水稻穗发育相关突变体pla1-5、pdf1和tri1的鉴定、基因定位与克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)不仅是世界上最重要的粮食作物之一,还是禾本科作物分子生物学研究中重要的模式植物。水稻穗的形成与发育是决定产量和品质的重要因素,也是人类食物的主要来源,因此,有必要对其生殖发育特别是小穗发生与发育调控的分子机理进行相关研究。近二十年多来,科研工作者对植物生殖器官组织结构和分子遗传机理的研究越来越多,也越来越深入。基于拟南芥和金鱼草等植物的研究,目前对双子叶植物花发育机制有了比较清晰的认识,而水稻等单子叶植物花器官的研究明显落后于双子叶植物。突变体的获得对研究植物发育过程中基因作用有着重要的意义,目前在水稻中已报道的许多与穗发育相关的基因大多是通过突变体发现的。本研究以三个与穗发育相关的突变体为研究对象,通过形态鉴定、遗传分析和基因定位,最终将目的基因进行了精细定位或克隆,所获主要研究结果如下:
     1、水稻类树状突变体pla1-5的鉴定与基因克隆
     在粳稻品种台北309的60Co--γ辐射诱变后代中发现了一份水稻类树状突变体plal-5(plastochronl-5),表现为植株矮化、叶片小且数量增多、分蘖数降低、高位分蘖、穗分化受阻等特征。由于纯合突变体plal-5穗发育受阻,不产生种子,因此利用杂合突变体进行材料的保存。连续多代种植发现,该性状能稳定遗传。利用杂合突变体与籼稻南京11号构建F2群体,遗传分析表明,该性状受一对隐性核基因控制。分别构建野生型DNA池和突变型DNA池,发现第10染色体上的分子标记CHR1003在两池间呈多态,标记CHR1003对F2群体中的45个突变型单株进行基因型检测,证实CHR1003与PLA1-5连锁,利用图位克隆技术,将目的基因定位于第10染色体长臂上两个分子标记CHR1027和CHR1030之间,物理距离为58kb,并与SSR标记CHR1028和CHR1029共分离。根据水稻基因组序列的注释,该区域内存在5个完整的注释基因,分别为LOC_Os10g26300、 LOC_Os10g26320、LOC_Os10g26330、LOC_Os10g26340和LOC_Os10g26360,其中LOC_Os10g26340编码细胞色素P450CYP78A11,其它4个基因均编码假设的转座子蛋白(Transposon protein, putative)。分别设计引物扩增突变体及其野生型台北309中5个注解基因,并进行序列测定。测序分析表明,LOC_Os10g26300、LOC_Os10g26320、 LOC_Os10g26330和LOC_Os10g26360四个基因在突变体plal-5与野生型间无序列差异。但突变体的LOC_Os10g26340第1外显子内缺失了一个碱基T,导致移码突变和翻译提前终止。据此,初步推测细胞色素P450CYP78A11基因为PLA1-5的候选基因。由于本研究候选基因P450CYP78A11与PLA1为同一基因,故将本研究所定位基因暂定名为PLA1-5。
     2、水稻穗发育受阻突变体Pdfl的鉴定与基因定位
     在粳稻品种武香粳9号的组织培养后代中发现了一个穗发育受阻突变体pdfl (panicle development failurel)。该突变体在营养生长期与野生型比较无明显差异,但进入生殖生长后,突变体上部腋芽不休眠,而是持续发育,并形成高位分蘖,小穗发育一段时间后,穗基部细胞逐渐死亡,并导致小穗死亡。分别对突变体抽穗前进行赤霉素、光周期和温度处理,结果表明,该突变性状不受赤霉素和光周期的影响,但受温度的影响,在突变体生长期降低温度小穗能正常发育,但出现不同程度的包穗。利用该突变体与籼稻品种南京11号杂交构建分离群体,遗传分析表明,该突变性状由单隐性核基因控制。通过群体分离分析法和图位克隆法最终将目的基因定位于第5号染色体短臂的SSR标记CHR539与CHR516之间的417kb范围内,为该基因的精细定位、克隆及水稻颖花发育的分子调控机理奠定了基础。
     3、水稻三角颖突变体tril的遗传分析与基因克隆
     以在经60Co-γ射线辐射粳稻品种台北309的后代中分离获得一个三角颖突变体tril (triangular hull1)为研究对象,与野生型相比,tri1籽粒颖壳呈三角形,粒厚增加,蛋白质含量升高,株高和千粒重降低。遗传分析表明,该突变性状能稳定遗传,并受一对隐性核基因控制。采用图位克隆法将目的基因精细定位于水稻第1号染色体长臂上分子标记CHR0122与CH0127之间,物理距离约47kb,并与分子标记CHR0119共分离。在该区域内共有6个候选基因,分别为LOC_Os01g52680、LOC_Os01g52690、LOC_Os01g52700、 LOC_Os01g52710、LOC_Os01g52720、LOC_Os01g52730,其中LOC_Os01g52730部分序列位于47kb区域之外,对剩余5个注解基因进行分析,分别编码MIKC类的OsMADS32、假定的逆转录转座蛋白、假定的蛋白、糖基转移酶8结构域蛋白和复合物Ⅰ中间体相关蛋白。测序分析表明,tri1突变体中一个释义基因OsMADS32的第3外显子内缺失了一个碱基A,导致移码突变和翻译提前终止,其它基因在突变体和野生型间无碱基差异。分别提取粳稻日本晴不同时期不同组织的RNA,半定量RT-PCR和荧光定量RT-PCR分析表明OsMADS32主要在水稻幼穗中表达,在根、茎、叶和发育的种子等组织中表达量极低,说明OsMADS32基因与花的发育与关。据此,推钡OsMADS32基因可能为TRI1的候选基因。
     本研究通过对三个水稻穗发育相关突变体的鉴定、遗传分析、基因定位和克隆,为进一步研究水稻小穗和籽粒发育的分子调控基理提供了重要的材料与基因资源。
Rice (Oryza sativa L.) is not only one of the most important food crops in the world, but also the model plant for molecular biology study of monocotyledon. The formation and development of rice panicle is the important determinate on grain yield and quality, so it is necessary to elucidate the mechanism on its' reproductive growth, especially the formation and development of panicle. In the last twenty years, studies on floral tissue structure and molecular mechanisms had became a hotspot to researchers, and the knowledges went more and more thoroughly. Based on the studies of Arabidopsis thaliana and Antirrhinum majus, the insights of floral development of dicotyledonous were well understood at present, but the study on monocot is dramatically less than that of dicotyledonous. More recently, several genes associated with rice panicle development had been identified, and most of them were investigated via mutants. In the present study, three mutants associated with rice panicle development were identified, and their phenotype was characterized and the mutated genes were fine mapped or cloned, the main results were as flowerings.
     1. Identification and gene cloning of the leafy head mutant plal-S
     A rice leafy head mutant plal-5was derived from progenies of japonica Taipei309treated with60Co-y ray irradiation. Comparing with its' wild type, the pla1-5mutant tended to be dwarf and had smaller and more leaves, with a reduced tiller number, tillering on upper nodes, plal-5failed to produce a normal panicle at maturity stage. Because the panicle development of homozygous mutant was blocked and no seed harvested, we then preserved it with heterozygous mutant. The mutation traits could inherited stably with successive years planting, an F2population was generated between heterozygous plal-5and indica cultiva Nanjingll, genetic analysis implied that the pla1-5phenotype was controlled by a single recessive nuclear gene. Two DNA pools derived from the wild type and mutant plants were assembled respectively, the SSR marker named CHR1003on chromosome10was found to be polymorphism between the two DNA pools, Subsequently,45individual mutants from F2population were genotyped, the results confirmed that the marker CHR1003was linkage to PLA1-5, By using map-based cloning strategy, PLA1-5was finally narrowed down to a58kb region between SSR markers CHR1027and CHR1030on the long arm of chromosome10and co-segregates with the molecular marker CHR1028and CHR1029. Based on Rice Genome Annotation Project, five intact candidate genes were predicted within this region, they were LOC_Os10g26300, LOC_Os10g26320, LOC_Os10g26330, LOC_Os10g26340and LOC_Os10g26360. Among them, LOC_Os10g26340encoded a cytochrome P450CYP78A11and all the other four genes encoded putative transposon protein. Specific primers were designed based on the gene annotation sequence of Nipponbare, and the nucleotide sequences of the candidate gene were compared among the wild type and the mutant alleles. The results showed that no mutation site could be found in the other predicted genes as LOC_Os10g26300, LOC_Os10g26320, LOC_Os10g26330or LOC_Os10g26360, the plal-5mutant harboured1bp deletion of nucleotide T in exon1of LOC_Os10g26340encoding cytochrome P450CYP78A11, which might result in a downstream frame shift and a premature termination. These results implied that the cytochrome P450CYP78A11gene might be the candidate gene of PLA1-5. We tentatively designated the gene as PLA1-5for it was the same candidate gene of PLA1.
     2. Identification and gene mapping of the panicle development failure mutant pdfl
     A panicle development failure mutant pdfl was derived from the progenies of japonica cultivar Wuxiangjing9after tissue culture, it has no obviously difference with its wild type during vegetative stage; but at reproductive stage, the axillary buds of the mutant were non-dormant and continue to grow, and upper tillers were formed ultimately. The panicle rachis cells of mutant pdfl was necrotic after a period of panicle development. During plant growth, the mutant was treated with gibberellin (GA), photoperiod and temperature, respectively, the results showed that the mutated trait was regulated not by GA or photoperiod, but by high temperature. The panicles of mutant pdfl could develop normally under low temperature during growth stage, but they showed enclosed panicle at different degree. A segregation population was generated with the cross between the mutant pdfl and the indica cultivar Nanjing11. Genetic analysis showed that the mutation character was controlled by a single recessive nuclear gene. By using bulked segregation analysis and map-based cloning strategy, the PDF1gene was ultimately mapped between the SSR markers CHR539and CHR516on the short arm of chromosome5. The results laid a foundation for fine mapping and gene cloning of PLA1-5and further investigation on molecular regulation mechanism of rice panicle development.
     3. Genetic analysis and gene cloning of a triangular hull mutant tril
     A rice triangular hull mutant tril was obtained from the progeny of a japonica rice variety Taipei309treated with60Co-y ray. Compared with the wild type, the tril mutant presents triangular hull, exhibits increase of grain thickness and protein content, but a slight decrease of plant height and grain weight. Genetic analysis indicated the mutation characters were controlled by a recessive nuclear gene which can be steadily inherited. By using map-base cloning strategy, we fine mapped tril to a47kb region between the molecular markers CHR0122and CHR0127on the long arm of chromosome1, and co-segregates with the molecular marker CHR0119. According to the rice genome sequence annotation there are six predicated genes in the mapped region, these are LOC_Os01g52680, LOC_Os01g52690, LOC_Os01g52700, LOC_Os01g52710, LOC_Os01g52720and LOC_Os01g52730. Because the partical sequences of the predicted gene LOC_Os01g52730were not included in the region, so only the other five intact annotated genes were analyzed, the five candidated genes encode OsMADS32-MADS-box family gene with MIKCc type-box, putative retrotransposon protein, hypothetical protein, putative glycosyl transferase8domain containing protein and putative Complex I intermediate-associated protein30domain containing protein respectively. Among these, OsMADS32has been reported to be a transcription factor related to flower development. Sequencing analysis between the mutant and wild type indicated that there was a nucleotide A deletion in exon3of OsMADS32of the mutant, which might result in a downstream frameshift and a premature termination, there were no nucleotide difference of the other four annotated genes. RNA of different organs at different phases in Japonica cultiva Nipponare was extracted, both semi-quantitative and real-time RT-PCR analysis showed that the gene OsMADS32was highly expressed in young inflorescence and very low in other tissues. These results implied that the OsMADS32gene might be a candidate of TRI1.
     By identification, genetic analysis, gene mapping and cloning of the panicle associated mutants, The study provide import materials and gene resources for further investigation on molecular regulation mechanism of rice panicle and caryopsis development.
引文
[1]Duan Y L, Wu W R, Liu H Q, et al. Genetic analysis and gene mapping of leafy head (Ihd), a mutant blocking the differentiation of rachis branches in rice (Oryza sativa L.)[J]. Chinese Science Bulletin.2003,48(20): 2201-2205.
    [2]Bowman J L, Alvarez J, Weigel D, et al. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes[J]. Development.1993,119(3):721-743.
    [3]Kaufmann K, Muino J M, Jauregui R, et al. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower[J]. PLoS Biology.2009,7(4): el000090.
    [4]Irish V F. The flowering of Arabidopsis flower development[J]. The Plant Journal.2010,61(6):1014-1028.
    [5]Yant L, Mathieu J, Dinh T T, et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2[J]. The Plant Cell Online.2010,22(7): 2156-2170.
    [6]Komatsu M, Chujo A, Nagato Y, et al. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets[J]. Development.2003,130(16): 3841-3850.
    [7]Zhu Q, Hoque M S, Dennis E S, et al. Ds tagging of BRANCHED FLORETLESS I (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L)[J]. BMC Plant Biology.2003,3(1):6.
    [8]Li S B, Qian Q, Fu Z M, et al. Short paniclel encodes a putative PTR family transporter and determines rice panicle size[J]. The Plant Journal.2009,58(4):592-605.
    [9]Guan H Z, Duan Y L, Liu H Q, et al. Genetic analysis and fine mapping of an enclosed panicle mutant esp2 in rice (Oryza sativa L.)[J]. Chinese Science Bulletin.2011,56(14):1476-1480.
    [10]Moon S, Jung K, Lee D, et al. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size.[J]. Molecules and Cells.2006,21(1):147-152.
    [11]Suzaki T, Toriba T, Fujimoto M, et al. Conservation and diversification of meristem maintenance mechanism in Oryza sativa:Function of the FLORAL ORGAN NUMBER2 gene[J]. Plant and Cell Physiology.2006, 47(12):1591-1602.
    [12]Jiang L, Qian Q, Mao L, et al. Characterization of the rice floral organ number mutant fon3[J]. Journal of Integrative Plant Biology.2005,47(1):100-106.
    [13]Chu H W, Qian Q, Liang W Q, et al. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice[J]. Plant Physiology.2006,142(3): 1039-1052.
    [14]Sakakibara H. Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants[J]. Journal of Plant Research.2003,116(3):253-257.
    [16]唐锡华,刘日新.稻穗的发育形态[J].植物学报.1955,4(2):167-170.
    [17]丁颖,李乃铭,徐雪宾.水稻幼穗发育和谷粒充实过程的观察[J].农业学报.1959,10(2):59-85.
    [18]吴光南,张云桥.稻穗发育过程及其控制途径的研究[J].作物学报.1962,1(1):43-52.
    [19]Takeoka Y, Ogawa K, Kawai T, et al. Scanning electron microscopic observations on morphogenesis of the panicle and spikelet in rice plants[J]. Japanese Journal of Crop Science.1989,58(1):119-125.
    [20]凌启鸿,张洪程,农业科学,等.稻作新理论:水稻叶龄模式[M].科学出版社,1994.
    [21]吉田昌一.稻作科学原理(厉葆初译)[M].杭州:浙江科学技术出版社,1984.
    [22]Ikeda K, Sunohara H, Nagato Y. Developmental course of inflorescence and spikelet in rice[J]. Breeding Science.2004,54(2):147-156.
    [23]Itoh J, Nonomura K, Ikeda K, et al. Rice plant development:from zygote to spikelet[J]. Plant and Cell Physiology.2005,46(1):23-47.
    [24]姜树坤,张喜娟,王嘉宇,等.水稻幼穗-颖花发育的研究进展[J].植物遗传资源学报.2012,13(6):1018-1022.
    [25]陆燕鹏,万邦惠,陈雄辉,等.广州的短日照对短光低温不育水稻宜D1S育性转换的影响[J].作物学报.2001,27(2):216-221.
    [26]成勤勤.关于水稻幼穗分化发育的研究[D].扬州大学,2006.
    [27]Prasad K, Sriram P, Kumar S C, et al. Ectopic expression of rice OsMADSl reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals[J]. Development Genes and Evolution.2001,211(6): 281-290.
    [28]Kang H G, An G. Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family.[J]. Molecules and Cells.1997,7(1):45.
    [29]Kang H G, Jang S, Chung J E, et al. Characterization of two rice MADS box genes that control flowering time.[J]. Molecules and Cells.1997,7(4):559.
    [30]Moon Y H, Kang H G, Jung J Y, et al. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system[J]. Plant Physiology.1999, 120(4):1193-1204.
    [31]Yadav S R, Prasad K, Vijayraghavan U. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ[J]. Genetics.2007,176(1):283-294.
    [32]星川清亲.解剖图说稻的生长[M].上海:上海科学技术出版社,1981.
    [33]Kato Y, Katsura K. Panicle architecture and grain number in irrigated rice, grown under different water management regimes[J]. Field Crops Research.2010,117(2):237-244.
    [34]Cui H J, Takeoka Y, Wada T. Effect of sodium chloride on the panicle and spikelet morphogenesis in rice [Oryza sativa],2:Developmental morphology of the panicle[J]. Japanese Journal of Crop Science.1995, 64(3):593-600.
    [35]Kato Y, Kamoshita A, Yamagishi J. Preflowering Abortion Reduces Spikelet Number in Upland Rice (L.) under Water Stress[J]. Crop Science.2008,48(6):2389-2395.
    [36]黄建哗,杨洪建,杨连新,等.开放式空气CO2浓度增加(FACE)对水稻产量形成的影响及其与氮的互作效应[J].中国农业科学.2004,37(12):1824-1830.
    [37]杨洪建,杨连新,黄建晔,等.FACE对武香粳14颖花分化和退化的影响[J].作物学报.2006,32(7):1076-1082.
    [38]杨开放,杨连新,王云霞,等.近地层臭氧浓度升高对杂交稻颖花形成的影响[J].应用生态学报.2009,20(3):609-614.
    [39]Kobayasi K, Yamane K, Imaki T. Effects of non-structural carbohydrates on spikelet differentiation in rice[J]. Plant Production Science.2001,4(1):9-14.
    [40]Ansari T H, Yamamoto Y, Yoshida T, et al. Cultivar differences in the number of differentiated spikelets and percentage of degenerated spikelets as determinants of the spikelet number per panicle in relation to dry matter production and nitrogen absorption[J]. Soil Science and PlantNutrition.2003,49(3):433-444.
    [41]柳新伟,孟亚利,周治国,等.水稻颖花分化与退化的动态特征[J].作物学报.2005,31(4):451-455.
    [42]陈惠哲,朱德峰,林贤青,等.穗肥施氮量对两优培九枝梗及颖花分化和退化的影响[J].浙江农业学报.2008,20(3):181-185.
    [43]王夏雯.氮素穗肥和NO对水稻幼穗发育及其内源激素的影响[D].南京农业大学,2008.
    [44]李刚华,王惠芝,王绍华,等.穗肥对水稻穗分化期碳氮代谢及颖花数的影响[J].南京农业大学学报.2010,33(1):1-5.
    [45]陈小荣,钟蕾,贺晓鹏,等.稻穗枝梗和颖花形成的基因型及播期效应分析[J].中国水稻科学.2006,20(4):424-428.
    [46]肖辉海.水稻长穗颈隐性高秆突变体穗颈节间的细胞学观察[J].西北农林科技大学学报(自然科学版).2008,36(1):131-136.
    [47]Ma H L, Zhang S B, Ji L, et al. Fine mapping and in silico isolation of the EUI1 gene controlling upper internode elongation in rice[J]. Plant Molecular Biology.2006,60(1):87-94.
    [48]Zhu Y Y, Nomura T, Xu Y H, et al. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice[J]. The Plant Cell Online. 2006,18(2):442-456.
    [49]Luo A D, Qian Q, Yin H F, et al. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice[J]. Plant and Cell Physiology.2006,47(2): 181-191.
    [50]Zhang Y Y, Zhu Y Y, Peng Y, et al. Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice[J]. Cell Research.2008,18(3):412-421.
    [51]杨蜀岚,杨仁崔,曲雪萍,等.水稻长穗颈高秆隐性基因eui2的遗传及其微卫星分析[J].植物学报.2001,43(1):67-71.
    [52]杨蜀岚,王斌.水稻长穗颈高秆隐性基因eui2的分子标记和定位[J].福建农林大学学报:自然科学版.2002,31(4):480-483.
    [53]Zhu L, Hu J, Zhu K M, et al. Identification and characterization of SHORTENED UPPERMOST INTERNODE1, a gene negatively regulating uppermost internode elongation in rice[J]. Plant Molecular Biology.2011,77(4):475-487.
    [54]朱宏波.水稻穗颈伸长基因EUI2(t)的精细定位与克隆[D],福建农林大学.2003.
    [55]Hu C H. An X-ray induced panicle-degenerating mutant in rice[J]. Japan Journal of Breeding.1961,11(1): 19-23.
    [56]Itoh J, Hasegawa A, Kitano H, et al. A recessive heterochronic mutation, plastochronl, shortens the plastochron and elongates the vegetative phase in rice[J]. The Plant Cell Online.1998,10(9):1511-1521.
    [57]Zhu Q, Dennis E S, Upadhyaya N M. compact shoot and leafy head 1, a mutation affects leaf initiation and developmental transition in rice (Oryza sativa L.)[J]. Plant Cell Reports.2007,26(4):421-427.
    [58]吴立文.一个水稻类树稻突变体(leafy head 3)的遗传分析与基因的精细定位[D].中国农业科学院,2009.
    [59]Miyoshi K, Ahn B, Kawakatsu T, et al. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450[J]. PNAS.2004,101(3):875-880.
    [60]Xiong G S, Hu X M, Jiao Y Q, et al. LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice[J]. Cell Research.2006,16(3):267-276.
    [61]Kawakatsu T, Itoh J, Miyoshi K, et al. PLASTOCHRON2 regulates leaf initiation and maturation in ricefJ], The Plant Cell Online.2006,18(3):612-625.
    [62]Mimura M, Nagato Y, Itoh J. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway[J]. Planta.2012:1-9.
    [63]Kawakatsu T, Nagato Y. PLASTOCHRON3 gene regulates leaf initiation rate and termination of vegetative phase[J]. Rice Genet Newsl.2005,22:36-38.
    [64]Kawakatsu T, Taramino G, Itoh J I, et al. PLASTOCHRON3/GOLIA TH encodes a glutamate carboxypeptidase required for proper development in rice[J]. The Plant Journal.2009,58(6):1028-1040.
    [65]Furutani I, Sukegawa S, Kyozuka J. Genome-wide analysis of spatial and temporal gene expression in rice panicle development[J]. The Plant Journal.2006,46(3):503-511.
    [66]Zhou Y, Zhu J Y, Li Z Y, et al. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication[J]. Genetics.2009,183(1):315-324.
    [67]Yan C J, Zhou J H, Yan S, et al. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.)[J], Theoretical and Applied Genetics.2007,115(8): 1093-1100.
    [68]Yi X H, Zhang Z J, Zeng S Y, et al. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics. 2011,38(5):217-223.
    [69]Huang X Z, Qian Q, Liu Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics.2009,41(4):494-497.
    [70]Fumio T, Kawagoe Y, Kato H, et al. A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfhess and slightly increased number of spikelets[J]. Breeding Science.2011,61(1):17-25.
    [71]Zhu K M, Tang D, Yan C J, et al. Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice[J]. Genetics.2010,184(2):343-350.
    [72]Li F, Liu W B, Tang J Y, et al. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation[J]. Cell Research.2010,20(7):838-849.
    [73]Qiao Y L, Piao R H, Shi J X, et al. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics.2011, 122(7):1439-1449.
    [74]Piao R H, Jiang W Z, Ham T H, et al. Map-based cloning of the ERECT PANICLE 3 gene in rice[J]. Theoretical and Applied Genetics.2009,119(8):1497-1506.
    [75]Oikawa T, Kyozuka J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice[J]. The Plant Cell Online.2009,21(4):1095-1108.
    [76]Komatsu M, Maekawa M, Shimamoto K, et al. The LAX1 and FRIZZY PANICLE 2 Genes Determine the Inflorescence Architecture of Rice by Controlling Rachis-Branch and Spikelet Development[J]. Developmental Biology.2001,231(2):364-373.
    [77]Komatsu K, Maekawa M, Ujiie S, et al. LAX and SPA:major regulators of shoot branching in rice[J]. Proceedings of the National Academy of Sciences.2003,100(20):11765-11770.
    [78]Gallavotti A, Zhao Q, Kyozuka J, et al. The role of barren stalk1 in the architecture of maize[J]. Nature.2004, 432(7017):630-635.
    [79]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences.1991,88(21):9828-9832.
    [80]Tabuchi H, Zhang Y, Hattori S, et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J]. The Plant Cell Online.2011,23(9):3276-3287.
    [81]He Z H, Zhu Q, Dabi T, et al. Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading[J]. Transgenic Research.2000,9(3):223-227.
    [82]Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grain production[J]. Science.2005, 309(5735):741-745.
    [83]Li S Y, Zhao B R, Yuan D Y, et al. Rice zinc finger protein DST enhances grain production through controlling Gnla/OsCKX2 expression[J]. PNAS.2013.
    [84]Kurakawa T, Ueda N, Maekawa M, et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature.2007,445(7128):652-655.
    [85]Takahashi M, Nagasawa N, Kitano H, et al. Panicle phytomer 1 mutations affect the panicle architecture of rice[J]. TAG Theoretical and Applied Genetics.1998,96(8):1050-1056.
    [86]Coen E S, Meyerowitz E M. The war of the whorls:Geneties interact ions controlling flower development[J]. Nature.1991:31-37.
    [87]Ng M, Yanofsky M F. Three ways to learn the ABCs[J]. Current opinion in plant biology.2000,3(1):47-52.
    [88]Kyozuka J, Kobayashi T, Morita M, et al. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes[J]. Plant and Cell Physiology.2000,41(6): 710-718.
    [89]Schmidt R J, Ambrose B A. The blooming of grass flower development[J]. Current Opinion in Plant Biology. 1998,1(1):60-67.
    [90]Kang H, Noh Y, Chung Y, et al. Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco[J]. Plant Molecular Biology.1995,29(1):1-10.
    [91]Kang H G, Jeon J S, Lee S, et al. Identification of class B and class C floral organ identity genes from rice plants[J]. Plant Molecular Biology.1998,38(6):1021-1029.
    [92]Colombo L, Franken J, Koetje E, et al. The petunia MADS box gene FBP11 determines ovule identity.[J], The Plant Cell Online.1995,7(11):1859-1868.
    [93]Angenent G C, Colombo L. Molecular control of ovule development[J]. Trends in Plant Science.1996,1(7): 228-232.
    [94]Pelaz S, Ditta G S, Baumann E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature.2000,405(6783):200-203.
    [95]TheiBen G. Development of floral organ identity:stories from the MADS house[J]. Current Opinion in Plant Biology.2001,4(1):75-85.
    [96]崔荣峰,孟征.花同源异型MADS-box基因在被子植物中的功能保守性和多样性[J].植物学通报.2007,24(1):31-41.
    [97]Morinaga T, Fukushima E. Heritable characters in rice I:abnormal mutant characters and their mode of inheritance[J]. Gakugei Zasshi.1943,10:301-339.
    [98]董凤高,熊振民.籼稻标记性状近等基因系的构建[J].中国水稻科学.1994,8(003):135-139.
    [99]Ma X D, Cheng Z J, Wu F Q, et al. BEAK LIKE SPIKELET1 is Required for Lateral Development of Lemma and Palea in Rice[J]. Plant Molecular Biology Reporter.2013,31(1):98-108.
    [100]Yan D W, Zhou Y, Ye S H, et al. BEAK-SHAPED GRAIN 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice[J]. Science China Life Sciences.2013,56(3):275-283.
    [101]Li X J, Sun L J, Tan L B, et al.TH1, a DUF640 domain-like gene controls lemma and palea development in rice[J]. Plant Molecular Biology.2012:1-9.
    [102]罗增科.水稻花发育相关基因EL1的图位克隆与功能分析[J].重庆:西南大学,农学与生物科技学院.2009.
    [103]Jeon J S, Jang S, Lee S, et al. leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development[J]. The Plant Cell Online.2000,12(6):871-884.
    [104]李云峰.水稻小穗不确定性基因LHS1-3和雄蕊雌蕊化基因Ps的图位克隆与功能分析[D].2008.
    [105]Yoshida A, Suzaki T, Tanaka W, et al. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet[J]. Proceedings of the National Academy of Sciences.2009,106(47): 20103-20108.
    [106]Hong L L, Qian Q, Zhu K M, et al. ELE restrains empty glumes from developing into lemmas[J]. Journal of Genetics and Genomics.2010,37(2):101-115.
    [107]Zhang Q F, Xu J D, Li Y, et al. Morphological, anatomical and genetic analysis for a rice mutant with abnormal hull[J]. Journal of Genetics and Genomics.2007,34(6):519-526.
    [108]Jin Y, Luo Q, Tong H N, et al. An AT-hook gene is required for palea formation and floral organ number control in rice[J]. Developmental Biology.2011,359(2):277-288.
    [109]Prasad K, Parameswaran S, Vijayraghavan U. OsMADSI, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs [J]. The Plant Journal.2005,43(6):915-928.
    [110]Agrawal G K, Abe K, Yamazaki M, et al. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADSI gene[J]. Plant Molecular Biology.2005,59(1):125-135.
    [111]Lee S, Kim J, Han J J, et al. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 11AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice[J]. The Plant Journal.2004,38(5):754-764.
    [112]Murai M, Iizawa M. Effects of major genes controlling morphology of panicle in rice [Oryza sativa][J]. Japanese Journal of Breeding.1994,44.
    [113]苏成付,赵团结,盖钧镒.不同统计遗传模型QTL定位方法应用效果的模拟比较[J].作物学报.2010,36(007):1100-1107.
    [114]段远霖,李维明,吴为人,等.水稻小穗分化调控基因fzp(t)的遗传分析和分子标记定位[J].中国科学:C辑.2003,33(1):27-32.
    [115]Chaudhury A M, Letham S, Craig S, et al. ampl-a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering[J]. The Plant Journal.2002,4(6):907-916.
    [116]Paquet N, Bernadet M, Morin H, et al. Expression patterns of TEL genes in Poaceae suggest a conserved association with cell differentiation[J]. Journal of Experimental Botany.2005,56(416):1605-1614.
    [117]Evans M, Poethig R S. The viviparous8 mutation delays vegetative phase change and accelerates the rate of seedling growth in maize[J]. The Plant Journal.2003,12(4):769-779.
    [118]Gao Z S, Sugita S, Ikeda S, et al. Linkage of AFLP markers to Ihdl, a recessive heterochronic gene in Italian ryegrass[J]. Genome.2002,45(4):752-758.
    [119]Higuchi M, Pischke M S, Mahonen A P, et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. PNAS.2004,101(23):8821-8826.
    [120]Nishimura C, Ohashi Y, Sato S, et al. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis[J]. The Plant Cell Online. 2004,16(6):1365-1377.
    [121]贺丽虹,赵淑娟,胡之璧.植物细胞色素P450基因与功能研究进展[J].药物生物技术.2009,15(2):142-147.
    [122]Schuler M A. Plant cytochrome P450 monooxygenases[J]. Critical Reviews in Plant Sciences.1996,15(3): 235-284.
    [123]丛斌,贾红武,李严,等.水稻幼穗形态发生与顶端分生组织的研究[J].西北植物学报.1999,19(3):415-421.
    [124]Young T E, Gallie D R. Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals[J]. Plant Molecular Biology.1999,39(5):915-926.
    [125]Li H G, Xue D W, Gao Z Y, et al. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice[J]. The Plant Journal.2009,57(4):593-605.
    [126]Nagasawa N, Miyoshi M, Sano Y, et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice[J]. Development.2003,130(4):705-718.
    [127]Suzaki T, Yoshida A, Hirano H. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice[J]. The Plant Cell Online.2008,20(8):2049-2058.
    [128]Suzaki T, Ohneda M, Toriba T, et al. FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice[J]. PLoS Genetics.2009,5(10):el000693.
    [129]Jiang L, Zhang W L, Xia Z H, et al. A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L[J]. Molecular Genetics and Genomics.2007,277(3):263-272.
    [130]Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1[J]. Development.2004,131(22):5649-5657.
    [131]Xiao H, Tang J F, Li Y F, et al. STAMENLESS1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice[J]. The Plant Journal.2009,59(5):789-801.
    [132]Dietrich R A, Delaney T P, Uknes S J, et al. Arabidopsis mutants simulating disease resistance response[J]. Cell.1994,77(4):565-577.
    [133]Buschges R, Hollricher K, Panstruga R, et al. The Barley Mlo Gene:A Novel Control Element of Plant Pathogen Resistance[J]. Cell.1997,88(5):695-705.
    [134]Gray J, Close P S, Briggs S P, et al. A Novel Suppressor of Cell Death in Plants Encoded by the Llsl Gene of Maize[J]. Cell.1997,89(1):25-31.
    [135]Badigannavar A M, Kale D M, Eapen S, et al. Inheritance of disease lesion mimic leaf trait in groundnut[J]. Journal of Heredity.2002,93(1):50-52.
    [136]Cheng Z K, Gu M H. Morphology and inheritance of a new rice leaf death mutant[J]. Chinese Rice Research Newl.1998,6:2.
    [137]彭卫欣,刘国庆,刘振国.水稻类病变坏死突变基因的RAPD标记[J].华北农学报.2003,18(1):5-8.
    [138]Yin Z C, Chen J, Zeng L R, et al. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Molecular Plant-Microbe Interactions.2000, 13(8):869-876.
    [139]Takahashi A, Kawasaki T, Wong H L, et al. Hyperphosphorylation of a mitochondrial protein, prohibitin, is induced by calyculin A in a rice lesion-mimic mutant cdrl[J]. Plant Physiology.2003,132(4):1861-1869.
    [140]Yamanouchi U, Yano M, Lin H, et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proceedings of the National Academy of Sciences.2002,99(11):7530-7535.
    [141]Zeng L R, Qu S H, Alicia B, et al. Spotted leafl1, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J]. The Plant Cell Online. 2004,16(10):2795-2808.
    [142]郝中娜,张红志,陶荣祥.水稻类病斑突变体的初步研究[J].核农学报.2007,21(4):328-332.
    [143]Toquero Z F. Consumer demand for rice grain quality[C]. Internation. Rice Research Conference.1990.
    [144]Hu B, Zhu C G, Li F, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J]. Plant Physiology.2011,156(3):1101-1115.
    [145]Tang J Y, Zhu X D, Wang Y Q, et al. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice[J]. The Plant Journal.2011,66(6):996-1007.
    [146]黄晓群,赵海新,董春林,等.水稻叶绿素合成缺陷突,变体及其生物学研究进展[J].西北植物学报.2005,25(8):1685-1691.
    [147]陈德西,马炳田,王玉平,等.一份条斑和颖花异常水稻双突,变体的形态特征和细胞学观察[J].分子细胞生物学报.2006,39(4):339-349.
    [148]Juliano B O, Villareal C P. Grain quality evaluation of world rices[M]. Int. Rice Res. Inst,1993.
    [149]Fan C C, Xing Y Z, Mao H L, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics. 2006,112(6):1164-1171.
    [150]Mao H L, Sun S Y, Yao J L, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences.2010,107(45): 19579-19584.
    [151]Li Y B, Fan C C, Xing Y Z, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics.2011,43(12):1266-1269.
    [152]Tan Y F, Xing Y Z, Li J X, et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid[J]. Theoretical and Applied Genetics.2000,101(5):823-829.
    [153]周丽慧,刘巧泉,张昌泉,等.2种方法测定稻米蛋白质含量及其相关性分析[J].扬州大学学报:农业与生命科学版.2009,30(1):68-72.
    [154]Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation:version Ⅱ[J]. Plant Molecular Biology Reporter.1983,1(4):19-21.
    [155]Yoshida A, Ohmori Y, Kitano H, et al. ABERRANT SPIKELET AND PANICLEl, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice[J]. The Plant Journal. 2012,70(2):327-339.
    [156]Kishimoto N, Foolad M R, Shimosaka E, et al. Alignment of molecular and classical linkage maps of rice, Oryza sativa[J]. Plant Cell Reports.1993,12(7):457-461.
    [157]Jin Y, Luo Q, Tong H, et al. An AT-hook gene is required for palea formation and floral organ number control in rice[J]. Developmental Biology.2011,359(2):277-288.
    [158]Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice:genome-wide identification, organization and expression profiling during reproductive development and stress[J]. BMC Genomics.2007,8(1):242.
    [159]Ryu C H, Lee S, Cho L H, et al. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice[J]. Plant, Cell & Environment.2009,32(10):1412-1427.
    [160]Zhao T, Ni Z F, Dai Y, et al. Characterization and expression of 42 MADS-box genes in wheat{Triticum aestivum L.)[J]. Molecular Genetics and Genomics.2006,276(4):334-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700