海洋声学中缓变分层波导的声波传播计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在声学、电磁学、地震学和一些其他的应用中,有许多在具有分层缓变波导中大尺度的波传播的问题。如果使用直接方法,譬如有限元法、有限差分法等,往往会导致求解大规模的线性方程组,这使得使得算法在内存和计算量的花费非常大,计算效率不高。在本文中,我们针对具有弯曲界面或者弯曲边界的波导,提出了适合于步进计算一般的坐标变换变换的方法,在坐标变换后的坐标系中,使用基于DtN(Dirichlet to Neumann)映射的正向基本解算子步进方法(FFOMM)和逆向基本解算子步进方法(IFOMM)分别求解Helmholtz方程正问题和反问题。
     在海洋声学中,海洋环境可以看作是一种分层缓变的具有多个弯曲内部界面和多层介质的声波导。在这样的波导中如果要使用步进方法大步长的求解Helmholtz方程,首先需要用适合于步进计算坐标变换将波导中弯曲的界面或者弯曲边界拉直。本文中给出两种坐标变换的方法:第一种是局部的解析正交坐标变换法,局部解析坐标变换用一个解析的积分方程联系新旧坐标,使用牛顿法求解这一积分方程实现新旧坐标之间的转换。坐标变换必然相应的引起方程的变换,我们使用的方程变换将Helmholtz方程转化成为一个可以用步进方法求解的形式。对于具有一个平的顶部、平的底部、n个弯曲的内部界面的二维波导,我们给出了在变换方程系数在各个介质层一般形式的解析表达式,从而完成方程变换。然而,局部解析坐标变换方法需要满足在两个相邻界面之间存在一条水平直线的介质可分性条件。针对不满足可分性条件的情况,我们又提出了一种使用经典求解常微分方程的Runge-Kutta方法计算坐标变换的数值坐标变换方法,这一方法不仅具有更广的适用范围,而且不必引入辅助界面,从而更好的逼近原始问题。
     对于变换之后的计算坐标系中的正问题,我们使用正向基本解步进方法来求解方程。FFOMM基于DtN算子的单向重建,将边界值问题转化为初始值问题,对于DtN算子和基本解算子满足的方程使用大步长方法离散在传播方向上的变量,用截断特征值展开方法逼近这些算子。FFOMM对于求解大尺度缓变波导中波的传播问题非常有效。
     在具有分层缓变特性的波导中的波的大尺度传播问题中,反问题有非常重要的实际意义。一般说来,海洋声学中实际的反问题都很复杂。求解海洋中反问题一般使用两类方法:一种是基于正向方法(如FFOMM)的迭代法,另一种为反向方法,反向方法的运算量和计算速度都相比正向方法有很大的优势。基于FFOMM,我们提出了逆向基本解算子步进方法。在IFOMM中使用波导中存在的传播模的个数作为正则化参数,用截断的奇异值分解方法求解步进过程中出现的病态线性方程。数值计算证明,这个方法用于求解Helmholtz方程的反边界值有效,精确并且对于初始波源传播部分稳定,对于海洋声波中实际的反问题研究有着一定的意义。
In acoustics, electro-magnetism, seismic migration and other applications, there are many large scale wave propagation problems. A direct numerical computing like finite-element, finite-difference could be very expensive since these methods often result in a very large linear system. The forward fundamental operator marching method (FFOMM) which is developed by Lu Y.Y. etc based on Dirichlet-to-Neumann (DtN) reformulation is a highly efficient numerical marching scheme for solving Helmoholtz equation in a large scale domain with curved interfaces or boundaries. However, this FFOMM previously suggested can only march in a large range step size in some simple waveguides, such as horizontal stratified waveguide, the waveguide with one curved interface or one curved boundary. If there are more curved interfaces or curved boundaries in the domain of waveguide, then the FFOMM has to march in a very short step unless some treatments are done.
     In the real world, some waveguides, like waveguides in ocean acoustics, often have multilayered stratified structure with some curved interfaces or boundaries. To efficiently compute wave propagation along the range with some marching methods, flattening the interfaces or boundaries and transforming equation are needed. In this paper, an analytical local orthogonal.coordinate transform and an analytical equation transform are constructed to flatten the interfaces and change the Helmholtz equation as a solvable form. For a waveguide with a flat top, a flat bottom and n curved interfaces, the coefficients of transformed Helmholtz equation is given in a closed formulation. However, when distance of two adjoint interfaces is so closely that there is not a horizontal straight-line to divide the corresponding layer into two parts, the analytical local orthogonal transform method will not be feasible. For this reason, a numerical coordinate transform and equation transform based on the classical Rugger-Kutta method are developed to solve Helmholtz equation by some marching methods in the situation.
     In the transformed horizontal stratified waveguide, the FFOMM uses a large range step method to discretize the range variable and compute the forward problem of Helmholtz equation efficiently. The analytical transform method and the numerical transform method are particularly useful for long range wave propagation problems in slowly varying waveguides with multilayered medium structure. Furthermore, the methods can also be applied for the wave propagation problems in acoustical waveguides associated with varied density.
     It is noticed that the inverse problem is also very important for large scale wave propagation problems in acoustics or electro magnetics. In our work, a called "inverse fundamental operator marching method" (IFOMM) based on the Dirichlet-to-Neumann map is suggested for solving the large scale inverse boundary value problem associated with the two dimensional Helmholtz equation in a range dependent waveguide. This method solves the badly ill-conditioned matrix equations arising in the marching progress by truncated singular value decomposition with the number of propagation modes in the waveguide chosen as the regularization parameter. Numerical examples show that the proposed method is computationally efficient, highly accurate with respect to the propagating part of a starting field.
引文
[AK94] Abrahamsson, L., Kreiss, H.O.. Numerical solution of the coupled mode equations in duct acoustic. Journal of Computational Acoustics, 1994, 111: 1-14.
    [Bai92] Bai, M.R.. Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries. Journal of the Acoustical society of America, 1992, 92: 533-549.
    [Ber94] Berenger, J. P.. A Perfectly matched layer for the absorbtion of electromagnetic-waves. Journal of Computational Physics, 1994, 114(2): 185-200.
    [Boy89] Boyles, C.A.. Coupled mode solution for a cylindricall symmetric oceanic waveguide with a range and depth dependent refractive index and a time varying rough sea surface[J]. Jounal of Acoustical Society of America, 1983, 73: 800-805.
    [Col97] Collino, F.. Perfectly matched absorbing layers for the paraxial equations. . J.of Comp. Physics, 1997, 131: 164-180.
    [CK94] Collins, M.D., Kupermanz, W.A.. Inverse problems in ocean acoustics. Inverse Problems, 1994, 10: 1023-1040.
    [Col89] Collins, M.D.. Applications and time-domain solutions of higher-order parabolic equations in underwater acoustics. Journal of the Acoustical society of America, 1989, 86(4): 1097-1102.
    [Col93] Collins, M.D.. A split-step Pad'e solution for the parabolic equation method. Journal of the Acoustical society of America, 1993, 93(4): 1736-1742.
    [DIV01] Delillo, T., Isakov, V., Valdivia, N., Wang, L.. The detection of the source of acoustical noise in two dimensions. SIAM J. Appl. Math. 2001, 61: 2104-2121.
    [DIV03] Delillo, T., Isakov, V., Valdivia, N., Wang, L.. The detection of surface vibrations from interior acoustical pressure. Inverse Probl. 2003, 19: 507-524.
    [DK96] Dougalis, V.A., Kampanis, N.A.. Finite element methods for the parabolic equation with interfaces. Journal of Computational Acoustics, 1996, 4: 55-88.
    [Eva83] Evans, R.. A coupled mode solution for acoustic propogation in waveguide with stepwise variations of penetrable bottom [J]. Jounal of Acoustical Society of America, 1983, 74: 188-195.
    [Eva98] Evans, R... The flattened surface parabolic equation. Journal of Computational Acoustics, 1998, 104: 2167-2173.
    [FGS97] Fishman, L., Gautesen, A.K., Sun, A.K.. Uniform high-frequency approximations of the square root Helmholtz operator symbol. Wave Motion, 1997, 26(2): 127-161.
    [Fis93] Fishman, L.. One-way wave propagation methods in direct and inverse scalar wave propagation modeling. Radio Science, 1993, 28(5): 865-876.
    [FMM99] Fishman, L., Maarten, V. de Hoop, Mattheus, J.N. van Stralen. Exact constructions of square-root Helmholtz operator symbols: The focusing quadratic profile . Journal of Mathematical Physics, 2000, 41(7): 4881-4938.
    [GKL03] Gryazin, Y.A., Klibanov, M.V., Lucas, T.R.. Two numerical methods for an inverse problem for the 2-D Helmholtz equation. J. Comput. Phys. 2003, 184: 122-148.
    [Han87] Hansen, P.C.. The truncated SVD as a method for regularization. BIT, 1987, 27: 534-553.
    [Han92] Hansen, P.C.. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 1992, 34: 561-580.
    [HO93] Hansen, P.C., O'Leary, D.P.. The use of the L-curve in the regulariza-tion of discrete ill-posed problems. SIAM J. Sci. Comput., 1993, 14: 1487-1503.
    [IW02] Isakov, V., Wu, S.F.. On theory and application of the Helmholtz equation least squares method in inverse acoustics. Inv. Prob., 2002, 18: 1147-1159.
    [LH] Lawson, C.L., Hansen, R.J.. Solving Least Squares Problems. Engle-wood Cliff: Prentice-Hall, 1974.
    [IW02] Isakov, V., Wu, S.F.. On theory and application of the Helmholtz equation least squares method in inverse acoustics. Inv. Prob. 2002, 18: 1147-1159.
    [Jen98] Jensen, F.B.. On the use of stair steps to approximate bathymetry changes in ocean acoustic models. Journal of the Acoustical Society of America, 1998, 104(3): 1310-1315.
    [JF90] Jensen, F.B., Ferla, C.M.. Numerical solutions of range-dependent benchmark problem. Journal of the Acoustical society of America, 1990, 87: 1499-1510.
    [JKP93] Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.. Compu-tationa Ocean Acoustics. New York: American Institute of Physics, 1993.
    [JZ05a] Jin, B.T., Zheng, Y.. Boundary knot method for some inverse problems associated with the Helmholtz equation. J. Numer. Meth. Engng. 2005, 62: 1636-1651.
    [JZ05b] Jin, B.T., Zheng, Y.. Boundary knot method for the Cauchy problem associated with the inhomogeneous Helmholtz equation. Engng. Anal. Boundary Elem. 2005, 29: 925-935.
    [JC06]Jin,B.T.,Chen,W..Boundary knot method based on geodesic distance for anisotropic problems.J.Comput.Phys.2006,215:614-629.
    [JZ06]Jin,B.T.,Zheng,Y..A meshless method for some inverse problems associated with the Helmholtz equation.Comput.Methods Appl.Mech.Engrg.2006,195(19-22):2270-2288.
    [JM]Jin,B.T.,Matin,L..The plane wave method for inverse problems associated with Helmholtz-type equations.Engineering Analysis with Boundary Elements,in press.
    [LA98]Larsson,E.,Abrahamsson L..Parabolic wave equation versus the Helmholtz equation in Ocean acoustics.Mathematics and Numerical Aspects of Wave Propagation,Philadelphia:SIAM,1998,582-584.
    [LAP]LAPACK User's Guide 3.0..
    [LH02]Lu,Y.Y.,Ho,P.L..A Single Scatter Improvement for Beam Propagation Methods.IEEE Photonics Technology Letters,2002,14(8):1103-1105.
    [LHM01]Lu,Y.Y.,Huang,J.Y.,McLaughin,J..Local orthogonal transformation and one-way methods for acoustics waveguides,wave motion 2001,34:193-207.
    [LJ96]Lu,Y.Y.,Joyce R.M..The Riccati method for the Hehnholtz equation.Journal of the Acoustical society of America,1996,100(3):1432-1446.
    [LM]Lu,Y.Y.,McLaughlin,J.R..Propagation in Helmholtz Waveguides using DtN and NtD Maps.Preprint available in author's web page:http://math.cityu.ed u.hk/mayyl.
    [LP95]Lee,D.,Pierce,A.D..Parabolic equation development in recent decade.Journal of Computational Acoustics,1995,3:95-173.
    [Lu98]Lu,Y.Y..A Complex Coefficient Rational Approximation of(1+x)~(1/2).Applied Numerical Mathematics,1998,27(2):141-154.
    [Lu99a]Lu,Y.Y..Exact one-way methods for acoustics waveguides.Mathematics and Computers in simulation,1999,50:377-391.
    [Lu99b]Lu,Y.Y..One-way Large Range Step Methods for Helmholtz Waveguides.Journal of Computational Physics 1999,152:231-250.
    [Lu00]Lu,Y.Y..Fourth Order Conservative Exponential Methods for Linear Evolution Equations.BIT,2000,40(4):762-774.
    [Lu03]Lu,Y.Y..Computing a Matrix Function for Exponential Integrators.Journal of Computational and Applied Mathematics,2003,161(1):203-216.
    [Lu05]Lu,Y.Y..A Fourth Order Magnus Scheme for Helmholtz Equation.Journal of Computational and Applied Mathematic,2005,173:247-258.
    [LZ04]Lu,Y.Y.,Zhu,J.X..A Local Orthogonal Transform for Acoustic Waveguides with an Internal Interface.Journal of Computational Acoustics,2004,12(1):37-53.
    [M05]arin,L..A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations.Appl.Math.Comput.2005,165:355-374.
    [MEH03]Marin,L.,Elliott,L.,Heggs,P.J.,Ingham,D.B.,Lesnic,D.,Wen,X..An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation.Comput.Methods Appl.Mech.Engrg.2003,192:709-722.
    [MEHL03]Marin,L.,Elliott,L.,Heggs,P.J.,Ingham,D.B.,Lesnic,D.,Wen,X..Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations.Comput.Mech.2003,31:367-372.
    [MEHL04a]Marin,L.,Elliott,L.,Heggs,P.J.,Ingham,D.B.,Lesnic,D.,Wen,X..Comparison of regularization methods for solving the Cauchy problem associated with the Helmholtz equation.Int.J.Numer.Meth.Engng.2004,60:1933-1947.
    [MEHL04b]Marin,L.,Elliott,L.,Heggs,P.J.,Ingham,D.B.,Lesnic,D.,Wen,X..BEM solution for the Cauchy problem associated with Helmholtztype equations by the Landweber method.Engng.Anal.Boundary Elem.2004,28:1025-1034.
    [ML05]Marin,L.,Lesnic,D..The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations.Comput.& Struct.2005,83:267-278.
    [Mon99]Monk,P.,Wang,D..A least squares method for the Helmholtz equation.Computer Methods in Applied Mechanics and Engineering,1999,175:121-136.
    [PFJ89]Porter,M.B.,Ferla,C.M.,Jensen,F.B..The problem of energy conservation in one-way equations.Journal of the Acoustical society of America,89:1058-1067.
    [Pie65]Pierce,A.D..Extension of the method of normal modes to sound propagation in an almost stratified medium.Journal of the Acoustical society of America,1965,37(1):19-27.
    [Tap77a]Tappert,F.D..The parabolic approximation method.Wave propagation and underwater acoustics,Lecture Notes in Physics,1977,70:224-287.
    [Tap77b]Tappert,F.D..The parabolic approximation method in:J.B.Keller,J.S.Papadakis,Wave Propagation and Underwater Acoustics,Berlin:Springer Verlag,1977.
    [TKB92]Tessmer,E.,Kosloff,D.,Bethe,A..Elastic wave propagation simulation in the presence of surface topography.Geophys J Int,1992,108:621-632.
    [WW97]Wang,Z.,Wu,S.F..Helmholtz equation least-squares method for reconstructing the acoustic pressure.eld.Journal of the Acoustical society of America,1997,102:2020-2032.
    [WY98]Wu,S.F.,Yu,J..Reconstructing interior acoustic pressure.elds via Helmholtz equation-least-squares method.Journal of the Acoustical society of America,1998,104:2054-2060.
    [Zha]Zhang,G..High order approximation one-way wave equations.J.Comput.Math.1985,3:90-97.
    [ZL02]Zhu,J.X.,Lu,Y.Y..Large range step method for acoustic waveguide with two layer media,progress in natural science,November 2002,12(11):820-825.
    [ZL04]Zhu,J.X.,Lu,Y.Y..Validity of One-way Models in the Weak Range Dependence Limit.Journal of Computational Acoustics,2004,12(1):55-66.
    [ZL07]Zhu,J.X.,Li,P..Local orthogonal transform for a class of acoustic waveguide.Progress in Natural Science,2007,17:18-28.
    [蔡04]蔡蓓蓓,许履湖,梁在中,沈永欢.实用数学手册.科学出版社,北京,2004.
    [程04]程建春.数学物理方程及其近似方法.科学出版社,北京,2004.
    [董89]董光昌,陈仲慈,汤国桢.数学物理方程(第一版).浙江大学出版社,杭州,1989.
    [戈01]戈卢布,G.H.,范洛恩,C.F.矩阵计算.科学出版社,北京,2001.
    [黄03]黄越夏.声波导中一类非线性局部正交变换及Helmholtz方程计算的研究.浙江大学硕士学位论文,2003年3月.
    [黄04]黄越夏,沈瑞敏.求解Helmholtz方程的一类非线性局部正交变换.浙江大学学报理学版,2004(31):498-502.
    [李96]李荣华,冯国忱.偏微分方程数值解法(第三版).高等教育出版社,1996.
    [刘93]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社,哈尔滨,1993.
    [马05]马振华,刘坤林,等等现代应用数学手册--计算与数值分析卷.清华大学出版社,北京,2005.
    [王04]王烈衡,许学军.有限元方法的数学基础.科学出版社,北京,2004.
    [王06]王丹溪.在多层无界区域中Helmholtz方程的数值解法及其应用.浙江大学硕士学位论文,2006年1月.
    [王07]王建明,周学军.无网格法理论及程序设计.山东大学出版社,济南,2007.
    [除95]徐树方.矩阵计算的理论和方法.北京大学出版社,北京,1995.
    [易84]易大义,蒋叔豪,李有法.数值方法.浙江科学技术出版社,杭州,1984.
    [张04]张雄,刘岩.无网格法.清华大学出版社,北京,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700