采油微生物筛选、鼠李糖脂产脂性能及关键酶基因克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界范围内原油贮量的日益减少带来了严重的能源危机,而以常规技术,一般只能开采出30%的原油,大量石油尤其是高粘油滞留在储油层。微生物提高原油采收率(MEOR)是目前公认的开采油藏中剩余油和枯竭油藏最好的技术,对充分利用现有油矿藏资源,意义重大。另外,在石油的勘探与开采,运输与储存,炼制与使用过程中,常会造成石油外泄或不当排放,对环境造成严重的污染。应用烃降解微生物对污染地区进行生物修复因其具有适用范围广、操作简单、效果显著、费用低、无二次污染等优点而被认为是解决复杂烃类污染的最彻底最有效的手段。
     铜绿假单胞菌所产生的鼠李糖脂生物表面活性剂具有良好的表/界面活性和乳化活性,能形成胶束溶液,乳化分散烃类物质,降低原油粘度;对烃类的增溶作用能促进微生物对烃类的摄取,从而提高微生物对烃类的降解效率;此外,作为生物表面活性剂又具有无毒、可生物降解的优点。这都使其成为在MEOR和石油污染的生物修复领域中最佳的生物表面活性剂。
     不同来源的铜绿假单胞菌其鼠李糖脂的组成,性能,产量差距均较大,寻找合适石油工业的产脂菌株及其复配菌株具有重要价值。另外,铜绿假单胞菌虽然可高效产脂,但它是人体条件致病菌,不适合大规模工业应用。而利用基因工程的方法,将鼠李糖脂合成途径中的关键酶——鼠李糖基转移酶转入其它无害采油微生物受体中,构建产鼠李糖脂的工程采油微生物直接应用于生产可以有效避免菌株毒性。关于鼠李糖基转移酶基因在采油菌中的表达研究,少见国内外报道。在此方面的研究可为基因工程菌在微生物采油和石油烃污染的生物修复中的应用提供理论基础。
     本文主要从上述两点展开进行研究工作,主要研究内容和结果如下:
     1.产鼠李糖脂的原油降解菌的筛选与鉴定
     以原油为唯一碳源和能源,从油田样品中分离筛选多株兼性厌氧原油烃类降解菌,通过表面张力测量从中筛选出产糖脂生物表面活性剂的原油降解菌SH6。通过形态学观察、生理生化实验和16S rDNA序列分析鉴定其为铜绿假单胞菌(Pseudomonas aeruginosa)。该菌生长于原油培养基中,能很好的乳化分散原油,并将原油发酵液的表面张力降至37.4 mN/m。经GC-MS分析,P.aeruginosa SH6可以利用C_(13)~C_(28)较宽范围的原油烃组分,其原油降解率为18.8%,原油粘度降低率为47.7%。利用TLC、IR及蓝平板法分析,证明其产生的生物表面活性代谢产物为鼠李糖脂。
     2.鼠李糖脂理化性质和乳化活性的研究
     制备P.aeruginosa SH6所产的鼠李糖脂粗提样品。利用HPLC-MS分离鉴定了其所产鼠李糖脂同系物中的组分。结果表明,以甘油为唯一碳源时,P.aeruginosa SH6所产鼠李糖脂中主要包含8种同系物,都由1~2分子鼠李糖和1~2个C_8~C_(12)碳链长度的β-羟基饱合或不饱合脂肪酸组成。该鼠李糖脂粗品CMC为166.7 mg/L,在CMC时的表面张力为29.5 mM/m。该糖脂表现极高温度(-20~120℃)和盐度耐受性(小于50%NaCl,20%MgCl_2和CaCl_2)及优良的环境稳定性,并可在一定的pH范围内(1~7)保持活性。对液体石蜡、甲苯、植物油和原油等疏水性有机物具有良好的乳化性能。这些性质使得其在石油工业和石油污染修复领域具有良好的应用前景。
     3.碳氮源对鼠李糖脂生产的影响
     就不同种类的碳源和氮源对P.aeruginosa SH6产脂的影响进行了研究。结果表明,P.aeruginosa SH6可以利用多种类型的碳氮源产脂。其中以葡萄糖与菜籽油(1:1)为复合碳源,酵母粉与硝酸钠为复合氮源,且碳氮比为18:1时产脂量最高,达5.40 g/L。保持此最优碳氮比加大碳氮源浓度时,在碳源浓度为7%时产脂量最高,达6.37 g/L。这些研究为进一步的鼠李糖脂发酵生产条件的优化和应用不同碳氮源时所产鼠李糖脂组分与理化性质的研究提供了依据和基础。
     4.鼠李糖基转移酶基因的克隆及在大肠杆菌中的表达研究
     对P.aeruginosa SH6的鼠李糖基转移酶结构基因rhlAB和rhlABRI操纵子进行克隆与鉴定。构建含鼠李糖基转移酶rhlAB和rhlABRI的重组质粒pSAOR2和pJDOR4,利用鼠李糖基转移酶自身启动子使其在大肠杆菌E.coli SM10、E.coliDH5α中进行表达。结果表明,只转入结构基因rhlAB的两种大肠杆菌产脂量均很低;而转入rhlABRI操纵子的两宿主产脂量均有所提高,其中E.coli DH5α产脂量最高达105.2 mg/L。仅管是应用自身启动子而不是强启动子进行表达,这一产量在重组大肠杆菌表达鼠李糖脂的研究中仍是较高的,并且可以避免使用IPTG带来的成本问题和操作上的麻烦。对鼠李糖基转移酶基因进行克隆及在大肠杆菌中表达,为该基因在采油菌中的表达研究提供基础。
     5.鼠李糖基转移酶基因在采油微生物中的表达研究
     构建了采油微生物接合转移系统,利用该系统成功地将含鼠李糖基转移酶rhlAB和rhlABRI的重组质粒pSAOR2和pJDOR4转移进入采油微生物受体菌中并进行了验证。鼠李糖基转移酶基因在采油微生物中的表达情况与其在大肠杆菌中的表达情况基本一致。只转入结构基因rhlAB的两种采油菌产脂量极低;而转入rhlABRI操纵子的两宿主产脂量均有不同程度提高,其中Pseudomonas sp.JH4(pJDOR4)产脂量最高为101.8mg/L。这一表达量虽然没达到期望的高效表达的水平,但还有进一步研究的空间,并且也为采油基因工程菌在微生物采油和石油烃污染的生物修复中应用的可行性研究提供了理论依据和实验基础信息。
     6.其它优良MEOR菌株的研究
     在采油微生物的分离筛选过程中得到一株新的降蜡菌LH3,经鉴定为友谊戈登氏菌。该菌株在好氧和厌氧条件下均能利用C_(18)~C_(36)的烃组分生长从而降解石蜡,好氧时降蜡率约达18.0%,厌氧时降蜡率仅为好氧条件下的1/8。该菌最适生长温度为37~40℃;在5%盐浓度下能很好地生长,对10%高盐浓度有一定的耐受能力;0.2%鼠李糖脂表面活性剂可以明显促进其生长和提高降蜡率。此外,该菌能够降解石油,降油率达到10.4%,降粘率达到44.7%。这些结果显示,G.amicalis LH3作为微生物清防蜡菌剂有较好的应用前景,在原油污染的生物修复和MEOR助采方面也具有很好的应用潜力。此外,后续的研究中可将其作为鼠李糖脂复配菌株或采油工程菌的受体菌株进行深入的研究。
Nowadays,the decreasing of the world's petroleum reserves brings serious energy crisis.In fact,it is generally accepted that only about 30%of the oil in the underground can be recovered using conventional technology.The great mass of crude oil,especially those high viscosity oil is remained in oil reservoir.However, microbial methods(microbial enhanced oil recovery,MEOR)are proved to be effective in recovering high viscous and residual oil.Therefore,it is significent to investigate MEOR to enhance crude oil recovery and make the best use of existing oil reservoir resources.In addition,spills from the production,processing and transport of crude oil pollute seriously the ecological environment.Bioremediation of hydrocarbon contaminated soil is proved effective.
     Rhamnolipid produced by Pseudomonas aeruginosa has good properties including the rapid reducing of surface tension and interfacial tension between water and oil; emulsifying and dispersing oil hydrocarbon;reducing oil viscosity and increasing the bioavailability of hydrophobic compounds to accelerate microbial biodegradation and transformation of long-chain hydrocarbons.Moreover,the notable advantages of rhamnolipid of biodegradability and low toxicity are optimal for applications in MEOR as well as in bioremediation.
     Rhamnolipid is found to be produced mainly by Pseudomonas aeruginosa up to now,whereas the composition,performance and yield of rhamnolipids from different P.aeruginosa strains were different.It is significant to screen the rhamnolipid producing strains for application in petroleum industry.Moreover,P.aeruginosa is not a safe industrial strain beacause of its opportunistic pathogenicity.It may be a effective meathod to avoid virulence of P.aeruginosa by genetic engineering means using other non-pathogeneic microorganism to construct rembinant rhamnolipid producing strain.The aim of this work is to screen the strain which has good features for MEOR and can produce rhamnolipid,clone the key enzyme for rhamnolipid synthesis and express it in heterologous host of E.coli or in MEOR strains.Very little information was available concerning on expression of the key enzyme for rhamnolipid synthesis of rhamnosyltransferase gene in MEOR strains.This work will provide us a theoretic and experimental preparation for subsequent researches on heterologous production of rhamnolipid biosurfactant in the MEOR microorganisms.
     The main research works and results were summarized as follows:
     1.Screening and isolation of facultative anaerobic crude oil-degrading microorganisms producing rhamnolipid
     A facultative anaerobic crude oil-degrading strain producing rhamnolipid named SH6 was isolated from oil field samples.It was identified by morphology methods, physiology and biochemical tests and 16S rDNA analysis as Pseudomonas aeruginosa.P.aeruginosa SH6 could grew well using crude oil(C_(13)~C_(28))as the sole carbon source and stimulated the emulsification and dispersion of oil.It could degrade 18.8%of the crude oil,decreased oil viscosity by 47.7%,and decreased the surface tension of the fermentation broth to 37.4 mN/m.It is demonstrated that P. aeruginosa SH6 could produce rhamnolipid using TLC,IR and blue plate analyzing methods.
     2.The researches on the physical and chemical characteristics of rhamnolipid
     The components of crude rhamnolipid biosurfactant produced by P.aeruginosa SH6 was analyzed using HPLC-MS.Eight rhanmolipid homologs of the biosurfactant mixture produced by P.aeruginosa SH6 using glycerol as the sole carbon source were isolated and identified.The rhamnolipid homologs is composed of one or two rhamnose molecules linked by one or twoβ-hydroxy fatty acids of saturated or unsaturated alkyl chain between C_8~C_(12).The critical CMC concentration of the rhamnolipid is 166.7 mg/L,the surface tension is 29.5 mM/m.The rhamnolipid shows excellent surface activity at high or low temperature(-20~120℃),high salinity(<50% NaCl,20%MgCl_2 or CaCl_2)and pH(1~7)and it also displays good stability and emulsifying activity to many kind of hydrophobic organic substance,such as liquid paraffin,toluene,peanut oil and crude oil.These features suggest that the potential of the kind of rhamnolipid in MEOR and in bioremediation for oil hydrocarbon contaminated soils.
     3.Effects of carbon and nitrogen sources on rhamnolipid production
     Different kinds of carbon and nitrogen sources on cell growth and rhamnolipid production were studied.P.aeruginosa SH6 could produced rhamnolipid using many kinds of carbon and nitrogen sources.Single-factor experiments show that the optimal carbon sources were the 1:1(w/w)mixture of glucose and rapeseed oil,the optimal nitrogen sources were sodium nitrate and yeast extract,and the optimal C/N ratio was 18 for rhamnolipid production,with the highest rhamnolipid yield of 5.40g/L.The optimal concentration of carbon and nitrogen sources were studied with the constant C/N ratio of 18,the maximal rhamnolipid production of 6.37 g/L was achived using concentrated medium.The results provide essential informations for the optimizition of medium compositions and fermentation conditions.
     4.Cloning and expression research of rhamnosyltransferase gene
     Rhamnosyltransferase gene clusters of rhlAB and rhlABRI of P.aeruginosa SH6 were amplified,identified and cloned into E.coli JM109.Two recombinant plasmids of pSAOR2 and pJDOR4 were constructed and expressed in E.coli SM10,E.coli DH5αunder the control of its own promoter.The results showed that rhamnolipid production was increased slightly in both E.coil DH5αand SM10 after transfer of rhlAB gene cluster,but the production was obvious enhanced after the transfer of the whole rhlABRI gene cluster.The maximal rhamnolipid production of 105.2 mg/L was obtained by E.coli DH5α(pJDOR4),which is the highest yield produced in recombinant E.coli without IPTG induction.The results of this study provided useful information for future researches on heterologous production of rhamnolipid biosurfactant in other non-pathogeneic MEOR microorganisms.
     5.Expression of rhamnosyltransferase gene in MEOR microorganisms
     A conjugative gene mobilization system was constructed for gene transformation of rhamnosyltransferase gene to MEOR microorganisms and two recombinant plasmids of pSAOR2 and pJDOR4 were transformed succeesfully in MEOR microorganisms. Rhamnolipid production was improved in the strains containing pJDOR4.The maximal rhamnolipid production of 101.8 mg/L was obtained by Pseudomonas sp. JH4(pJDOR4).Although the production level needs to be increased for real applications,the result still can provide some useful information for the future construction of recombinant strains in applications of MEOR or bioremediation for oil hydrocarbon contamination.
     6.Performance studies of other excellent hydrocarbon degradation bacterium
     A novel acultative anaerobic paraffin and oil degrading strain,Gordonia amicalis LH3,was isolated and identified.It could grew well using C_(18)~C_(36)alkalines as the carbon source in aerobic or anaerobic conditions.In aerobic condition,it utilized about 18.0%of paraffin.In anaerobic condition,paraffin utilization was about 1/8 of aerobic condition.The strain sustained the salinity up to 5%of NaCl and the temperature upper than 40℃.Addition of 0.2%of rhamnolipid increased the growth and paraffin degradation of G.amicalis LH3.The strain could also grow on oil, decreased oil viscosity by 44.7%and degraded oil by 10.4%under aerobic condition. The results showed that G.amicalis LH3 is potential in paraffin control,MEOR and in bioremidition of hydrocarbon-polluted environments.
引文
Amouric A, Verhe F, Auria R, and Casalot L. Study of a hexane-degrading consortium in a biofilter and in liquid culture: biodiversity, kinetics and characterization of degrading. FEMS Microbiol Ecol, 2006, 55: 239-247.
    Arenskotter M, Broker D and Steinbuchel A. Biology of the Metabolically Diverse Genus Gordonia. Appl Environ Microbiol, 2004, 70: 3195-3204.
    Banat IM. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol, 1995, 51: 1-12.
    Beilen JBV, Panke S, Lucchini S, Franchini AG, Rothlisberger M and Witholt B. Analysis of Pseudomonas putida alkane degrdation gene clusters and fanking insertion sequences:evolution and regulation of the alk genes. Microbiology, 2001,147:1621-1630.
    Beilen JBV, Li Z, Duetz WA, Smits THM and Witholt B. Diversity of Alkane Hydroxylase Systems in the Environment. Oil Gas Sci Technol, 2003, 58: 427-440.
    Belhaj A, Desnoues N and Elmerich C. Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes. Res Microbiol, 2002,153: 339-344.
    Benincasa M, Contiero J, Manresa MA and Moraes IO. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Engineering, 2002, 54: 283-288.
    Bock M and Bosecker K. Occurrence of biosurfactant-producing bacteria in oil reservoirs, contaminated soils, and surface waters in Northern Gemany. Geol Jahrb serD, 1997, 5(103): 147-157.
    Boopathy R. Anaerobic biodegradation of no. 2 diesel fuel in soil: a soil column study. Bioresour Technol, 2004,94: 143-151.
    Bryant RS, Burchfied TE. Review of microbial technology for improving oil recovery. SPE Reservoir Eng, 1989, 5:151-154.
    Burger MM, Glaser L and Burton RM. The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem, 1963, 238(8): 2595-2602.
    Cabrera-Valladares N,Richardson AP,Olvera C,Trevino LG,Deziel E,Lepine F and Soberon-Chavez G.Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids(HAAs)production using Escherichia coli as a heterologous host.Appl Microbiol Biotechnol,2006,73:187-194.
    Campos-Garcia J,Caro AD,Najera R,Miller-Maier RM,Al-Tahhan RA and Sober6n-Chavez.The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent β-ketoacyl reductase which is specifically involved in rhamnolipid synthesis.J Bacteriol,1998,180(17):4442-4451.
    Chapman P J,Shelton M,Grifoll M and Selifonov S.Fossil fuel biodegradation:laboratory studies.Environ Health Perspect,1995,103:79-83.
    Chen J,Song X,Zhang H,Qu YB and Miao JY.Sophorolipid,produced from a new yeast strain Wickerhamiella domercqiae,inducdes apoptosis tn H7402 human liver cancer cells.Appl Microbiol Biotechnol,2006a,72:52-59.
    Chen J,Song X,Zhang H and Qu YB.Production,structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae.Enzyme Microb Technol,2006b,39:501-506.
    Chen SY,Lu WB,Wei YH,Chen WM and Chang JS.Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.Biotechnol Prog,2007a,23:661-666.
    Chen SY,Wei YH and Chang JS.Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2.Appl Microbiol Biotechnol,2007b,76:67-74.
    Coyne M J,Russell JRKS,Coyle CL and Goldberg JB.The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase,required for the synthesis of a complete lipopolysaccharide core.J Bacteriol,1994,176(12):3500-3507.
    Das K and Mukherjee AK.Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India.Bioresour Technol,2007,98:1339-1345.
    Davison J,Heusterspreute M,Chevalier N,Ha-Thi V and Brunel F.Vectors with restriction site banks V.pJRD215,a wide-host-range cosmid vector with multiple cloning sites.Gene,1987,51:275-280.
    Desai JD and Banat IM.Microbial production of surfactants and their commercial potential. Microbial Mol Biol Rev, 1997, 61:47-64.
    Deziel E, Paquette G, Villemur R, Lépine F and Bisaillon JG. Biosurfactant prduction by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol, 1996,62(6): 1908-1912.
    Deziel E, Lepine F, Dennie D, Boismenu D and Villemur R. Liquid chromatography /mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta,1999,1440: 244-252.
    Deziel E, Lepine F, Milot S and Villemur R. Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta, 2000,1485: 145-152.
    Déziel E, Lépine F, Milot S and Villemur R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyl-oxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology, 2003,149: 2005-2013.
    
    Drachuk SV, Koksharova NV and Firsov NN. Microflora of soils polluted with petroleum products. Russ J Ecol, 2002, 33(2):148-150.
    Edwards JR and Hayashi JA. Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys, 1965,111:415-421.
    Edwards KR, Lepo JE and Lewis MA. Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar Pollut Bull, 2003,46: 1309-1316.
    Fiechter A. Biosurfactants: moving towards industrial application. Trends in Biotechnol,1992,10: 208-217.
    Giangiacomo L. Paraffin Control Project. Rocky Mountain Oilfield Testing Center Project Test Reports, U.S. Department of Energy. Virginia, U.S.A. ,1997.
    Guerra-santos LH, Kappeli O and Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol, 1984,48(2): 301-305.
    Guerra-santos LH, Kappeli O and Fiechter A. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol, 1986, 24: 443-448.
    Haba E, Espuny MJ, Busquets M and Manresa A. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol, 2000,88:379-387.
    Hamme JDV, Singh A and Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev, 2003,67(4): 503-549.
    Hao R, Lu A. Conversion and degradation of crude oil by Bacillus SP3. Chin J Geochem, 2007,26 (2): 201-206.
    Head IM and Swannell RPJ. Bioremidiation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotechnol, 1999,10: 234-239.
    Healy MG, Devine CM and Murphy R. Microbial production of biosurfactants. Resour Conserv Recycl, 1996,18:41-57.
    Henderson SB, Grigson SJW and Johnson P. Potential impact of production chemicals on the toxicity of produced water discharges from North Sea Oil platforms. Mar Pollut Bull, 1999,38(12): 1141-1151.
    Hisatsuka K, Nakahara T, Sano N and Yamada K. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem, 1971, 35: 686-692.
    Ijah UJJ. Studies on relative capabilities of bacterial and yeast isolates from tropical soil in degrading crude oil. Waste Manag. 1998,18: 293-299.
    Ishige T, Tani A, Sakai Y and Kato N. Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. strain M-l. Appl Environ Microbiol, 2000,66(8): 3481-3486.
    Ito S and Inoue S. Sophorolipids from Torulopsis bombicola: possible relation on alkane uptake. Appl Environ Microbiol, 1982,43: 1278-1283.
    Itoh S, Honda H, Tomita F and Suzuki T. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffm. J Antibiotics, 1971,24: 855-859.
    Jarvis FG and Johnson MJ. A glyco-lipid produced by Pseudomonas aeruginosa. J Am Chem SOC, 1949,71:4124-4126.
    Jokuty P, Whiticar S, Wang Z, Landriault M, Sigouin L and Mullin J. A new method for the determination of wax content of crude oils. Spill Sci Technol Bull, 1996, 3(4): 195-198.
    Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S and Goodfellow M. Gordinia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol, 2000,50: 2031-2036.
    
    Kim KK, Lee CS, Kroppenstedt RM, Stackebrandt E and Lee ST. Gordonia sihwensis sp. nov. , a novel nitrate-reducing bacterium isolated from a wastewater- treatment bioreactor. Int J Syst Evol Microbiol, 2003, 53: 1427-1433.
    Knabe SP. Overview of microbial enhanced oil recovery. Oil Gas J, 1984, 82 (52): 59-60.
    Koch AK, Kappeli 0, Fiechter A and Reiser J, Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol, 1991, 173:4212-4219.
    Koma D, Hasumi F, Yamamoto E, Ohta T, Chung SY and Kubo M. Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. J Biosci Bioeng, 2001,91: 94-96.
    Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung SY and Kubo M. Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Biosci Biotechnol Biochem, 2003, 67: 1590-1593.
    Koplin R, Wang GE, Hotte B, Priefer UB and Pünier A. A 3.9-kb DNA region of Xanthomonas campestris pv. Campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP- rhamnose. J Bacteriol, 1993,175(24): 7786-7792.
    Kummer C, Schumann P and Stackebrandt E. Gordonia alkanivorans sp.nov., isolated from tar-contaminated soil. Int J Syst Bacteriol, 1999,39: 1513-1522.
    Lang S and Wullbrandt D. Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol ,1999,51: 22-32.
    Lazar I, Voicu A, Nicolescu C, Mucenica D, Dobrota S, Petrisor IG, Stefanescu M and Sandulescu L. The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition. J Petro Sci Eng,1999,22: 161-169.
    Lee Y, Lee SY and Yang JW. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source. Biosci Biotechnol Biochem, 1999,63(5): 946-947.
    Leon V and Kumar M. Biological upgrading of heavy crude oil. Biotechnol Bioprocess Eng, 2005, 10: 471-481.
    Li QX, Kang CB, Wang H, Liu CD and Zhang CK. Application of microbial enhanced oil recovery technique to Daqing Oilfield. Biochem Eng J, 2002,11:197-199.
    Li QX, Kang CB and Zhang CK. Waste water produced from an oilfield and continuous treatment with an oil-degrading bacterium. Process Biochem, 2005, 40: 873-877.
    Lindstrom JE, Barry RP and Braddock JF. Long-term effects on microbial communities after a subarctic oil spill. Soil Biol Biochem, 1999,31:1677-1689.
    Linhardt RJ, Bakhit R, Daniels R, Mayerl F and Pickenhagen W. Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng, 1989, 33: 365-368.
    Maeng JH, Sakai Y, Tain Y and Kato N. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-l. J Bacteriol, 1996,178(13):3695-3700.
    Maicr RM and Sober 6 n-Ch á vez G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol, 2000, 54: 625-633.
    Mata-Sandoval JC, Karns J and Torrents A. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A, 1999, 864: 211-220.
    Michail MY, Mohammed MA, Michael B, Klaus B, Herbert LF, Dagobert GK and Kenneth NT. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Petro Sci Eng, 1997,18:147-160.
    Miyata N, Iwahori K, Foght JM and Gray MR. Saturable, energy-dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl Environ Microbiol, 2004, 70(1): 363-369.
    Monteiro SA, Sassaki GL, Souza LM, Meira JA, Araujo JM, Mitchell DA, Ramos LP and Krieger N. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chemistry and Physics of Lipids, 2007,147:1-13.
    Mukherjee S, Das P and Sen R. Towards commercial production of microbial surfactants. Trends Biotechnol, 2006,24: 509-515.
    Mukherji S, Jagadevan S, Mohapatra G and Vijay A. Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field. Bioresour Technol, 2004,95: 281-286.
    Mulligan CN. Environment applications for biosurfactsants. Environ Pollut, 2005, 133: 183-198.
    Mulligan CN, Yong RN and Gibbs BF. Surfactant-enhanced remediation of contaminated soil: a review. 2001, Eng Geo, 60: 371-380.
    Nelson SJ and Launt PD. Stripper well production increased with MEOR treatment. Oil Gas J, 1991,89:114-118.
    Nitschke M, Costa SGVAO, Haddad R, Goncalves LAG, Eberlin MN and Contiero J. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog, 2005, 21: 1562-1566.
    
    Ochsner UA, Fiechter A and Reiser J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyl- transferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem, 1994a, 269(31): 19787-19795.
    Ochsner UA, Koch AK, Fiechter A and Reiser J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol, 1994b, 176(7): 2044-2054.
    Ochsner UA and Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 1995a, 92: 6424-6428.
    Ochsner UA, Reiser J, Fiechter A and Witholt B. Production of Pseudomonas aeruginosa Rhamnolipid Biosurfactants in Heterologous Hosts. Appl Environ Microbiol, 1995b, 61(9): 3503-3506.
    Olvera C, Goldberg JB, Sánchez R and Soberón-Chdvez G The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett, 1999,179: 85-90.
    Osman M, Ishigami Y, Someya J and Jensen HB. The bioconversion of ethanol to biosurfactants and dye by a novel coproduction technique. American Oil Chemists Society, 1996, 73: 851-856.
    Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M and Rujiravanit R. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol, 2008,99: 1589-1595.
    Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS and Soberón-Chá vez G. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol, 2001,40(3): 708-718.
    Rahman KSM, Thahira-Rahman J, Laskshmanaperumalsamy P and Banat IM. Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource Technol. 85: 257-261.
    Rahman KSM, Thahira-Rahman J, Kourkoutas Y, Petsas I, Marchant R and Banat IM. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol, 2003,90:159-168.
    Raza ZA, Khan MS, Khalid ZM and Rehman A. Production of biosurfactant using different hydrocarbons by Pseudomonas aeruginosa EBN-8 mutant. Z Naturforsch, 2006, 61c: 87-94.
    Reiling HE, Thanei-wyss U, Guerra-santos LH, Hirt R, Kappeli O and Fiechter A. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol, 1986,51(5): 985-989.
    Rhykerd RL, Weaver RW and Mclnnes KJ. Influence of salinity on bioremendiation of oil in soil. Environ Pollut, 1995, 90: 127-130.
    Rocha C, San-Bias F, San-Bias G and Vienna L. Biosurfactant production by two isolates of Pseudomonas aeruginosa. World J Microbiol Biotech, 1992, 8:125-128.
    
    Rodrigues L, Banat IM, Teixeira J and Oliveira R. Biosurfactants: potential applications in medicine. J Antimicrob Chemother, 2006, 57: 609-618.
    Sambrook J and Russell D. Molecular Cloning: a Laboratory Manual, 3nd, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001.
    Sannell RPJ, Lee K and Mcdonagh M. Field evaluations of marine oil spill bioremediation. Microbiol Rev, 1996, 60(2): 342-365.
    Schenk T, Schuphan I and Schmidt B. High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A, 1995,693: 7-13.
    Sharma SL and Pant A. Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus sp.. Biodegradation, 2000,11: 289-294.
    Sim L, Ward OP and Li ZY. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UM-1. J of Industrial Microbiology Biotechnology, 1997,19: 232-238.
    Singh P and Cameotra SS. Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun, 2004,319: 291-297.
    So CM, Phelps CD and Young LY. Anaerobic transformation of alkanes to fatty acids by a sulfate reducing bacterium, strain Hxd3. Appl Environ Microbiol, 2003, 69: 3892-3900.
    Soberón-Chávez G, Lépine F and Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol, 2005, 68: 718-725.
    Song SF, Zhang ZZ and Li SY. Progress of Microbial Enhanced Oil Recovery in Laboratory Investigation. Petroleum Sci, 2004,1(4): 23-29.
    Stackebrandt E, Rainey FA, and Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacterial, 1997, 47: 479-491.
    Syldatk C, lang S, Wagner F, Wray V and Witte L. Chemical and physical characterization of four interfacial-active rhamnolipid from Pseudomonas spec.DSM 2874 grown on n-alkanes. Z Naturforsch 1985a,40: 51-60.
    Syldatk C, lang S, Matulovic U and Wagner F. Production of four interfacial active rhamnolipid form n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch 1985b,40: 61-67.
    Tahzibi A, Kamal F and Assadi MM. Improved Production of Rhamnolipids by a Pseudomonas aeruginosa Mutant. Iran Biomed J, 2004, 8: 25-31.
    Tanner RS, Udegbunam EO, Mcinerney MJ and Knapp RM. Microbially enhanced oil recovery from carbonate reservoirs. Geomicrobiol J, 1991, 9: 169-195.
    Tarkhova EP, Koval'chuk YL and Poltarukha OP. A study of oil biodegradation in the black sea water. Water Res. 2003, 30(1): 100-105.
    Thaniyavarn J, Chongchin A, Wanitsuksombut N, Thaniyavarn S, Pinphanichakarn P, Leepipatpiboon N, Morikawa M and Kanaya S. Biosurfactant production by
    
    Pseudomonas aeruginosa A41 using palm oil as carbon source. J Gen Appl Microbiol, 2006, 52: 215-222.
    Tsukamura M. Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary deseae and in soil. J Gen Microbiol, 1971,68:15-26.
    Van Hamme JD, Singh Ajay and Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev, 2003, 67(4): 503-549.
    Venosa AD, Zhu XQ. Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Sci Technol Bull, 2003, 8(2): 163-178.
    Voordouw G,Armtrong SM,Reimer MF,Fouts B,Telang A J,Shen Y and Gevertz D.Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing,fermentative,and sulfideoxidizing bacteria.Appl Environ Microbiol,1996,62:1623-1629.
    Wang XL,Gong LY,Liang SK,Han XR,Zhu CJ and Li YB.Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa.Harmful Algae,2005,4:433-443.
    Watanabe K,Watanabe K,Kodama Y,Syutsubo K and Harayama S.Molecular characterization of bacterial populations in petroleum-contaiminated groundwater discharged from underground erode oil storage cavities.Appl Environ Microbiol,2000,66:4803-4809.
    Whyte LG,Hawari J,Zhou E,Bourbormiere L,Innis WE and Greer CW.Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.Appl Environ Microbiol,1998,64(7):2578-2584.
    Wongsa P,Tanaka M,Ueno A,Hasanuzzaman M,Yumoto I and Okuyama H.Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens Possessing high efficiency to degrade gasoline,kerosene,diesel oil,and lubricating oil.Curr Microbiol,2004,49:415-422.
    Wu JY,Yeh KL,Lu WB,Lin CL and Chang JS.Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site.Bioresour Technol,2008,99(5):1157-1164.
    Xue YF,Sun XS,Zhou P J,Liu RL,Liang FL and Ma YH.Gordonia paraffinivorans sp.nov.,a hydrocarbon-degrading actinomycete isolated from an oil-producing well.Int J Syst Evol Microbiol,2003,53:1643-1646.
    Zhang GL,Wu YT,Qian XP and Meng Q.Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids.J Zhejiang Univ Sci.2005,6B(8):725-730.
    Zhang YM and Miller RM.Enhanced Oetadecane Dispersion and Biodegradation by a Pseudomonas Rhamnolipid Surfactant(Biosurfactant).Appl Environ Microbiol,1992,10:3276-3282.
    Zhang YM and Miller RM.Effect of a Pseudomonas Rhamnolipid biosurfactant on cell hydrophobieity and biodegradation of octadecane.Appl Environ Microbiol,1994,6:2101-2106.
    Zhao NX and Zhang M.Names of Medical Bacteria and Taxonomic Identification.2nd ed.Shandong University Press,Jinan,China,2006:164-168.
    Zhao XH and Jiang BW.Brief Review on MEOR Technology.Petroleum Sci,2004,1(4):17-22.
    Zhu YM,Weng HX,Chen ZL and Chen Q.Compositional modification of crude oil during oil recovery.J Petro Sci Eng,2003,38:1-11.
    包木太,牟伯中,王修林,周嘉玺,倪方天.微生物提高石油采收率技术.应用基础与工程科学学报,2000,8(3):236-245.
    包木太,范晓宁,曹秋芳,马爱青,郭省学.稠油降黏开采技术研究进展.油田化学,2006,23(3):284-288.
    陈馥,曲金明,王福祥,刘金.油井清防蜡的研究现状及发展方向.石油与天然气化工,2003,32(4):243-245.
    池振明.微生物生态学.济南:山东大学出版社,1999,6.
    丁克强,孙铁珩,李培军,张海荣.真菌对石油污染土壤的降解研究.微生物学杂志,1999,19(4):25-26.
    丁克强,孙铁珩,李培军.石油污染土壤的生物修复技术.生态学杂志,2000,19(2):50-55.
    东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001.
    高枫,张心平,梁风来,刁虎欣,刘如林.用全DNA转化法构建多功能石油降解菌.南开大学学报,1999,32(2):158-162.
    郭万奎,侯兆伟,石梅,伍晓林.短短芽孢杆菌和蜡状芽孢杆菌采油机理及其在大庆特低渗透油藏的应用.石油勘探与开发,2007,34(1):73-78.
    何良菊,魏德洲,张维庆.土壤微生物处理石油污染的研究.环境科学进展,1999,7(3):110-115.
    金梁,顾宗濂,谢思琴,周德智.石油污染土壤及地下水的生物修复进展.应用与环境生物学报,1999,5(suppl):130-135.
    李华斌,杨振宇,杨林等.大庆油田鼠李糖脂生物表面活性剂提高采收率.西南石油学院学报,2001,23(1):25-28.
    李虞庚,冯世功编译.石油微生物学.上海交通大学出版社,1991,8.
    李羡春,齐艳丽,张磊,张华.微生物提高采收率技术在吉林油田的应用研究.石油勘探与开发,2002,29(6):94-96.
    李祖义,徐永珍,李江云,孙常麒,许兴妹,施邑屏.一种细菌糖脂的化学结构和物化性能.化学学报,1988,46:264-268.
    梁风来,张心平,刁虎欣,张秀丽,刘如林.假单胞菌GD-23原油发酵液乳化物质的提取和分析.南开大学学报,2001,34(1):13-16.
    梁生康.鼠李糖脂生物表面活性剂对石油烃污染物生物降解的影响.中国海洋大学博士学位论文,2005.
    梁生康,苏荣国,王修林,周爱华,汪卫东.生物表面活性剂对铜绿假单胞菌摄取烷烃的强化机制.应用与环境生物学报,2006,12(4):566-569.
    梁生康,王修林,陆金仁,张前前.假单胞菌O-2-2产鼠李糖脂的结构表征及理化性质.精细化工,2005,22(7):499-502.
    刘波,张红梅.鼠李糖脂应用于三次采油的实验研究.油气采收率技术,1997,4(3):20-25.
    刘晔,牟伯中,.刘洪来.烃的微生物摄取机制研究进展.微生物学通报,2005,32(2):109-113.
    刘晔,牟伯中,刘洪来.烃的选择性跨膜传输.微生物学通报,2006,33(2):63-67.
    柳文国,赵贡,张浩,徐凤廷,郑溪娟.嗜蜡菌种的筛选、性能评价及在低渗透油藏的现场应用.特种油气藏.2001,8(3):85-89.
    马放,杨基先,金文标等.环境生物制剂的开发与应用.北京:化学工业出版社,2004.
    钱欣平,阳永荣,孟琴.利用不同碳源合成生物表面活性剂的研究.日用化学工业,2002,15-17.
    曲音波,高培基.开展生物质转化为酒精研究实现液态燃料可持续供应.发酵工程学科的进展--第二次全国发酵工程学术讨论会.北京:中国轻工业出版社,2002,34-39.
    沈萍.微生物学.北京:高等教育出版社,2000.
    沈薇,李校堃,杨树林,宁长发.电喷雾质谱法分析假单胞菌的代谢产物鼠李糖脂.分析化学,2006,34(1):69-72.
    宋茂勇,林建强,魏玉华,李强.芽孢杆菌S-1提高石油采收率研究.山东大学学报(理学版),2004,39(1):117-120.
    宋绍富,张忠智,俞理,罗一菁,雷光伦.原生质体融合技术构建高效驱油细胞 工程菌的研究.油田化学,2004,21(2):187-190.
    苏荣国,牟伯中,王修林,倪方天,周嘉玺.微生物对石油烃的降解机理及影响因素.化工环保,2001,21(4):205-208.
    隋军,石梅,孙风荣,杨振宇,韩培慧,伍晓林.以石油烃类为唯一碳源提高采收率菌种的研究.石油学报,2001,22(5):53-57.
    王鸿膺,李玉星,陆新东.超稠油降粘输送试验研究.油气田地面工程,2004,23(9):20-21.
    王惠,卢渊,伊向艺.国内外微生物采油技术综述.大庆石油地质与开发,2003,22(5):49-52.
    袁三青,薛燕芬,高鹏,汪卫东,马延和.T-RFLP技术分析油藏微生物多样性.微生物学报,2007,47(2):290-294.
    张春英,孟凡儒,石梅,乐建君,刘英杰.大庆油田微生物提高采收率的矿场试验.石油学报,1995,16(1):88-95.
    张天胜等,生物表面活性剂及其应用.北京:化学工业业出版社.2005.
    张晓刚,刘颖,金亚杰编译.提高采收率的挑战及策略.国外油田工程,2007,23(1):4-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700