麦草/聚酯混合超临界乙醇液化及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,人们对石油,天然气和煤的消耗量不断增大。化石燃料的大量消耗,不仅引起了温室效应,产生了酸雨,还使空气的质量变差,严重威胁着我们的生存环境,因此,利用开发可再生能源走可持续发展的能源道路已经引起各国政府高度重视。近几年,随着超临界技术的不断成熟,超临界流体的优良特性引起越来越多的科研人员的关注,并被用于制药,化工和材料等行业;同时其优良特性也被用于生物质能的开发,并具有广阔的开发前景。麦草属于农业废弃物,我国每年的产量有上几亿吨;每年工业和日常生活中会产生的塑料垃圾有几百万吨,如果这些物质处理不当不仅会污染环境,还是对太阳能资源和石油资源的一种浪费。
     本文以超临界技术为手段,利用超临界乙醇流体实现麦草和聚酯的混合液化,将农业废弃物和工业废弃物转变成可再生的能源,实现农业和工业的和谐可持续发展。本文主要研究麦草和聚酯在超临界乙醇中的液化行为,讨论了液化温度、聚酯用量、固液比和液化时间对液化产率的影响。通过研究发现,当液化温度275℃,固液比1︰6,保温30min,聚酯与麦草的质量比为2时,麦草中有机质的液化率达到88.87%,混合液化率达到96.52%。同时对液化产物进行GC-MS分析,检测到三十几种液化产物,主要是苯酚及其衍生、酯类、有机酸、醛等。
     本文比较了两种催化剂对混合液产率的影响,一种是弱碱性催化剂碳酸钠,碳酸钠对混合液化的产率提高不大,当碳酸钠用量为麦草质量的10%时最好,液化产率仅提高0.37%;另一种是自制的固体酸SO_4~(2-)/Fe_2O_3,当固体酸用量为麦草质量的9%时最好,液化产率提高2.98%。
     研究了循环液化对麦草液化产率的影响,得出循环液化对麦草也具有较好的液化效果,第三次循环液化的液化率与未循环液化相比提高了17.03%;循环液化中的溶剂抑制了麦草的炭化,减轻了液化设备清洗的负担。循环液化还可以实现工业化的连续生产。
     利用反应釜的冷却快速装置,通过突然中止反应的方法,得到不同冷却温度下混合液化的中间产物,通过红外光谱(IR),分析液化产物的残渣并与麦草粉比较,得到化学键的变化情况,并通过气质联用仪(GC-MS)对液化产物进行分析,得到其组成成分,再结合不同温度下的产率,研究推测不同温度下麦草和聚酯液化裂解情况,推测混合液化的液化机理。为优化工艺和控制反应过程提供理论基础。
With the development of the society, the demand for oil, natural gas and coal is increasing. The large consumption of fossil fuel cause the greenhouse effect that pollutes the air and the environment get worse day by day. To change the status quo , the governments have to pay attention to the research on the renewable energy. The supercritical technology is well developed recent years. Because of the excellent characteristics,it is widely used in the area of pharmaceutical industry,chemical industry and material industry. What more, it is also used on the research of the biomass which has broad prospect. The wheat straw, waste in agriculture, produced hundreds million every years in china and numbers of plastic garbage that produced by industry and people is not only bad for the environment but also be a waste as solar energy resource and oil resource.
     In this article, we mix polyester with wheat straw and then liquefied them in supercritical ethanol. It transforms the agriculture wastes and industry wastes into renewable energy. Through the experiment ,we analysis the influencing factors of liquefaction yield, including reaction temperature, reaction time ,dosage of the polyester and the solid-liquid ratio.We found that when the temperature is 275℃,the solid-liquid ratio is 1:6,the dosage of the polyester is twice of the straw and the reaction time is 30min, the liquefaction rate of the organic compounds in straw is up to 88.87% and the liquefaction rate of the mixture is up to 96.52%. With the GC-MS Analysis of liquefaction products, we detect more than 30 kinds of substances, including phenol and the derivatives of phenol, ester, organic acid and aldehyde.
     We study the influence of two catalysts on the liquefaction rate. We found the sodium carbonate which is weak alkaline has little action to the liquefaction rate. When the dosage of sodium carbonate is 10% of the straw, the action is best while the liquefaction rate only increased 5.2%. Compare with the sodium carbonate, SO_4~(2-)/Fe_2O_3 solid acid is better. When the dosage is 9% of the straw, the action is best. The liquefaction rate increased 7.81%.
     Study on the effect of circulating liquefaction to the liquefaction rate of the straw.It is learned that circulating liquefaction leads to the high rate.After twice circulation,the rate is 17.03% higher than no circulating.The impregnant restrain the carbonization of the straw during circulating,and make the reactor easier washing.What more, circulating liquefaction make industrial continuous production possible.
     When terminate the reaction in sudden by the fast cooling device of the high-pressure reactor, we get the intermediate products in different temperatures. Then analysis the residues by Infrared Spectroscopy and compare with the straw powder, we learn the transformation of chemical bond. After that, we analysis the liquefaction products by GC-MS and get the components.By doing these, we could learn the liquefaction mechanism. It provides theoretical basis to process optimization and control of the process of reaction.
引文
[1]方韬.电力规划研究的新开端[J].国家电网报,2007-5-25(006).
    [2]孙万儒.“燃煤”之急路在何方[J].生命世界,2008(3):44-47.
    [3]丁喆.太阳赐予的礼物-生物质能[J].科技智囊,2006(10):8-21.
    [4]何建坤,苏明山.21世纪能源科学将向何处去[J].宁夏教育,1999(7):48-49.
    [5]史仲平,华兆哲.生物质和生物质能源手册[M].北京:化学工业出版社,2007:2-3.
    [6]中国能源发展战略与政策研究课题组.中国能源发展战略与政策研究[M].北京:经济科学出版社,2004:2-3.
    [7]刘守新,李海潮,张世润.木质生物能源利用技术研究[J].中国林副特产,2001,58(3): 37-39.
    [8]米铁,唐汝江,陈汉平等.生物质能利用技术及研究进展[J].煤气与热力,2004,24(12):701-704.
    [9]杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2001:6-7.
    [10]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999第2版,24-25.
    [11]邬义明.植物纤维化学[M].北京:中国轻工业出版社,1997第2版,189-204
    [12]张宏书.半纤维素及其结构的研究[J].广州化学,1999(1):57-65.
    [13] Karaosmanoglu F,Tetik E.Fuel properties of pyrolytic oil of the straw and stalk of rape plant[J].Renewable Energy,1999,16(1):1090-1093.
    [14] Miller J E,Evans L,Littlewolf A.Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents[J].Fuel,1999,78(1):1363-1366.
    [15]陈嘉翔,余家鸾.植物纤维化学[M].广州:华南理工大学出版社,1989第1版,186-199.
    [16]任荣荣.草木殖成福之国也[N].中国绿色时报,2008-2-14(A03).
    [17]卢良恕,孙君茂.综合开发食物资源确保食物数量安全[J].中国食物与营养,2003(7): 46-48.
    [18]马隆龙.生物质能利用技术的研究及发展[J].化学工业,2007,25(8):9-14.
    [19] Bridgewaster A.V,Peacocke G.VC.Fast pyrolysis processes for biomass [J]. Renewable&Sustainable Energy Reviews,2000(4):1-7.
    [20]王峰.生物质快速热解技术的发展现状及未来产业化急需解决的问题[J].大众科技,2008(6):133-134.
    [21] Noun IM R,Mull ICK S C,Kandpal T C.Biomass gasifierp rojects for decentralized power supply in India: afinancial evaluation [ J ].Energy Policy,2007,35 (2);1373-1385.
    [22]蒋恩臣,何光设.稻壳、锯末成型燃料低温热解特性试验研究[J].农业工程学报,2007,23(1):188-191.
    [23] Reed,Thomas B.Combined biomass pyrolysis and densification for manufacture of shaped biomass-derived solid fuels[ P ]. US,2003221363,2003.
    [24]任家隆.一种固型燃料成型机[P].中国,2424010.2002.
    [25]刘石彩,蒋剑春.生物质能源转化技术与应用(Ⅱ)[J].生物质化学工程,2007,41(4): 61-63.
    [26] Rapagna S,Foscolo P U.Catalytic gasification of biomassof produce hydrogen rich gas[J]. Int J Hydrogen Energy,1998,23(7): 551-557.
    [27]应浩,蒋剑春.生物质能源转化技术与应用(Ⅳ)[J].生物质化学工程,2007,41(6):47-54.
    [28] Sesbsdr I K,Shams IA.Effect of temperature, p ressure and carrier gas on the cracking of tar over a chardolomite mixture[J].Ind Eng Chem Res,1998(37):3930-3837.
    [29] Elldtt D C,Beckman D,Bridgwater A V,et al.Developments in direct thermochemical liquefaction of biomass:1983-1990[J].Energy&Fuels,2001,5(3):399-410.
    [30] Antonakou E,Lappas A,Nilsen M H,et al.Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of biofuels and chemicals[J].Fuel,2006,85:2202-2212.
    [31] Adam J.Antonakou E,Lappas A,et al.In-situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials[J].Microporous and Mesoporous Materials,2006,96:93-101.
    [32] Lappas A A,Samolada M C,Iatridis D K,et al.Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals[J].Fuel,2002,81:2087-2095.
    [33] Onay O.Fast and catalytic pyrolysis of pistacia khinjuk seed in a wellswept fixed bed reactor[J].Fuel,2007,86:1452-1460.
    [34]廖益强,黄彪,陆则坚.生物质资源热化学转化技术研究现状[J].生物质化学工程,2008, 42(2):50-54.
    [35]王敏,姜洪涛,杨运财等.生物质热解液化的研究进展[J].现代化工,2007,27 (2):74-77.
    [36]薛永兵,凌开成,邹纲明.煤直接液化中溶剂的作用和种类[J].煤炭转化,1999,22(4):1-4.
    [37]郑丹丹,阮榕生,刘玉环等.木质纤维素的催化热化学液化[J].2005,32(2):17-21.
    [38] Appell H R,Wender I,Miller R D.Converting organicwastes to oil[R]. Bureau of Mines Report of Investigations,1971: 7560-7568.
    [39] Jun Yamazaki,Eiji Minami,Shiro Saka.Liquefaction of beech wood in various supercritical alcohols[J].J Wood Sci,2006(52):527-532.
    [40] Mun SP.Liquefaction of pine bark using phenol and lower alcohols with methanesulfonic acid catalyst[J].Journal of Industrial and Engineering Chemistry,2002,4(8):359-364.
    [41] Yamada T,Ono H.Rapid liquefaction of lignocellulosicwaste by using ethylene carbonate [J].BioresourceTechnology,1999,70:61—67.
    [42] Kucuk M M ,Agirtas S.Liquefaction of Prangmite saustralis by supercritical gas extraction[J].Bioresource Technology,1999,69(2):141—143.
    [43]谢文,袁兴中,曾光明等.催化剂对亚临界水中生物质液化行为的影响[J].资源科学,2008,30(1):129-133.
    [44]刘孝碧,曲敬序,李栋等.玉米秸秆在亚/超临界乙醇-水中液化的初步研究.农业工程学报,2006,22(5):130-134.
    [45]蒋剑春.生物质能源转化技术与应用(Ⅰ)[J].生物质化学工程,2007,41(3):59-65.
    [46] ChenWM,Tseng ZJ,Lee KS.Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge[J]. Hydrogen Energy,2005, 30(10):1063~1070.
    [47]张乾.关于可降解包装材料的研究进展[N].中国包装报,2008-7-8(003).
    [48]陈健.绿色消费理念的一个实例阐释[J].生态经济,2008,4:83-86.
    [49]顾克非.“禁塑令”给可降解塑料带来新契机[N].消费日报,2008-1-23(A01).
    [50]侯彩霞,马沛生,樊丽华.超临界水聚乙烯及聚乙烯/聚苯乙烯混合塑料的研究[J].环境化学,2005,24(1):48-51.
    [51] Tadafumi A,Osamu S,Latuhilo M.Recovery of terephthalic acid by decomposition of PET in superitical water[J].Kogaku Ronbushu.1997,23:1027-1032.
    [52]黄捷,陈磊,齐文杰等.聚酯在超临界甲醇中的降解特性[J].功能高分子学报2007,19-20(1):53-59.
    [53]周晴,黄捷,倪燕慧等.聚碳酸酯在超临界乙醇中的降解[J].华东理工学报(自然科学版),2006,32(9):1025-1029.
    [54] Katajisto J,Pakkanen T T,Pakkanen T A.Abinitio study on themal degradation reaction of Polycarbonate[J].Journal of Molecular Steucture(Theochen),2003,634.
    [55]赵美丽,刘太昂,谭桂霞等.超临界流体技术的应用研究进展[J].山东师范大学学报, 2003(4):36-39.
    [56]朱自强.超临界流体技术、原理和应用[M].北京:化学工业出版社,2000,19-21.
    [57]易筱药,古国榜.溶剂萃取新技术评述[J].广东化工,2000(4):10-14.
    [58]俞琛捷,马宏佳,周志华.超临界流体技术的应用研究进展[J].化学世界,2007(2):118-121.
    [59]乐治平,张宏,黄艳秋.一种采用纳米催化剂液化生物质的方法[P].中国专利, 200210019328.3,2006.6.
    [60] Shinya Y,Tomoko O,Katsuya K,et al.Process forliquefying cellulosecontaining biomass: US 4935567[P].1990.
    [61] Selhan K, Thallada B, Akinor IM, et al. Effect of Rband Cs carbonates for production of phenols from liquefaction of wood biomass[J].Fuel,2004,83(17/18):837-841.
    [62]裴爱霞,张锐,金辉等.超临界水中花生壳气化制氢催化剂的筛选与研究[J].西安交通大学学报,2008,42(7)914-919.
    [63] Fatma Karaca,Esen Bolat.Coprocessing of a Turkishlignite with a cellulosic waste material.1.The effect of coprocessing on liquefaction yields at different reaction temperatures[J].Fuel Processing Technology,2000,64:47-55.
    [64] Collot A G,Zhuo Y,Dugwell D R,et al.Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidized bed reactors[J].Fuel,1999,78:667-679.
    [65] Cornelissen T,Yperman J,Reggers G,et al.Flash co2pyrolysis of biomass with polylactic acid :Part1.Influence on biooil yield and heating value[J].Fuel,2007(10):19-25.
    [66] Sharypov V I,Beregovtsova N G,Kuznetsov B N,et al.Copyrolysis of wood biomass and synthetic polymers mixtures:Part(Ⅰ).Characterisation of heavy products[J].Journal of Analytical and Applied Pyrolysis ,2003,67:2143-2149.
    [67]白鲁刚,颜涌捷,李庭深等.煤与生物质共液化的催化反应[J].化工冶金,2000,21 (2):198-203.
    [68]张丽.落下床反应器中煤与生物质共热解研究[D].大连:大连理工大学,2006.
    [69]王力,陈鹏,王琦等.煤与废塑料共液化中氢转移的示踪试验研究[J].燃料化学学报,2001,29(4):309-312.
    [70]张求慧.酸性催化剂对木材苯酚液化能力的影响[J].北京林业大学学报,2004,26(5): 36-40.
    [71]刘丽丽,张宝泉,刘秀凤.加压和超临界条件下乙醇分子的缔合[J].化工学报,2006,57 (6):1274-1276.
    [72]陈玮,孟全科.碱性催化剂对农业废弃物产生生物油和气体的影响[J].环境污染与防治,2007,29(12):908-911.
    [73]王志华,孙小嫚,孙桂芳等.固体超强酸SO42-/Fe2O3催化制备生物柴油的研究[J].中国油脂,2007,32(8):59-62.
    [74]乐治平,张宏,洪立智.固体超强酸Cl-/Fe2O3的制备及催化液化生物质[J].化工进展,2007,26(2):246-248.
    [75]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2006,294-297.
    [76]朱振中.仪器分析[M].上海:上海交通大学出版社,2003,94-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700