湍流管流内柴油机排气微粒再悬浮规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机微粒排放问题及其相关研究已受到国内外高度重视,然而,人们对柴油机微粒在排气过程中的再悬浮规律及其影响因素的了解却非常有限。微粒再悬浮作为柴油机微粒净化捕集及微粒采样等过程中的一个重要现象,研究其影响因素、作用规律并总结出再悬浮的控制方法,就显得尤为重要。
     本文首先从接触半径和材料性质两方面入手,对现有接触模型进行分析及选择,确定将DMT模型作为微粒团再悬浮模型的基础。在DMT模型的基础上,分析现有微粒再悬浮模型,选择微粒瞬时力矩平衡模型作为初始模型,并针对球形微粒团的受力特性,建立了球形微粒团再悬浮静态模型。在球形微粒团再悬浮静态模型的基础上,结合椭球形微粒团所具有的形态特征及物理特性,建立了椭球形微粒团再悬浮静态模型;其中,通过曳力系数推导了椭球形微粒团所受曳力的表达式,弥补了球形微粒团再悬浮静态模型的不足。
     利用建立的球形微粒团再悬浮静态模型和椭球形微粒团再悬浮静态模型,对球形、椭球形微粒团所受重力、粘附力、碰撞力、曳力以及浮力进行了分析,重点研究了微粒团形态变化对其受力的影响及其变化规律。对球形、椭球形微粒团所受重力力矩、粘附力矩、碰撞力矩和曳力力矩进行了分析,重点研究了微粒团形态变化对力矩的影响、力矩变化规律以及各力矩作用的主次关系。对球形、椭球形微粒团各力矩的综合作用进行了研究,分析了粘附角、管径和平均气流速度对微粒团再悬浮的影响,重点分析了平衡状态下的微粒团形态与力矩间的关系以及力矩变化能够引发的微粒团运动状态的改变。
     通过论文的工作,得到了不同形态微粒团所受力和力矩的影响因素、所受力和力矩的变化规律以及微粒团形态变化带来的影响,给出了微粒再悬浮的影响规律,并提出了微粒再悬浮的控制方法。研究成果可以为不同形态柴油机沉降微粒在排气净化和微粒采样中再悬浮规律的研究提供一定的理论依据和研究基础。
High attention is paid to the research on the problem of diesel particles emission at home and abroad, but diesel particle reentraiment in exhaust pipe and the influence factors what we know are very limited. As one of the important phenomena in controlling of the diesel engine's particles and paticle sampled, analysing particle reentrainment's influence factors, regulary and summarising the way of controllong particle reentrainment become very meanful.
     According to contact radius and werkstoffart, analysing and choosing contact models, the DMT model was chosed as the foundation of aggregate reentrainment model. On that base, analsing reentrainment mechanism models, present the model to clarify the reentrainment mechanism of spherical aggregates. Then, present the model to clarify the reentrainment mechanism of ellipsoidal aggregates, basing on the model of spherical aggregates and configuration of ellipsoidal aggregates. Especially, derive the expression of drag force to consummate the model.
     The reentrainment of spherical and ellipsoidal deposited aggreagets in turbulent aerosol flow has been studied theoretically. The forces, i.e., gravitational force, adhesive force, collision force, aerodynamic drag force and lift force, especially the forces change with aggregate figuration are studied. The moment of forces, i.e., gravity, particle adhesion, aerosol collision and aerodynamic drag, especially the moment of forces change with aggregate figuration are studied. Then, analsing the adhesion angle, the tube diameter and the average flow velocity acting on aggregates, the relationship between the moment of forces and the figuration of aggregate, and the way of motion status changing with the moment of forces.
     In this paper, analyse the forces and the moment of forces changing regularity, the way of controlling particle reentrainment. Theoretical basis and research foundation of diesel particle reentrainment regularity in turbulent pipe exhaust system are supplied by the research results.
引文
[1]肖福明,陆辰,杨滨.柴油机排气微粒污染及其控制[A].见:中国内燃机学会.中国内燃机学会中小功率柴油机分会与基础件分会论文[C].上海:中国内燃机学会,2002.78-81.
    [2]黄飞,肖福明.车用柴油机微粒排放控制综述[J].山东交通学院学报,2006,14(4):1-5.
    [3]侯玉春,王丽,唐凯宁,等.柴油机EGR中的微粒过滤器应用[J].山东内燃机,2002,7(3):15-18.
    [4]朱昌吉,刘忠长,许允.废气再循环对车用柴油机性能与排放的影响[J].汽车工程,2004,26(2):145-148.
    [5]刘向民,方茂东.柴油机后处理技术的研究现状和发展趋势[J].柴油机,2003,2(6):3 1-33.
    [6]邱卓丹,张洪涛.柴油机微粒排放后处理技术的研究现状及发展趋势[J].小型内燃机与摩托车,2005,34(1):24-7.
    [7]祁丽霞,纪威.车用柴油机微粒排放机外处理技术现状[J].中国农业大学学报,2002,7(6):20-25.
    [8]宁智,资新运,高希彦,等.柴油机排气微粒后处理系统的研制[J].汽车技术,2000(7):8-12.
    [9]Shuji Matsusaka, Woraporn Theerachaisupakij, Hiroko Yoshida, et al. Deposition layers formed by a turbulent aerosol flow of micron and sub-micron particles [J]. Powder Technology,2001, 118(1-2):130-135.
    [10]宁智,刘双喜,王宪成,等.柴油机排气微粒旋流净化技术的可行性研究[A].见:中国内燃机第五届学术年会.内燃机科技[C].上海:中国内燃机学会,1999.390-395.
    [11]Indra Adhiwidjaja, Shuji Matsusaka, Hiroshi Tanaka, et al. Simultaneous phenomenon of particle deposition and reentrainment:effects of surface roughness on deposition layer of striped pattern [J]. Aerosol Science and Technology,2000,33(4):323-333.
    [12]杨通在,陈银亮,熊旺,等.气溶胶粒子在毛细管中沉积与再悬浮[J].中国环境科学,2003,23(4):344-348.
    [13]Mittal K L. Particles on surface:detection, adhesion and removal [M]. New York:Plenum Press, 1988:1-3.
    [14]Com M. Journal of Aerosol Science, New York:Academic Press,1966:359.
    [15]Krupp H. Particle adhesion theory and experiment [J]. Colloid Interface Science,1967,1(2): 111-140.
    [16]Visser J. Adhesion of colloidal particles [J]. Surface and Colloid Science,1976(8):3-84.
    [17]Tabor D. Fluid Dynamics of Multiphase System [M]. Massachusetts:Blaisdell Pub. Co,1977.
    [18]Bowling R A. An analysis of particle adhesion on semiconductor surfaces [J]. The Electroc-hemical Society,1985,132(9):2208-2214.
    [19]Ranade M B. Adhesion and removal of fine particles on surfaces [J]. Aerosol Science and Technology,1987,7(2):161-176.
    [20]Derjaguin B V. Untersuchungen uber die reibung und adhesion [J]. Colloid & Polymer Science, 1934,69(2):155-164.
    [21]Johnson K L, Kendall K, Roberts A D. Surface energy and contact of elastic solids [J], Proceedings of Royal Society,1971,324(2):301-313.
    [22]Derjaguin B V, Muller V M, Toporov Yu P. Effect of contact deformation on the adhesion of particles [J]. Colloid Interface Science,1975,53(2):314-326.
    [23]Derjaguin B V, Muller V M, Toporov Yu P. On the role of molecular forces in contact deformations [J]. Progress In Surface Science,1994,45(1-4):154-155.
    [24]Derjaguin B V, Muller V M, Toporov Yu P. On different approaches to the contact mechanics [J]. Progress in Surface Science,1994,45(1-4):156.
    [25]Reeks M W, Hall D. Deposition and resuspension of gas-borne particles in recirculating turbulent flow [J]. Fluids Enancl,1988,21(4):165-171.
    [26]Reeks M W, Reed J, Hall D. On the resuspension of small particles by a turbulent flow [J]. Journal of Physics D:Applied Physics,1988,21(4):574-589.
    [27]Ziskind G, Fichman M, Gutfinger C. Resuspension of particulates from surfaces to turbulent flows-review and analysis [J]. Aerosol Science,1995,26(4):613-644.
    [28]Cleaver J W, Yates B. Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow [J]. Colloid and Interface Science,1973,44(3):464-473.
    [29]Cleaver J W, Yates B. A sublayer model for deposition of the particles from turbulent flow [J]. Chemical Engineering Science,1975,30(8):983-992.
    [30]Cleaver J W, Yates B. The effect of re-entrainment on particle deposition [J]. Chemical Engineering Science,1976,31(2):147-151.
    [31]Kim H, Kline S J, Reynolds W C. The production of turbulence near a smooth wall in a turbul-ent boundary layer [J]. Journal of Fluid Mechanics,1971,50(1):133-160.
    [32]Kim J, Moin P, Moser R. Turbulence statistics in fully-developed channel flow at low Reynolds number [J]. Journal of Fluid Mechanics,1987(177):133-166.
    [33]Wen H Y, Kasper G. On the kinetics of particle reentrainment from surfaces [J]. Aerosol Science,1989,20(4):483-498.
    [34]Wen H Y, Kasper G, Udishas R. Short and long term particle release from surfaces under the influence of gas flow [J]. Aerosol Science,1989,20(8):923-926.
    [35]Braaten D A, Shaw R H, Paw U K T. Particle detachment in turbulent boundary layers [A]. AEROSOLS:Formation and Reactivity.2nd Int Aerosol Conf [C].1986.370-373.
    [36]Matsusaka S, Aoyagi T, Masuda H. Unsteady particle-reentrainment model based on the internal adhesive strength distribution of a fine powder layer [J]. Kagaku kogaku ronbunshu, 1991,17(6):1194-1200.
    [37]Sehmel G A. Complexities of particle deposition and re-entrainment in turbulent pipe flow [J]. Aerosol Science,1971,2(1):63-72.
    [38]Kousaka Y, Okuyama K, Endo Y. Re-entrainment of small aggregate particles form a plane surface by air stream [J]. Journal of Chemical Engineering of Japan,1980,13(2):143-147.
    [39]Theerachaisupakij W, Matsusaka S, Akashi Y, et al. Reentrainment of deposited particles by drag and aerosol collision [J]. Journal of Aerosol Science,2003,34(3):261-274.
    [40]Denis J Phare, Gregory T Smedley, Richard C Flagan. Effect of particle size and material prop erties on aerodynamic resuspension from surfaces [J]. Aerosol Science,2000,31(11):1335-1353.
    [41]Hertz H, Uber die Beruhrung fester elastischer Korper (on the contact of elastic solids) [J]. Journal fur die Reinen und Angewandte Mathematik,1882(92):156-171.
    [42]H Hertz, Miscellaneous Papers[M]. London:Macrnillan,1896:146.
    [43]Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids [J]. Proceedings of Royal Society,1971,324(1558):301-313.
    [44]Fuller K, Tabor D, The effect of surface roughness on the adhesion of elastic solids [J]. Proceedings of Royal Society,1975,345(1642):327-342.
    [45]Maugis D. Adhesion of spheres:The JKR-DMT transition using a Dugdale model [J]. Colloid Interface Science,1992,150(1):243-269.
    [46]Maugis D. Extenson of Johnson-Kendall-Roberts theory of the elastic contact of spheres to large contact radii [J]. Langmuir,1995,11(2):679-682.
    [47]Wang H-C. Effects of inceptive motion on particle detachment from surfaces [J]. Aerosol Science and Technology,1990,13(3):386-393.
    [48]Tsai C-J, Pui D Y H, Liu B Y H. Particle detachment from disk surfaces of computer disk drives [J]. Aerosol Science,1991,22(6):737-746.
    [49]Matsusaka S, Koumura M, Masuda H. Analysis of adhesive force between particle and wall based on particle reentrainment by airflow and centrifugal separation [J]. Kagaku kogaku ronbunshu,1997,23(4),561-568.
    [50]Adhiwidjaja I, Matsusaka S, Hamamura T, et al. The effect of particle size on the movement of a striped pattern deposition layer in an aerosol flow [J]. The Society of Powder Technology, 1997,34(12):913-918.
    [51]Ziskind G, Fichman M, Guternger C. Adhesion moment model for estimating particle detach-ment from a surface [J]. Aerosol Science,1997,28(4):623-634.
    [52]Visser J. On Hamaker Constants:a comparison between Hamaker Constants and Lifshitz-van der Waals Constants [J]. Colloid Interface Science,1972,3(4):331-363.
    [53]Matsusaka S, Masuda H. Particle reentrainment from a fine powder layer in a turbulent air flow [J]. Aerosol Science and Technology,1996,24(2):69-84.
    [54]Gotoh K, Masuda H, Higashitani K, et al. Powder technology handbook (2nd) [M]. New York: Marcel Dekker,1997:183-191.
    [55]卢晓.柴油机排气微粒热泳沉降特性及再悬浮规律的研究[D].北京:北京交通大学,2007.
    [56]资新运,宁智,张春润,等.柴油机排气微粒物理特性及生成机理研究[J].燃烧科学与技术,2000,6(4):300-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700