水稻内外稃发育调控基因BLS1的图位克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻等禾本科植物具有与双子叶植物不同的花器官结构,典型的双子叶植物花器官从外到内依次为花萼、花瓣、雄蕊和雌蕊,水稻雄蕊和雌蕊与单子叶植物相似,而外层的内外稃和浆片是禾本科植物特有的。目前,关于水稻内外稃起源和发育的分子机理还知之甚少。本研究以从T-DNA插入突变体库和自发突变体库中获得的具有鹰嘴(beak like spikelet,bls1)表型的水稻内外稃发育突变体bls1-1与bls1-2为材料,通过图位克隆和基因功能分析,揭示了引起鹰嘴表型的遗传与分子机理,加深了我们对水稻内外稃发育分子机制的认识。主要结果如下:
     1. bls1突变体内外稃变小,特别是内外稃上部明显变窄、变尖,整朵小花形成类似鹰嘴的形状,而其它花器官,包括退化颖片、护颖及内部浆片、雄蕊和雌蕊的形态正常,没有发生花器官同源转化现象。石蜡切片观察发现,突变体内外稃从外到内四种类型细胞(硅化细胞、纤维状厚壁组织、薄壁细胞、未硅化细胞)都明显变小,统计未硅化细胞数目和细胞面积时发现,突变体内外稃细胞面积显著减小。扫描电镜观察发现,突变体花器官原基的起始与花器官轮生模式的形成过程正常,只是在胚珠和花粉形成期(Sp8期)内外稃不膨大,横向生长受到抑制。
     2.通过Real-time PCR分析,发现内外稃发育相关的花器官特征基因,包括AP1-like基因、SEP-like基因、AGL6-like基因,在突变体中的表达不受影响。由此推测,BLS1基因可能位于这些花器官特征基因下游,与突变体bls1没有发生同源转化的表型结果一致。此外,其它内外稃发育相关基因,包括REP1、DP1、DL基因在突变体中正常也表达,BLS1可能是从新的途径调控内外稃的发育。
     3.遗传分析表明,鹰嘴表型由一对隐性核基因控制。以bls1-1×Dular杂交组合获得的定位群体,将bls1定位在第2染色体长臂约110kb的区间内,在该区间内,bls1-1突变体大约有87kb的染色体片段缺失。再利用bls1-1等位突变体bls1-2与培矮64配置的群体进行精细定位,最终将bls1位点定位在大约65kb的区间内,bls1-2突变体在定位区间内也存在50kb染色体片段缺失。定位区间内包括7个基因,经过测序和RT-PCR表达分析发现,只有LOC_Os02g56610能够在水稻幼穗中表达,将该基因确定为候选基因BLS1。互补实验和干扰实验结果证明bls1突变体的鹰嘴表型是由BLS1基因缺失造成的。
     4. BLS1基因编码287个氨基酸,包含一个DUF640结构域。通过数据库搜索发现,DUF640结构域可能是陆生植物特有的。转基因植株GUS组织染色结果表明,GUS活性在幼穗中最强,特别是幼穗的内外稃,该结果与Real-time PCR基因组织特异性表达分析结果一致。瞬时表达和转基因结果都表明,BLS1蛋白定位在细胞核上。
Grass species, like rice (Oryza sativa L), have highly specialized flowers that are different fromthose of eudicots. A typical eudicot flower comprises of sepals, petals, stamens, and carpel from outer toinner, whereas rice flower consists of stamens and carpel like eudicots, but the surroundingstructures, lodicules, lemma and palea, are unique to grasses. At present, the origin and molecularmechanism of lemma and palea development are poorly understood. In this study, we characterized tworice mutants, bls1-1and bls1-2(beak like spikelet1) with deformed lemmas and paleas, were obtainedby screening a T-DNA insertion population and spontaneous mutant population, respectively.Map-based cloning and functional analysis of the bls1mutant revealed the genetic and molecularmechanism that caused the mutant phenotype of bls1. These results enhanced our understanding of themolecular mechanisms of lemma and palea development in rice spikelet. Results from our experimentare summarized as follows:
     1. bls1lemma and palea exhibited slender phenotype, especially at the top where it displayed abeak like structure. However, the morphology of other floral organs, including rudimentary glumes,sterile lemmas, lodicules, stamens and pistils was normal. This suggested that the alterations in themutant were due to shape changes, rather than homeotic transformation of the lemma and palea. In ahistological analysis, the bls1cell sizes of four types of the lemma and palea, including silicified cell,fibrous sclerenchyma, spongy parenchymatous cell and nonsilicified cell were obviously smaller thanthose of WT. With the statistic analysis of the innermost nonsilicified cell in lemma and palea, there wasno difference in the cell number between bls1and WT, while the average cell area reduced significantlyin bls1. Scanning electron microscope analysis showed that the floral-organ primordia initiation andfloral organ patterning of bls1mutant were normal. By Sp8with formation of ovule and pollen, thelemma and palea of WT started to develop laterally, whereas the developmental process of bls1seemedto be delayed and the lemma and palea were prevented from growing horizontally.
     2. Real-time PCR analysis revealed that the expression of several floral organ identity genes relatedlemma and palea, including AP1-like, SEP-like and AGL6-like gene were apparently not affected in bls1mutant. In addition, in bls1, palea-related genes REP1and DP1or lemma-related gene DL displayedsimilar expression level as in WT. No significant alterations in these genes expression suggested thateither BLS1functions as the downstream of genes measured or BLS1represents a new pathway relatedto lemma and palea development.
     3. Genetic analysis revealed that bls1phenotype is controlled by a single recessive nuclear locus.Through mapping the F2population produced by bls1-1crossing Dular, the bls1locus was mappedwithin a region of about110kb on the long arm of chromosome2. A chromosome segment ofapproximately87kb was deleted within the restricted region in bls1-1. Then we used another mutantbls1-2, which is an allele mutant with bsl1-1to cross with Peiai64, and refined the bls1locus to a65kbregion. There was also an approximately50kb deletion within the restricted region in bls1-2. Sevenputative genes were including, among them, mere LOC_Os02g56610expressed in the young inflorescence of WT. Complement test and RNA interference experiment confirmed that the beak likespikelet of bls1mutant was caused by the deletion of gene LOC_Os02g56610, which was subsequentlydesignated as BLS1.
     4. BLS1encodes a protein containing287amino acids with a conserved DUF640domain withunknown function. A GenBank database search suggested that DUF640domain may be specific to landplants. Histochemical staining of the transgenic plants showed that GUS activity was strong in theyoung inflorescence, specifically the young lemmas and paleas of spikelets, corresponding to the resultsrevealed by Real-time PCR analysis. Both the results of transiently expression in rice leaf protoplastsand transgenic rice revealed that BLS1localizes in the nucleus.
引文
1. Abebe T, Skadsen RW, Kaeppler HF. Cloning and identification of highly expressed genes inbarley lemma and palea. Crop Sci2004,44:942–950.
    2. Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H. Conservation of the E-function forfloral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-functionmutants of the OsMADS1gene. Plant Mol Bio2005,59:125–135.
    3. Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ. Molecular and geneticanalyses of the silky1gene reveal conservation in floral organ specification between eudicots andmonocots. Molecular Cell2000,5:569–579.
    4. Angenent GC, Franken J, Busscher M, et al. A novel class of MADS-box genes is involved inovule development in petunia. Plant Cell1995,7:1569–1582.
    5. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q,Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science2005,309:741–745.
    6. Battaglia R, Brambilla V, Colombo L, Stuitje AR and Kater MM. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alcgene-expression system. Mechanisms of Development2006,123:267–276.
    7. Bennetzen JL, Ma J. The genetic colinearity of rice and other cereals on the basis of genomicsequence analysis. Curr Opin Plant Biol2003,6:128–133.
    8. Bommert P, Satoh-Nagasawa N, Jackson D, Hirano HY. Genetics and evolution of inflorescenceand flower development in grasses. Plant and Cell Physiology2005,46:69–78.
    9. Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR. Control of flower development inArabidopsis thaliana by APETALA1and interacting genes. Development1993,119:721–743.
    10. Bowman JL, Smyth DR, Meyerowitz EM. Genetic interactions among floral homeotic genes ofArabidopsis. Development1991,112:1–20.
    11. Bowman JL. Evolutionary conservation of angiosperm flower development at the molecular andgenetic levels. Journal of Biosciences1997,22:515–527.
    12. Brand U, Fletcher J C, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate inArabidopsis on a feedback loop regulated by CLV3activity. Science2000,289:617–619.
    13. Causier B, Schwarz-Sommer Z, Davies B. Floral organ identity:20years of ABCs. Seminars inCell and Developmental Biology2010,21:73–79.
    14. Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH. Morphogenesis and molecular basis onnaked seed rice, a novel mutation of OsMADS1regulating transcript level of AP3homoloue in rice.Plant Mol Biol2006,223:882–890.
    15. Cho E, Zambryshi PC. ORGAN BOUNDARY1defines a gene expressed at the junction between theshoot apical meristem and lateral organs. Proc Natl Acad Sci USA2010,108:2154–2159.
    16. Chu HW, Qian Q, Liang WQ, Yin CS, Tan HX, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H,Zhang DB. The FLORAL ORGAN NUMBER4gene encoding a putative ortholog of ArabidopsisCLAVATA3regulates apical meristem size in rice. Plant Phy2006,142:1039–1052.
    17. Chuck G, Meeley RB, Hake S. Floral meristem initiation and meristem cell fate are regulated bythe maize AP2genes ids1and sid1. Development2008,135:3013–3019.
    18. Chuck G, Meeley RB, Hake S. The control of maize spikelet meristem fate by the APETALA2-likegene indeterminate spikelet1.Genes and Development1998,12:1145–1154.
    19. Chung YY, Kim SR, Finkel D, Yanofsky MF, An G. Early flowering and reduced apicaldominance result from ectopic expression of a rice MADS box gene. Plant Mol Biol1994,26:657–665.
    20. Coen ES, Romero J, Doyle S, Elliott R, Murphy G, Carpenter R. floricaula: a homeotic generequired for flower development in Antirrhinum majus. Cell1990,63:1311–1322.
    21. Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flowerdevelopment. Nature1991,353:31–37.
    22. Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC and van Tunen AJ. ThePetunia MADS box gene FBP11determines ovule identity. Plant Cell1995,7:1859–1868.
    23. Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Functionalconservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The PlantJournal2010,61:767–781.
    24. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. The SEP4gene of Arabidopsis thalianafunctions in floral organ and meristem identity. Curr Biol2004,14:1935–1940.
    25. Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PB, An G, Colombo L, Kater MM. TheD-lineage MADS-box gene OsMADS13controls ovule identity in rice. The Plant Journal2007,52:690–699.
    26. Duan YL, Diao ZJ, Liu HQ, Cai MS, Wang F, Lan T, Wu WR. Molecular cloning and functionalcharacterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.).Plant Mol Biol2010,74:605–615.
    27. Fan C, Xing Y, Mao H, Lu T, Han B, et al. GS3, a major QTL for grain length and weight andminorQTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor ApplGenet2006,112:1164–71.
    28. Favaro R, Immink RG, Ferioli V, Bernasconi B, Byzova M, Angenent GC, Kater M, Colombo L.Ovule-specific MADSbox proteins have conserved protein–protein interactions in monocot anddicot plants. Molecular Genetics and Genomics2002,268:152–159.
    29. Ferrario S, Immink RGH, Angenent GC. Conservation and diversity in flower land. Curr OpinPlant Biol2004,7:8491.
    30. Ferrario S, Immink RGH, Shchennikova A, Busscher-Lange J and Angenent GC. The MADS boxgene FBP2is required for SEPALLATA function in petunia. Plant Cell2003,15:914–925.
    31. Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, AltamuraMM, Colombo L, Kater MM. Functional characterization of OsMADS18, a member of theAP1/SQUA subfamily of MADS box genes. Plant Physiol2004,135:2207–2219.
    32. Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D. TheSEPALLATA-like gene OsMADS34is required for rice inflorescence and spikelet development.Plant Physiology2010,153:728–740.
    33. Goto K, Meyerowitz EM. Function and regulation of the Arabidopsis floral homeotic genePISTILLATA. Genes Dev1994,8:1548–1560.
    34. Han MJ, Jung KH, Yi G, An G. Rice importin β1gene affects pollen tube elongation. Mol Cells2011,31:523–530.
    35. Higuchi, M. et al. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl Acad.Sci. USA2004,101:8821–8826.
    36. Hong LL, Qian Q, Zhu KM, Tang D, Huang ZJ, Gao L, Li M, Gu MH, Cheng ZK. ELE restrainsempty glumes from developing into lemmas. J Genet Genomics2010,37:101115.
    37. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floralorgans. Nature2001,409:525–529.
    38. Horigome A, Nagasawa N, Ikeda K, Ito M, Itoh JI, Nagato Y. Rice OPEN BEAK is a negativeregulator of class1knox genes and a positive regulator of class B floral homeotic gene. Plant J2009,58:724–736.
    39. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. Natural variation at theDEP1locus enhances grain yield in rice. Nat Genet2009,41:494–497.
    40. Huijser P et al. Bracteomania, an inflorescence anomaly, is caused by the loss of function of theMADS-box gene squamosa in Antirrhinum majus. EMBO J.1992,11:1239–1249.
    41. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLEORGANIZATION1, encoding an F-box protein, regulates meristem fate. The Plant Journal2007,51:1030–1040.
    42. Ikeda K, Nagasawa N, Nagato Y. ABERRANT PANICLE ORGANIZATION1temporally regulatesmeristem identity in rice. Developmental Biology2005,282:349–360.
    43. Ikeda K, Sunohara H, Nagato Y. Developmental course of inflorescence and spikelet in rice.Breeding Sci2004,54:147–156.
    44. Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J. Expressionlevel of ABERRANT PANICLE ORGANIZATION1determines rice inflorescence form throughcontrol of cell proliferation in the meristem. Plant Physiology2009,150:736–747.
    45. Ishikawa M, Ohmori Y, Tanaka W, Hirabayashi C, Murai K, Ogihara Y, Yamaguchi T, Hirano HY.The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function ingrasses. Genes and Genetic Systems2009,84:137–146.
    46. Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann L, Meyerowitz EM. Thehomeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS.Nature2004,430:356–360.
    47. Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plantdevelopment: from zygote to spikelet. Plant Cell Phy2005,46:23–47.
    48. Itoh JI, Kitano H, Matsuoka M, Nagato Y. SHOOT ORGANIZATION genes regulate shoot apicalmeristem organization and the pattern of leaf primordium initiation in rice. The Plant Cell2000,12:2161–2174.
    49. Jack T, Brockman LL, Meyerowitz EM. The homeotic gene APETALA3of Arabidopsis thalianaencodes a MADS box and is expressed in petals and stamens. Cell1992,68:683–687.
    50. Jack T, Fox GL, Meyerowitz EM. Arabidopsis homeotic gene APETALA3ectopic expression:transcriptional and posttranscriptional regulation determine floral organ identity. Cell1994,76:703–716.
    51. Jefferson RA. Assaying Chimeric Gemes in plants: The GUS Gene Fusion System. Plant Mol. Biol.Report.1987,5:387–405.
    52. Jeon JS, Jang S, Lee S, et al. leafy hull sterile1is a homeotic mutation in a rice MADS box geneaffecting rice flower development. The Plant Cell2000,12:871–884.
    53. Jia H, Chen R, Cong B, Cao K, Sun C, Luo D. Characterization and transcriptional profiles of tworice MADS-box genes. Plant Sci2000,155:115–122.
    54. Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14by OsmiR156defines ideal plantarchitecture in rice. Nature Genetics2010,42,541–544.
    55. Jin Y, Luo Q, Tong HN, Wang AJ, Chen ZJ, Tang JF, Li DY, Zhao XF, Li XB, Wan JM, Jiao YL,Chu CC, Zhu LH. An AT-hook gene is required for palea formation and floral organ numbercontrol in rice. Dev Biol2011,359:277–288.
    56. Kang HG, Jeon JS, Lee S, An G. Identification of class B and class C floral organ identity genesfrom rice plants. Plant Mol Biol1998,38:1021–1029.
    57. Kellogg EA. Evolutionary history of the grasses. Plant Physiology2001,125:1198–1205.
    58. Kellogg EA. The grasses: a case study in macroevolution. Annual Review of Ecology andSystematics2000,31:217–238.
    59. Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yanashino T, Mizuno T. The type-A responseregulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction inArabidopsis thaliana. Plant Cell Physiol2003,44:868–874.
    60. Kim S, Koh J, Yoo M, Kong HZ, Hu Y, Ma H, Soltis PS, Soltis DE. Expression of floralMADS-box genes in basal angiosperms implications for the evolution of floral regulators. Plant J2005,43:724–744.
    61. Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. PANICLE PHYTOMER2(PAP2),encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristemidentity in rice. Plant and Cell Physiology2010,51:47–57.
    62. Komatsu K, Maekawa M, Ujiie S, Satake Y et al. LAX and SPA: major regulators of shootbranching in rice. PNAS2003,2003:11765–11770.
    63. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required toprevent the formation of axillary meristems and to establish floral meristem identity in ricespikelets. Development2003,130:3841–3850.
    64. Komatsu M, Maekawa M, Shimamoto K and Kyozuka J. The LAX1and FRIZZY PANICLE2genesdetermine the inflorescence architecture of rice by controlling rachis-branch and spikeletdevelopment. Dev Biol2001,231:364–373.
    65. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1are essential forflowering in rice. Development2008,135:767–774.
    66. Krizek BA and FletcherJC. Molecular mechanisms of flower development: an armchair guide. NatRev Genet2005,6(9):688–698.
    67. Krizek BA, Meyerowitz ZM. The Arabidopsis homeotic genes APETALA3and PISTILLATA aresufficient to provide the B class organ identity function. Development1996,122:11–22.
    68. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J.Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature2007,445:652–655.
    69. Kyozuka J, Kobayashi T, Morita M, Shimamoto K. Spatially and temporally regulated expressionof rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol2000,41:710–718.
    70. Kyozuka J, Shimamoto K. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, causeda homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol2002,43:130–135.
    71. Lee DY, An G. Two AP2family genes, SUPERNUMERARY BRACT (SNB) andOsINDETERMINATE SPIKELET1(OsIDS1), synergistically control inflorescence architecture andfloral meristem establishment in rice. Plant J2012,69:445–461.
    72. Lee DY, Lee J, Moon S, Park SY, An G. The rice heterochronic gene SUPERNUMERARY BRACTregulates the transition from spikelet meristem to floral meristem. The Plant Journal2006,49:64–78.
    73. Lee S, Jeon JS, An K, Moon YH, Lee S, Chung YY, An G. Alteration of floral organ identity inrice through ectopic expression of OsMADS16. Planta2003,217:904–911.
    74. Leibfried A, Jennifer PC. To, Busch W et al. WUSCHEL controls meristem of function by directregulation of cytokinin-inducible response regulators. Nature2005,438:172–1175.
    75. Lenhard M, Bohnert A, Jurgens G, Laux T. Termination of stem cell maintenance in Arabidopsisfloral meristems by interactions between WUSCHEL and AGAMOUS. Cell2001,105:805–814.
    76. Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X. DH1, aLOB domain-like protein required for glume formation in rice. Plant Mol Biol2008,66:491–502.
    77. Li C, Potuschak T, Colon-Carmona A, Gutierrez RA, Doerner P. Arabidopsis TCP20linksregulation of growth and cell division control pathways. Proc Natl Acad Sci USA2005,102:12978–12983.
    78. Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D. The AGL6-like gene OsMADS6regulatesfloral organ and meristem identities in rice. Cell Research2010,20:299–313.
    79. Li SB, Qian Q, Fu ZM, Zeng DL, Meng XB, Kyozuka J, Maekawa M, Zhu XD, Zhang J, Li JY,Wang YH. Short panicle1encodes a putative PTR family transporter and determines rice paniclesize. Plant J2009,58:592–605.
    80. Li XJ, Sun LJ, Tan LB, Liu FX, Zhu ZF, Fu YC, Sun XY, Sun XW, Xie DX, Sun CQ. TH1, aDUF640domain-like gene control lemma and palea development in rice. Plant Mol Biol2012,78:351–359.
    81. Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng D, Wang XQ, Liu XF, Teng S, Hiroshi F,Yuan M, Luo D, Han B, Li JY. Control of tillering in rice. Nature2003,422:618–621.
    82. Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF. Interactions amongAPETALA1, LEAFY and TERMINAL FLOWER1specify meristem fate. Plant Cell1999,11:1007–1018.
    83. Lim J, Moon YH, An G, Jang SK. Two rice MADS domain proteins interact with OsMADS1. PlantMol Bio2000,4:513–527.
    84. Litt A. An evaluation of A-function: evidence from the APETALA1and APETALA2gene lineages.International Journal of Plant Science2007,168:73–91.
    85. Lohmann JU, Hong R, Hobe M, Busch M, Parcy F, Simon R, Weigel D. A molecular link betweenstem cell regulation and floral patterning in Arabidopsis. Cell2001,105:793–803.
    86. Lohmann JU, Weigel D. Building beauty: the genetic control of floral patterning. Developmentalcell2002,2:135–142.
    87. Lopez-Dee ZP, Wittich P, Enrico Pe M, Rigola D, Del Buono I, Gorla MS, Kater MM, Colombo L.OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet1999,25:237–244.
    88. Luo Q, Zhou KD, Zhao XF, Zeng QC, Xia H, Zhai WX, Xu JC, Wu XJ, Yang HS, Zhu LH.Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta2005,221:222–230.
    89. Ma H, Pampilis CD. The ABCs of floral evolution. Cell2000,101:569–579.
    90. Malcomber ST, Kellogg EA. Heterogeneous expression patterns and separate roles of theSEPALLATA gene LEAFY HULL STERILE1in grasses. Plant Cell,2004,16:692–706.
    91. Mandel MA Yanofsky MF. A gene triggering flower formation in Arabidopsis. Nature1995,377:522–524.
    92. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF. Molecular characterization of theArabidopsis floral homeotic gene APETALA1. Nature1992,360:273–277
    93. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M.OsSPL14promotes panicle branching and higher grain productivity in rice. Nature Genetics2010,42:545–549.
    94. Moon YH, Kang HG, Jung JY, Jeon JS, Sung SK, An G. Determination of the motif responsiblefor interaction between the rice APETALA1/AGAMOUS-LIKE9family proteins using a yeasttwo-hybrid system. Plant Physiol1999,120:1193–1204.
    95. Münster T, Wingen LU, Faigl W, Werth S, Saedler H, Theissen G.Characterization of threeGLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floralhomeotic B-function genes of grasses. Gene2001,262:1–13.
    96. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res1980,8:4321–4325.
    97. Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1andDROOPING LEAF genes control floral organ identity in rice. Development2003,130:705–718.
    98. Nakagawa M, Shimamoto K, Kyozuka J. Overexpression of RCN1and RCN2, rice TERMINALFLOWER1/CENTRORADIALIS homologs, confers delay of phase transition and altered paniclemorphology in rice. The Plant Journal2002,29:743–750.
    99. Nardmann J and Werr W. The shoot stem cell niche in angiosperms: expression patterns of WUSorthologues in rice and maize imply major modifications in the course of mono-and dicotevolution. Mol Biol Evol2006,23:2492–2504.
    100. Ng M, Yanofsky MF. Three ways to learn the ABCs. Curr. Opin. Plant Biol2000,3:47–52.
    101. Nishimura C. Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C. Histidine kinase homologs that actas cytokinin receptors possess overlapping functions in the regulation of shoot and root growth inArabidopsis. Plant Cell2004,16:1365–1377.
    102. Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H.MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity andmeristem fate in rice. The Plant Cell2009,21:3008–3025.
    103. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functionsrequire SEPALLATA MADS-box genes. Nature2000,405:200–203.
    104. Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pe ME, Colombo L, Kater MM. Comparativeanalysis of rice MADSbox genes expressed during flower development. Sexual Plant Reproduction2002,15:113–122.
    105. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E and Yanofsky MF.Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature2003,424:85–88.
    106. Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controlsdifferentiation of specific cell types in the lemma and palea and is an early-acting regulator of innerfloral organs. The plant J2005,43:915–928.
    107. Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U. Ectopic expression of riceOsMADS1reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals.Dev Genes Evol2001,211:281–290.
    108. Prasad K, Vijayraghavan U. Double-stranded RNA interference of a rice PI/GLO paralog,OsMADS2, uncovers its second whorl specific function in floral organ patterning. Genetics2003,165:2301–2305.
    109. Preston JC, Christensen A, Malcomber AT, Kellogg EA. MADS-box gene expression andimplications for developmental origins of the grass spikelet. American Journal of Botany2009,96:1419–1429.
    110. Rao NN, Prasad K, Kumar PR, Vijayraghavan U. Distinct regulatory role for RFL, the rice LFYhomolog, in determining flowering time and plant architecture. Proceedings of the NationalAcademy of Sciences USA2008,105:3646–3651.
    111. Reinheimer R, Kellogg EA. Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovuleexpression is ancient and palea expression is new. The Plant Cell2009,21:2591–2605.
    112. Rijpkema AS, Zethof J, Gerats T, Vandenbussche M. The petunia AGL6gene has aSEPALLATA-like function in floral patterning. Plant J2009,60:1–9.
    113. Rijpkema AS, Vandenbussche M, Koes R, Heijmans K, Gerats T.2010. Variations on a theme:changes in the floral ABCs in angiosperms. Seminars in Cell and Developmental Biology2010,21:100–107.
    114. Robles P, Pelaz S. Flower and fruit development in Arabidopsis thaliana. International Journal ofDevelopmental Biology2005,49:633–643.
    115. Sablowski RWM, Meyerowitz EM. A homologue of NO APICAL MERISTEM is an immediatetarget of the floral homeotic genes APETALA3/PISTILLATA. Cell1998,92:93–103.
    116. Sakai H, Krizek BA, Jacobsen SE, Meyerowitz EM. Regulation of SUP expression identifiesmultiple regulators involved in Arabidopsis floral meristem development. Plant Cell2000,12:1607–1618.
    117. Sanguinetti CJ, Dias Neto E, Simpson AJ. Rapid silver staining and recovery of PCR productsseparated on polyacrylamide gels. Biotechniques1994,17:914–921.
    118. Sato Y, Antonio B, Namiki N, et al. Field transcriptome revealed critical developmental andphysiological transitions involved in the expression of growth potential in japonica rice. BMCPlant Biology2011,11:10.
    119. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. NatProtoc2008,3:1101–1108.
    120. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jurgens G, Laux T. The stem cell population ofArabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA andWUSCHEL genes. Cell2000,100:635–644.
    121. Schultz EA, Haughn GW. LEAFY, a homeotic gene that regulates inflorescence development inArabidopsis.Plant Cell1991,3(8):771–781.
    122. Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lonnig WE, Saedler H,Sommer H. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens:evidence for DNA binding and autoregulation of its persistent expression throughout flowerdevelopment. EMBO J1992,11:251–263.
    123. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, et al. Deletion in a gene associated withgrain size increased yields during rice domestication. Nat Genet2008,40:1023–28.
    124. Sommer H, Beltran JP, Huijser P, Pape H, LonnigWE, Saedler H, Schwarz-Sommer Z. Deficiens,a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the proteinshows homology to transcription factors. EMBO J.1990,9:605–613.
    125. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes apreviously unknown RING-type E3ubiquitin ligase. Nat. Genet2007,39:623–30.
    126. Stebbins GL. Natural selection and the differentiation of angiosperm families. Evolution1951,5:299–324.
    127. Sun QW, Zhou DX. Rice jmjC domain-containing gene JMJ707encodes H3K9demethylaserequired for floral organ development. PNAS2008,105:13679–13684.
    128. Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY. The gene FLORAL ORGANNUMBER1regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinaseorthologous to Arabidopsis CLAVATA1. Development2004,131:5649–5657.
    129. Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano HY. Conservation anddiversification of meristem maintenance mechanism in Oryza sativa: function of the FLORALORGAN NUMBER2gene. Plant and Cell Physiology2006,47:1591–1602.
    130. Suzaki T, Yoshida A, Hirano HY. Functional diversification of CLAVATA3-related CLE proteinsin meristem maintenance in rice. The Plant Cell2008,20:2049–2058.
    131. Taguchi-Shibara F, Yuan Z, Hake S, Jackson D. The fasciated ear2gene encodes a leucine-richrepeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes andDevelopment2001,15:2755–2766.
    132. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signalin rice. Science2007,316:1033–1036.
    133. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA)software version4.0. Mol Biol Evol2007,24:1596–1599.
    134. Tanaka W, Toriba T, Ohmori Y, Yoshida A, Kawai A, Mayama-Tsuchida T, Ichikawa H, MitsudaN, Ohme-Takagi M, Hirano HY. The YABBY gene TONGARI-BOUSHI1is involved in lateralorgan development and maintenance of meristem organization in the rice spikelet. Plant Cell2012,doi/10.1105/tpc.111.094797.
    135. Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin PlantBiol2001,4:75–85.
    136. Thompson BE, Bartling L, Whipple C, Hall DH, Sakai H, Schmidt R, Hake S. bearded-earencodes a MADS box transcription factor critical for maize floral development. Plant Cell2009,21:2578–2590.
    137. To JP, et al. Type-A Arabidopsis response regulators are partially redundant negative regulators ofcytokinin signalling. Plant Cell2004,16:658–671.
    138. Toriba T, Suzaki T, Yamaguchi T, Ohmori Y, Tsukaya H, Hirano HY. Distinct regulation ofadaxial–abaxial polarity in anther patterning in rice. Plant Cell2010,22:1452–1462.
    139. Wagner D, Sablowski RWM, Meyerowitz. Transcriptional activation of APETALA1by LEAFY.Science1999,285:582–584.
    140. Wang K, Tang D, Hong L, Xu W, Huang J, et al. DEP and AFO regulate reproductive habit in rice.PLoS Genet2010, doi:10.1371/journal.pgen.1000818.
    141. Weigel D, Meyerowitz EM. The ABCs of floral homeotic genes. Cell1994,78:203–209.
    142. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristemidentity in Arabidopsis. Cell1992,69:843–859.
    143. Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants.Nature1995,377:495–500.
    144. Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM. Genome-wide analysis of spatialgene expression in Arabidopsis flowers. Plant Cell2004,16:1314–1326.
    145. Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP, Wang JL,Jiang L, Zhai HQ, Wan JM. Isolation and initial characterization of GW5, a major QTL associatedwith rice grain width and weight. Cell Res2008,18:1199–1209.
    146. Werner T, Motyka V, Laucou V, Smets R, Onckelen V, Schmülling T. Cytokinin-deficienttransgenic Arabidopsis plants show multiple developmental alterations indicating oppositefunctions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell2003,15:2532–2550.
    147. Xiao H, Tang JF, Li YF, Wang WM, Li XB, Jin L, Xie R, Luo HF, Zhao XF, Meng Z, He GH,Zhu LH. STAMENLESS1, encoding a single C2H2zinc finger protein, regulates floral organidentity in rice. Plant J2009,59:789–801.
    148. Xiao H, Wang Y, Liu D, Wang W, Li X, Zhao X, Xu J, Zhai W, Zhu L. Functional analysis of therice AP3homologue OsMADS16by RNA interference. Plant Mol Biol2003,52:957–966.
    149. Xing YZ, Zhang QF. Genetic and molecular bases of rice yield. Annu Rev Plant Biol2010,61:421–442.
    150. Yadav SR, Prasad K, Vijayraghavan U. Divergent regulatory OsMADS2functions control size,shape and differentiation of the highly derived rice floret second-whorl organ. Genetics2007,176:283–294.
    151. Yamaguchi T, Hirano HY. Function and diversification of MADS-box genes in rice. TSW DevEmbryol2006,1:9–108.
    152. Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY. Functional diversification of thetwo C-class MADS box genes OSMADS3and OSMADS58in Oryza sativa. The Plant Cell2006,18:15–28.
    153. Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY. The YABBY geneDROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. ThePlant Cell2004,16:500–509.
    154. Yamaki S, Nagato Y, Kurata N, Nonomura K. Ovule is a lateral organ finally differentiated fromthe terminating floral meristem in rice. Developmental Biology2011,351:208–216.
    155. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The proteinencoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature1990,346:35–39.
    156. Yao SG, Ohmori S, Kimizu M, Yoshida H.Unequal genetic redundancy of rice PISTILLATAorthologs, OsMADS2and OsMADS4, in lodicule and stamen development. Plant and CellPhysiology2008,49:853–857.
    157. Yoshida A, Suzaki T, Tanaka W, Hirano HY. The homeotic gene long sterile lemma (G1) specifiessterile lemma identity in the rice spikelet. Proc Natl Acad Sci USA2009,106:20103–20108.
    158. Yoshida H, Itoh J, Ohmori S, Miyoshi K, Horigome A, Uchida E, Kimizu M, Matsumura Y,Kusaba M, Satoh H, Nagato Y. superwoman1-cleistogamy, a hopeful allele for gene containmentin GM rice. Plant Biotechnology Journal2007,5:835–846.
    159. Yoshida H, Nagato Y. Flower development in rice. J Exp Bot2011,62:4719–4730.
    160. Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang DB.RETARDED PALEA1controls palea development and floral zygomorphy in rice. Plant Physiol2009,149:235–244.
    161. Zhang J, Nallamilli BR, Mujahid H, Peng Z. OsMADS6plays an essential role in endospermnutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa). Plant J2010,64:604–617.
    162. Zhang S, Chen C, Li L, Meng L, Singh J et al. Evolutionary expansion, gene structure, andexpression of the rice wall-associated kinase gene family. Plant Phy2005,139:1107–1124.
    163. Zhao L, Nakazawa M, Takase T, Manabe K, Kobayashi M, Seki M, Shinozaki K, Matsui M.Overexpression of LSH1, a member of an uncharacterized gene family, causes enhanced lightregulation of seedling development. Plant J2004,37:694–706.
    164. Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA. Overexpression of miR172causes loss ofspikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biology2009, doi:10.1186/1471-2229-9-149.
    165. Zik M, Irish V. Global identification of target genes regulated by APETALA3and PISTILLATAfloral homeotic gene action. Plant Cell2003,15:207–222.
    166.丛楠,程治军,万建民.控制花器官发育的ABCDE模型.农业生物技术科学,2007,23:124–128.
    167.计慎敏,张大兵.水稻花器官特征决定以及数量控制的分子机制.植物学通报,2007,24:284–292.
    168.李晓娇,控制水稻三角颖壳性状基因的克隆.[博士学位论文].北京:中国农业大学,2011.
    169.星川清亲著,蒋彭炎,许德海译.解剖图说——稻的生长.上海科学技术出版社,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700