria[J]. LWT Food Science and Technology. 2009, 42: 672–678
    [23] Driessen F. M., Kingma F., Stadhouders, J. Evidence that Lactobacillus bulgaricus in yogurt is stimulated by carbon dioxide produced by Streptococcus thermopbilus[J]. Netherlands Milk and Dairy Journal. 1982, 36: 135–139
    [24] HemMe D. H., Schmal V., Auclair J. E. Effect of the addition of extracts of thermophilic lactobacilli on acid production by Streptococeus thermophilus in milk[J]. Journal of Dairy Research. 1981, 48: 139–148
    [25] Saitoh S., Ishida N., Onisht T., et al. Genetically engineered wine yeast produces a high concentration of L-(+)-lactic acid of extremely high optical purity[J]. Applied Environmental Microbiology. 2005, 71: 2789–2792
    [26] Blanchi M. M., Brambilla L., Progani F. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene[J]. Applied Environmental Microbiology. 2001, 67: 5621–5625
    [27] Skory C. D. Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae[J]. Applied Environmental Microbiology. 2000, 66: 2343–2348
    [28] Skory C. D. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity[J]. Applied Microbiology Biotechnology. 2004, 64: 237–242
    [1] Ayala-Hernández I., Hassan A. H., Goff H. D., et al. Effect of protein supplementation on the rheological characteristics of milk permeates fermented with exopolysaccharide-producing Lactococcus lactis subsp. cremoris[J]. Food Hydrocolloids. 2009, 23: 1299–1304
    [2]郭敏,张宝善,金晓辉.微生物发酵生产多糖的研究进展[J].微生物学通报. 2008, 35(7): 1084–1090
    [3] Ruas-Madiedo P., Hugenholtz J., Zoon P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria[J]. International Dairy Journal. 2002, 12: 163–171
    [4] Hugenholtz J., Smid, E. J. Nutraceutical production with food grade microorganisms[J]. Current Opinion in Biotechnology. 2002, 13: 497–507
    [5] Fukuda K., Shi T., Nagami K., et al. Effects of carbohydrate source on physicochemical properties of the exopolysaccharide produced by Lactobacillus fermentum TDS030603 in a chemically defined medium[J]. Carbohydrate Polymers. 2010, 79: 1040–1045
    [6] Ramchandran L., Shah, N. P. Effect of exopolysaccharides on the proteolytic and angiotensin-I converting enzyme-inhibitory activities and textural and rheological properties of low-fat yogurt during refrigerated storage[J]. Journal of Dairy Science. 2009, 92: 895–906
    [7] Macedo M. G., Lacroix C., Gardner N. J., et al. Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate[J]. International Dairy Journal. 2002, 12: 419–426
    [8] De Vuyst L., Zamfir M., Mozzi F., et al. Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks[J]. International Dairy Journal. 2003, 13: 707–717
    [9] Jutta C., Christian B., Michele L., et al. Isolation and characterisation of exopolysaccharides from slime-forming mesophilic lactic acid bacteria[J]. Journal of Dairy Science. 1992, 75: 692–699
    [10] Micheli D., Uccelletti C., Palleschi V., et al. Isolation and characterisation of a ropy lactobacillus strain-producing the exopolysaccharides kefiran[J]. Appllied Microbiology Biotechnology. 1999, 53: 69–74
    [11] Faber E. J., Zoon P., Kamerling J. P., et al. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures[J]. Carbohydrate Research. 1998, 310: 269–276
    [12] Tomasz L. S., Christopher J., Xavier L., et al. Structural analysis of the Lactobacillus rhamnosus strain KL37C exopolysaccharide[J]. Carbohydrate Research. 2003, 338: 605–609
    [13]顾瑞霞.乳酸菌胞外多糖生物合成及生理功能特性的研究[D].东北农业大学博士学位论文,哈尔滨, 2000
    [14]李全阳.酸乳质量及其胞外多糖研究[D].江南大学博生学位论文,无锡, 2004
    [15] De Vuyst L., Degeest B. Heteropolysaccharides from lactic acid bacteria[J]. FEMS Microbiology Reviews. 1999, 23: 153–177
    [16] Izawa N., Hanamizu T., Sone T., et al. Effects of fermentation conditions and soybean peptide supplementation on hyaluronic acid production by Streptococcus thermophilus strain YIT 2084 in milk[J]. Journal of Bioscience and Bioengineering. 2010, 109: 356–360
    [17] DuBois M., Gilles K. A., Hamilton, J. K., et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry.1956, 28: 350–356
    [18]顾瑞霞,骆承庠,张文.乳酸菌胞外多糖研究进展[J].中国乳品工业. 1999,27(2): 43–46
    [19] Roessner U., Wagner C., Kopka J., et al. Simultaneous analysis of metabolites in potato tuber by gas liquid chromatography mass spectrometry[J]. Plant Journal. 2000, 23: 131–142
    [20] Walling E., Dols-Lafargue M., Lonvaud-Funel A. Glucose fermentation kinetics and exopolysaccharide production by ropy Pediococcus damnosus IOEB8801[J]. Food Microbiology. 2005, 22: 71–78
    [21] Looijesteijn P. J., Boels I. C., Kleerebezem M. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source[J]. Applied and Environmental Microbiology. 1999, 65: 5003–5008
    [22] Escalante A., Villegas J., Wacher-Rodarte C., et al. Activity of the enzymes involved in the synthesis of exopolysaccharide precursors in an overproducing mutant ropy strain ofStreptococcus thermophilus[J]. FEMS Microbiology Letters. 2002, 209: 289–293
    [23] Lowry O. H., Rosebrough N. J., Farr A. L., et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry. 1951, 193: 265–275
    [24] Shene C., Canquil N., Bravo S., et al. (2008). Production of the exopolysacchzrides by Streptococcus thermophilus: Effect of growth conditions on fermentation kinetics and intrinsic viscosity[J]. International Journal of Food Microbiology. 2008, 124: 279–284
    [25] Gassem M. A., Sims K. A., Frank, J. F. Extracellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR in a continuous fermentor[J]. LWT Food Science and Technology. 1997, 30: 273–278
    [26] Pham P. L., Dupont I., Roy G., et al. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation[J]. Applied Environmental Microbiology. 2000, 66: 2302–2310
    [27] Faber E. J., Zoon P., Kamerling J. P., et al. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures[J]. Carbohydrate Research. 1998, 310: 269–276
    [28] Sànchez-Medina I., Gerwig G. J., Urshev Z. L., et al. Structure of a neutral exopolysaccharide produced by Lactobacillus delbrueckii ssp. bulgaricus LBB.B26[J]. Carbohydrate Research. 2007, 342: 2430–2439
    [29] Kitazawa H., Harata T., Uemura J., et al. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii spp. bulgaricus[J]. International Journal of Food Microbiology. 1998, 40: 169–175
    [30] Torino M. I., Sesma F., Font de Valdez G. Heterofermentative pattern and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in response to environmental pH[J]. Journal of Applied Microbiology. 2001, 91: 846–852
    [31] Petry S., Furlan S., Crepeau M. J., et al. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium[J]. Applied and Environmental Microbiology. 2000, 66: 3427–3431
    [32] Hugenholtz J., Kleerebezem M. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations[J]. Current Opinion in Biotechnology. 1999, 10: 492–497
    [33] Degeest B., De Vuyst L. Correlation of activities of the enzymesα-phosphoglucomutase, UDP-galactose-4-epimerase and UDP-glucose pyrophosphorylase with exoposaccharide biosynthesis by Streptococcus thermophilus LY03[J]. Applied Environmental Microbiology.2000, 66: 3519–3527
    [34] Hugenholtz J., Kleerebezem M. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations[J]. Current Opinion in Biotechnology. 1999, 10: 492–497
    [35] Andersson U., R?dstr?m P.β-Glucose 1-phosphate-interconverting enzymes in maltose- and trehalose-fermenting lactic acid bacteria[J]. Environmental Microbiology. 2002, 4: 81–88
    [36] Grobben G. J., Smith M. R., Sikkema J., et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. Bulgaricus NCFB 2772[J]. Applied and Environmental Microbiology. 1996, 46: 279–284 ntal Microbiology. 1996, 46: 279–284.
    [1]徐成勇,吴昊,郑思聪等.弱后酸化酸奶发酵剂的筛选[J].中国乳品工业. 2007, 35 (3): 12–14
    [2] Yazici A A. Effect of some protein based fat replacers on physical,chemical,textural, and sensory properties of strained yoghurt[J]. Journal of Food Engineering. 2004, 62: 245–254
    [3] Dave R. I., Shah N. P. Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurt made with comMercial starter cultures[J]. International Dairy Journal. 1997, 7: 435–443
    [4] Jaziri I., Slama M. B., Mhadhbi H., et al. Effect of green and black teas (Camellia sinensis L.) on the characteristic microflora of yogurt during fermentation and refrigerated storage[J]. Food Chemistry. 2009, 112: 614–620
    [5] Varga, L. Effect of acacia (Robinia pseudo-acacia L.) honey on the characteristic microflora of yogurt during refrigerated storage[J]. International Journal of Food Microbiology. 2006, 108: 272–275
    [6]许瑞,徐红华,温其标.酶促水解对酸奶质量及组织结构的影响[J].中国乳品工业. 2006, 34(11): 16–19
    [7] Dave R. I.,Shah N. P. Ingredient supplementation effects on viability of probiotic bacteria in yogurt. [J]. Journal of Dairy Science. 1998,81(11): 2804–2816
    [8] Rajiv I. D., Shah N. P. Effectiveness of cysteine on the viability of yoghurt and probiotic bacteria in yoghurts made with comMercial starter cultures[J]. International Dairy Journal.1997, 7: 537–545
    [9] Gomes A. M. P., Malcata F. X., Klaver F. A. M. Growth enhancement of Bifidobacterium lactis Bo and Lactobacillus acidophilus Ki by milk hydrolyzates[J]. Journal of Dairy Science. 1998, 81: 2817–2825
    [10] Fernandez-Garcia E., McGregor J. U. Determination of organic acids during the fermentation and cold storage of yogurt[J]. Journal of Dairy Science. 1994, 11: 2934–2939
    [11] Erbas M., Uslua M. K., Erbas, M. O., et al. Effects of fermentation and storage on the organic and fatty acid contents of tarhana, a Turkish fermented cereal food[J]. Journal of Food Composition and Analysis. 2006, 19: 294–301
    [12]郭清泉,张兰威,夏秀芳.酸奶制品发生后酸化主要发酵剂菌确定及性质研究[J].食品与发酵工业. 2001, 28(4): 42–46
    [13] Robert W. H., Nancy L. N. pH homeostasis in lactic acid Bacteria [J]. Journal of DairyScience. 1993, 76(8): 2354–2365
    [14] Oliveira M. N., Sodinib I., Remeuf F. et al. Effect of milk supplementation and culture composition on acidification, textural properties and microbiological stability of fermented milks containing probiotic bacteria[J]. International Dairy Journal. 2001, 11: 935–942
    [15] Sahan N., Yasar, K., Hayaloglu A. A. Physical, chemical and flavour quality of non-fat yogurt as affected by aβ-glucan hydrocolloidal composite during storage[J]. Food Hydrocolloids. 2008, 22: 1291–1297
    [16] Sodini I., Remeuf F., Haddad, S., et al. The relative effect of milk base, starter, and process on yogurt texture: A review[J]. Critical Reviews in Food Science and Nutrition. 2004, 44: 113–137
    [1]宫霞,郭本恒,李云飞,等.酶解酪蛋白生产生物活性肽的研究现状及开发前景[J].中国乳品工业. 2005, 137(33): 4447
    [2] Sewald N., Jakubke H. D. Peptides: chemistry and biology[M]. Weinheim, Germany:Wiley-Vch. Verlag GmbH, 2002: 562
    [3] Peng J. Y., Fan G. R., Wu Y. T. Preparative isolation and separation of a novel and two known flavonoids from Patrinia villosa Juss by high-speed counter-current chromatography[J]. Journal of Chromatography A. 2005, 1092: 235–240
    [4] Shibusawa Y. C., Haqiwara Y., Chao Z.M. Application of high-speed counter-current chromatography to the separation of coumarin and related compounds [J]. Journal of Chromatography A. 1997, 759: 47–53
    [5] Du Q. Z., Jerz G., Waibel R. Isolation of damMarane saponins from Panaxnoto ginseng by high-speed counter-current chromatography[J]. Journal of Chromatogra phy A. 2003, 1008: 173–180
    [6] Li S., Chen H., Zhuang Y., et al. Preparation of functional oligopeptides by enzymic hydrolysis of soybean protein[J]. Shi pin Ke xue. 2000, 21(12): 90–93
    [7]谷胜,沈金灿,庄岐厦,等.高效液相色谱质谱法测定蛋白质混合物[J].厦门大学学报(自然科学版). 2001, 40(5): 1067–1072
    [8]张艳华,李影,巨芳.高效液相色谱分离纯化多肽的研究进展[J].粮油食品科技. 2009, 17(5): 33–35
    [9]梁宋平.世纪之交的蛋白质序列测定技术[J].生命科学. 1999, 1: 31–34
    [10]孙自勇,吴盛,王石泉,等.液相色谱与串联质谱偶联在蛋白质序列分析中的应用[J].基础医学与临床. 2003, 23(2): 126–131
    [11] Proulx M., Ward P., Gauthier S. F., et al. Comparison of bifidobacterial growth-promoting activity of ultrafiltered casein hydrolyzate fractions[J]. Lait. 1994, 74: 139–152
    [12]汪家政,范明.蛋白质技术手册[M].北京:科学出版社, 2001
    [13] Alder-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzene sulphonic acid[J]. Journal of Agricultural and Food Chemistry. 1979, 27: 1256–1262
    [14] Etoh S. I., Asamura K., Obu A., et al. Purification and identification of a growth-stimulating peptide for Bifidobacterium bifidum from natural rubber serum powder[J]. Bioscience Biotechnology and Biochemistry. 2000, 64: 2083–2088
    [15] St-Gelais D., Roy D., HachéS., et al. Growth of nonproteolytic Lactococcus lactis in culture medium supplemented with different casein hydrolyzates[J]. Journal of Dairy Science. 1993, 76: 3327–3337
    [16]张艳华,李影,巨芳.高效液相色谱分离纯化多肽的研究进展[J].粮油食品科技. 1032009, 17(5): 33–35
    [17]梁宋平.世纪之交的蛋白质序列测定技术[J].生命科学. 1999, 1: 31–34
    [18]孙自勇,吴盛,王石泉,等.液相色谱与串联质谱偶联在蛋白质序列分析中的应用[J].基础医学与临床. 2003, 23(2): 126–131
    [19] Desmazeaud M. J., Hermier J. H. Effet de fragments peptidiques du glucagon vis-à-vis de la croissance de Streptococcus thermophilus[J]. Biochimie. 1973, 55: 679–684
    [20] Law B. A., Sezgin E., Sharpe M. E. Amino acid nutrition of some comMercial cheese starters in relation to their growth in peptone supplemented whey media[J]. Journal of Dairy Research. 1976, 43: 291–300
    [21] Hiroshi K., Yukio K., Tomohiro H., et al. Peptides having hepatic disorder-preventing effects, and foods and feeds containing the same. PCT International Application, 2008: 27
    [22] Ong L., Henriksson A., Shah N. P. Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probiotic Lactobacillus casei[J]. Lait. 2007, 87: 149–165
    [23] Meisel H., SchlimMe E. Inhibitors of angiotensin converting-enzyme derived from bovine casein (casokinins)[M]. Brantl, Teschemacher, H., Eds.;β-Casomorphins and related peptides: Recent developments. VCH. Germany: Weinheim, 1994: 27–33
    [24] SchlimMe E., Meisel H. Bioactive peptides derived from milk proteins: Structural, physiological and analytical aspects[J]. Die Nahrung. 1995, 39: 1–20
    [25] Loukas S., Varoucha D., Zioudrou C., et al. Opioid activities and structures ofα-casein-derived exorphins[J]. Biochemistry. 1983, 22: 4567–4573
    [26] Suetsuna K., Ukeda H., Ochi H. Isolation and characterisation of free radical scavenging activities peptides derived from casein[J]. Journal of Nutrition Biochemistry. 2000, 11: 128–131
    [27] Ryh?nen E. L., Pihlanto-Lepp?l? A., Pahkala E. A new type of ripened; low-fat cheese with bioactive properties[J]. Internal Dairy Journal. 2001, 11: 441–447
    [28] Pihlanto-Lepp?l? A., Rokka T., Korhonen H. Angiotensin I-converting enzyme inhibitory peptides derived from bovine milk proteins[J]. Internal Dairy Journal.1998, 8: 325–331
    [29] Tirelli A., De Noni I., Resmini P. Bioactive peptides in milk products[J]. Italian Journal of Food Science.1997, 2: 91–98
    [30] Meisel H., SchlimMe E. Bioactive peptides derived from milk proteins: ingredients for functional foods?[J]. Kieler Milchw Forsch. 1996, 48: 343–357
    [31] Kunji E. R. S., Mierau I., Hagting A., et al. The proteolytic systems of lactic acid bacteria[J]. Antonie van Leeuwenhoek. 1996, 70: 187–221
    [32] Kihara H., Ikawa M., Snell E. E. Peptides and Bacterial growth[J]. Journal of Biology and Chemistry. 1960, 235: 172–176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700