花岗石薄型板材高效加工关键技术与锯解设备设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花岗石薄型板材因薄而降低生产成本以及装饰成本,同时可以节约和有效利用有限的石材资源,因此幅面宽度在600mm-1000mm的花岗石薄型板材的生产加工引起了越来越多的重视。但是目前薄型板材的加工生产效率低,表面质量差,刀具寿命低,严重制约了薄型板材的大批量应用和生产。
     通过比较目前花岗石薄型板材加工方法的优劣性,分析锯解和研磨过程中制约生产率以及加工质量的关键性技术问题,进而针对以上问题对锯解以及研磨装备进行规划,重点对与加工质量和加工效率密切相关的轴向力以及研磨轨迹进行分析。探讨锯解过程中由于锯片的动态不稳定性引发的轴向力以及轴向位移的计算,通过模态分析研究锯片的厚度、夹紧比、转速以及直径对锯片动态性能的影响;研究正确的组织研磨过程所必须遵守的原则,优化研磨运动轨迹;对薄型板材加工过程中存在的临界经济厚度进行初步讨论。考虑花岗石薄型板材高效加工过程的特殊性,制定锯解设备的设计指标,结合模块化设计技术以及三维仿真技术进行设备的开发和优化,对设备的导向支承横梁模块、主轴模块等关键结构进行重点设计。
     借助有限元分析软件,对用于本课题中大幅面花岗石薄型板材加工的1600mm的薄型金刚石圆锯片在高效加工参数组合下进行仿真分析,即锯切线速度为80m/s,进给速度为0.8m/min,锯切深度为20mm。通过静态分析和有预应力的模态分析验证其在高效加工参数下锯解的静、动性能;通过热应力耦合验证其热态性能;通过非线性屈曲分析计算薄型锯片的临界载荷。利用Matlab优化工具箱对主轴模块中的主轴单元以许用扭转变形角、许用偏转角、许用切应力为约束条件,以轴端变形挠度和质量为目标函数,取主轴的直径、跨距以及外伸端长度为设计变量对主轴进行多目标优化,优化结果表明在主轴直径为90mm、外伸端长度为50m、轴承跨距为350mm的情况下,主轴的经济综合性能与使用性能达到最佳的组合。
     本课题的研究旨在降低生产成本、提高加工效率,因此,其研究成果对我国薄型板材的生产加工具有现实的指导意义;同时,课题的研究思路和研究方法对薄型、超薄型板材加工的理论研究也将产生深远影响。
     本文得到山东省自然科学基金资助(项目编号:Z2007F07)。
Granite thin slab reduce production cost and adornment cost because of its thickness, at the same time can economical and effective utilization of the precious stone resources, so the process of granite thin slab whose width between 600mm and 1000mm attracted more and more attention. At present the process efficiency of thin slab is low, surface quality is poor, the tool life is short, and have already seriously restricted the mass production and application.
     For the above problems, the paper compared different processes of granite thin slab, analyzed the key technology associated with production efficiency and processing quality during saw and grind. Then planed the saw and grind equipment, researched the axial force and grinding trajectory, calculated the axial force and displacement caused by dynamic instability of the disc. By means of modal analysis, investigated the influence of parameters such as thickness, clamping ratio, rotating speed and diameter to dynamic performance. Proposed the correct principle during grinding and optimized the grind trajectory, investigated the critical economic thickness of granite thin slab. Considering the specificity of granite thin slab efficient processing, formulated the design index, developed and optimized the saw equipment based on modular design technology and 3d simulation technology, studied emphatically on the key structure such as beam unit and spindle unit.
     Simulation analyzed the performance of diamond circular thin disc under efficient processing parameters based on Finite Element software, the diameter of disc was 1600mm, the cutting speed was 80m/s, the feeding speed was 0.8mm/min and the cutting depth was 20mm. Tested comprehensive performance by static analysis, modal analysis under prestress and thermal-stress analysis, calculated the critical load of thin disc through buckling analysis, verified the parameters and the performance of thin disc were credible. Optimized the spindle unit based on matlab optimization toolbox in multi-objective function optimization, the optimization constraints were allowable torsion deflection angle, allowable deflection angle, and allowable stress, the objective function were stiffness and quality, the design variables were the central hole diameter, the span, and the overhanging length of spindle. The result showed the comprehensive performance of the spindle after optimization is better, when the central hole diameter was 90mm, the overhanging length was 50mm, the span was 350mm.
     The purpose of the paper are lower production costs, improve the processing efficiency, so the academic achievements can provide practical guidance for the process of thin slab. At the same time the Research ideas and research methods have a far-reaching influence on the theoretical investigation of thin and ultrathin slab processing.
     The paper is supported by Natural Science Foundation of Shandong Province (Z2007F07).
引文
[1]杨杰,严荣荫,陈厚伦,等.中国石材[M].北京:中国建材工业出版社,1994
    [2]张进生,王学哲,王日君,等.花岗石精密平台与构件制品高效加工技术与设备开发[J].石材.2006,(1):6-9
    [3]张进生,王日君.新型石材雕刻制品加工设备开发[J].石材.2006(3):46~48
    [4]李远.花岗石超大切深锯切机理与技术研究[D].华侨大学,2004
    [5]J. Asche. Deep grinding-a new dimension in cutting granite. Industrial Diamond Review, 1999, (2):110~122
    [6]林辉,李湘祁.金刚石圆锯片的锯切用量研究[J].石材.2008,(05):12-16
    [7]王艳辉.金刚石和立方氮化硼超硬磨料表面处理技术应用及发展[J].金刚石与磨料磨具工程.2009,(0]):5-11
    [8]Silveri P.L-shaped saw segements increase productivity[J].Industrial Diamond Review,1985, 45 (6):297-298
    [9]Reinhardt K D.New shape of diamond segement for machining natusral and artificial stone[J].Industrial Review,2003,63 (2):16~18
    [10]李远.花岗石超大切深锯切机理与技术研究[D].华侨大学,2004
    [11]X. Wei, C.Y. Wang, Z.H. Zhou. Study on the Fuzzy Ranking of Granite Sawability[J].Journal of Materials Processing Technology.2003,139 (3):277~280
    [12]B.Tutmez, S.Kahraman, O.Gunaydin.Multifactorial Fuzzy Approach to the Sawability Classification of Building Stones[J].Construction and Building Materials.2007,21 (8): 1672~1679
    [13]A. Ersoy, S. Buyuksagic, U. Atici. Wear Characteristics of Circular Diamond Saws in the Cutting of Different Hard Abrasive Rocks[J]. Wear.2005,258 (9):1422~1436
    [14]I.S. Buyuksagis. Effect of Cutting Mode on the Sawability of Granites Using Segmented Circular Diamond Sawblade[J]. Journal of Materials Processing Technology.2007,183 (3): 399~406
    [15]周灿丰,陈庆寿,李祖光.石材性质对锯切力的影响[J].金刚石与磨料磨具工程.2000,(05),21-23
    [16]韩权利,徐西鹏.石材种类对锯切力影响的实验研究[J].金刚石与磨料磨具工程.2007,(03),18~21
    [17]马云善,李远,徐西鹏.锯切参数与锯片结构对锯片临界载荷影响的有限元分析[J].工具技术.2006,(12),18~22
    [18]H.K.Tonshof, J.Asche, H.Hillmann-Apmann. Development of a system for the deep sawing of granite.Proc. of Indusarial Conference on Diamond, CBN&Their Applications (Intertech 2000), Vancouver, Canada, July,2000
    [19]初晓飞,徐西鹏.花岗石锯切中参数的适度选择原则探讨[J].珠宝科技.2004,16(53):19-22
    [20]B Denkena, H K Tonshoff, T Friemuth et al.Develeopment of advanced tools for economic and ecological grinding of granite.Key Engineering Materials,2003:21~32
    [21]杨柳,杜高峰.金刚石锯片切割参数的探讨[J].工具技术.2008,(08),50-52
    [22]祝小威,徐西鹏.金刚石薄锯片高速锯切花岗石过程中的锯切力特性[J].金刚石与磨料磨具工程.2007,(06),1-5
    [23]B Denkena, H K Tonshoff, T Friemuth et al. Development of advanced tools for economic and ecological grinding of granite. Key Engineering Materials,2003:21~32
    [24]张淑贵,李远,黄辉,等.高速锯切用超薄金刚石圆锯片的优化设计[J].工具技术.2009,(02),44-47
    [25]J.F.Tian, S.G.Hutton.Cutting-induced vibration in circular saws[J].Journal of Sound and Virbration,2001,242 (5):510-516
    [26]Ersoy A, Atici U. Performance characteristic of circular diamond saw-blade in cutting different types of rocks[J].Diamond and Related Materials,2004,13(1):22~37
    [27]Denkena, et al. Development of advanced tools for economic and ecological grinding of granite[J].Key Engineering Materials,2003,250:21~32
    [28]W. Polini, S. Turchetta. Force and specific energy in stone cutting by diamond mill [J].Machine Tools and Manufacture.2004(44):1189~1196
    [29]徐东镇.锯切时夹盘圆锯片横向振动特性研究[D].南京林业大学,2006
    [30]Mote C D. Stablity of Circular Plates to Moving Loads[J].Journal of the Franklin Institute 1970,290(4):329
    [31]Dugdale D S. Measurement of internal stress in discs [J]. Int. J. Eng. Sc.,1963, (1):383-389.
    [32]张东梅,尚春民,乔彦峰.圆锯片振动频率的控制方法[J].噪声与振动控制.2005,(08),52-54
    [33]李黎,习宝田,杨永福.圆锯片振动、动态稳定性及其控制技术的研究[J].木工机床.2002,2:5-10
    [34]李庆华,谭庆昌,裴永臣,等.回转圆盘薄片刀具横向振动控制研究[J].北京工业大学学报.2007,(01),987~901
    [35]王日君,张进生,葛培琪,等.面向设计的产品模块划分方法[J].农业机械学报.2009,(09)
    [36]Stone Robert B.A.Heuristic Method for Identifying Modules for Product Architectures[J].Design Studies.2000,21 (1):5~31
    [37]王日君,张进生,葛培琪,等.模块化设计中模块划分方法的研究[J].组合机床与自动化加工技术.2008,(07),17~21
    [38]侯红玲,邱志惠,赵永强.高速切削机床横梁的静态与动态分析[J].机械设计与制造.2006,(05),38-39
    [39]Reddy, V.R.and Sharan, A.M. Design of Machine Tools Spindles Based on Transient Analysis. ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol.107, Sept.1985, pp.346-352
    [40]Reddy, V.R.and Sharan, A.M.The Finite-Element Modeled Design of Lathe Spindle:The Static and Dynamic Analysis. ASME Journal of Vibrations, Acoustics, Stress and Reliability in Design, Vol.109, Oct.1987
    [41]袁杰,张进生,王志,等.桥式金刚石圆盘锯横梁静动态性能仿真研究[J].金刚石与磨料磨具工程.2007,(6):27~30
    [42]范超毅,范巍.加工中心总体布局与导轨设计分析[J].机械设计与制造.2008,(09),220-222
    [43]何伟,何邦贵,杨朝丽.主轴系统结构设计参数对其动力特性影响研究[J].精密制造与自动化.2002,(01),18~21
    [44]Pandremenos J, Paralikas J, Salonitis K, Chryssolouris G. Modularity Concepts for the Automotive Industry:a Critical Review[J]. CIRP Journal of Manufacturing Science and Technology,2009,1 (3):248~152
    [45]Abele E, Worn A, Fleischer J, etc. Mechanical Module Interfaces for Reconfigurable Machine Tools[J]. Product Engineering,2007,1 (4):421~428
    [46]张一飞.石材锯切过程仿真[D].华侨大学硕十论文,2003.6
    [47]吴雪松,张健,张秀伟.金刚石圆锯片应力计算模型建立及求解[J].大连理工大学学报.2001,41(4):477-480
    [48]汤红群,王成勇.抗冲击金刚石圆锯片结构的有限元分析[J].工具技术.2003,(6):9-11
    [49]刘会宁,胡映宁,王成勇,等.节块延伸结构金刚石圆锯片的有限元分析[J].金刚石与磨料磨具工程.2005,(04),4-10
    [50]邱金波,丁汉.旋转圆盘振动主动控制理论及实验研究的发展[J].机电工程技术.2003,32(2):18~20
    [51]邹家祥,沈祥芬,熊华.圆锯片的动态特性[J].北京科技大学学报.1994,(S2),92-97
    [52]黄与宏.板结构[M].北京:人民交通出版社,1992
    [53]徐芝纶.弹性力学(下)[M].北京:高等教育出版社.1990.70~75
    [54]仇君,何志坚,项林.金刚石干切圆锯片热应力和离心力耦合分析[J].石材.2007,(06),
    8-12
    [55]仇君,黄伟,高军永,等.金刚石干切圆锯片的热应力分析[J].金刚石与磨料磨具工程.2006,(03),20-23
    [56]柳大伟,徐鸿均,徐西鹏.磨抛花岗石过程中温度的测量与分析[J].金刚石与磨料磨具工程.2000,6(120):17~20
    [57]赵玉珍.热工原理[M].哈尔滨:哈尔滨工业大学出版社,1990
    [58]AJ Chapman. Heat Transfer,3rd ed. Macmillan co. New York,1974.
    [59]黄方谷,韩凤华.工程热力学与传热学[M].北京:北京航空航天大学出版社,1993.3
    [60]张耀满,王旭东,蔡光起,等.高速机床有限元分析及其动态性能试验[J].组合机床与自动化加工技术.2004,12,15~17
    [61]杨曼云,孙希平.TH6350卧式加工中心主轴系统静、动态特性分析[J].计算机辅助设计与制造.2001,(4):48-50
    [62]杨光,王玉丹.传递矩阵法进行电主轴的动力学特性分析[J].机械设计与制造.2001(3):50-51
    [63]蔡英,黄国庆,刘建清,等.机床高速主轴系统的动力学特性[J].江南大学学报(自然科学版),2003,2(3):286~288
    [64]陈龙,文湘隆,丁国平.基于有限元分析的轴的设计[J].现代机械.2005,(01),36-56
    [65]吴化勇.机床主轴部件有限元分析及优化设计[J].机床与液压.2008,(11),158-159
    [66]黄文贤.石材机械主轴组件的设计(一)[J].石材.2008,(02),18~21
    [67]张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社,2003
    [68]周建平.基于MATLAB的机械优化设计[J].黄石理工学院学报,2005,(3):43-45
    [69]苏金明,阮沈勇.MATLAB实用教程[M].北京:电子工业出版社,2002:100-146
    [70]张勋.机床主轴参数的优化设计[J].机械与电子.2007,18:334~335
    [71]沈浩,靳岚,谢黎明.基于MATLAB的机床主轴结构参数优化设计[J].科学技术与工程.2008,(16),4722~4724
    [72]储开宇,杜必强,段松屏.机床主轴主参数的优化设计[J].水利电力机械.2002,(02):2-5
    [73]李明喜.机床主轴的多目标优化设计[J].襄樊学院学报.2003,(03):48-50
    [74]裴大明,冯平法,郁鼎文.基于有限元方法的主轴轴承跨距优化[J].机械设计与制造.2005,(10),44~46
    [75]孙靖民.机械优化设计[M].北京:机械工业出版社,2002.17-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700