宁波软土工程特性及其本构模型应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改革开放以来,随着经济社会的迅猛发展,软土地区城市基础设施、民用建筑等各类工程建设不断涌现,与地基沉降、稳定相关的大量岩土工程问题往往成为制约工程建设的技术难题,对区域性软土开展研究,了解掌握其工程特性对工程建设和经济社会发展具有重要的理论意义和工程实际价值。
     作为我国首批对外开放的东南沿海重要港口城市和长江三角洲南翼经济中心,宁波区域的发展潜力巨大。对宁波软土的现有研究尚难以满足经济社会快速发展的需求,为此,本文在前人工作基础上,通过调查研究、现场测试、室内土工试验和数值分析,对宁波软土的工程特性和本构模型方面开展研究,主要工作有以下几个方面。
     一、宁波软土工程特性调查分析。基于收集到的宁波城区地质资料和百余项工程地质勘察报告,归纳整理该区的工程地质概况,总结宁波软土工程特性;采用概率统计方法分析宁波软土各土性参数的空间变异规律,建立各物理力学指标经验关系;根据土的物理力学指标对比,从地质成因、颗粒级配、矿物成分以及微观结构等四个方面分析宁波软土与其它地区软土差异的原因。
     二、土工试验参数确定方法改进研究。基于Casagrande方法,采用三次多项式和最小二乘法回归拟合压缩曲线,通过数学方法确定先期固结压力,并编写程序实现求解过程;依据时间平方根法求解固结系数原理,采用最小二乘法拟合并从图形学角度分析其计算精度,在已有的商用土工试验数据处理软件平台上开发一个可视化界面程序。
     三、宁波软土工程特性试验研究。通过室内24组固结压缩试验和70组三轴剪切试验,系统研究宁波软土的应力历史、结构性、蠕变特性以及应力应变影响因素,同时通过相关试验成果的对比分析提出宁波软土工程特性的特点。
     四、宁波软土本构模型选取比较研究。由室内试验提供Mohr-Coulomb、Drucker-Prager以及修正剑桥三种模型的计算参数,采用有限元软件ABAQUS进行数值计算,对比分析数值计算结果与试验测试数据,确定修正剑桥模型更适合宁波软土,并分析该模型中计算参数的敏感度。
     五、宁波软土本构模型研究。引入结构损伤变量,在沈珠江提出的岩土损伤力学理论和修正剑桥模型基础上建立扩展的弹塑性损伤模型及其参数确定方法;结合蠕变试验,引入滞后塑性变形概念,将非弹性应变分为瞬时塑性应变和滞后塑性应变,建立扩展的宁波软土弹粘塑性本构模型及其参数确定方法,其瞬时塑性应变分量采用修正剑桥模型求取,滞后塑性应变分量包括体积蠕变和剪切蠕变两部分,分别采用Taylor次固结体积蠕变模型和Mersi剪切蠕变模型;介绍宁波软土弹塑性损伤模型、弹粘塑性模型在ABAQUS有限元程序平台上的UMAT子程序开发流程。
     六、宁波软土弹塑性损伤模型应用研究。采用所开发的弹塑性损伤模型UMAT子程序,对室内固结压缩试验和某堆载预压试验工程进行数值分析,对模型开展应用研究。
With the rapid economic development since China embarked on the policy of reform and opening-up, various kind of projects such as urban infrastructures and civil architectures have been set up in soft clay areas. However, a large number of problems in Geotechnical Engineering, such as foundation settlement and stability, become the technical obstacle and restrict project construction at the same time. Therefore carrying out the study on property of territorial soft clay would have significant theoretical and practical value for project construction and economic development.
     Ningbo, as one of the first opening-up important seaports, which locates at southeast coastland and is the economic center in the south area of Yangtze River delta, has huge potential for development. However, previous research about Ningbo soft clay couldn't meet the demands for rapid economic development. For this reason, on the basis of the former researches, the thesis studied on engineering property and constitutive model for Ningbo soft clay by adopting methods of investigation, field measurement, laboratory testing and numerical analysis. The main works are as follows:
     Firstly, the thesis investigated and analyzed the engineering property of Ningbo soft clay. Based on the collected geologic data of Ningbo area and engineering geologic investigation reports from hundreds of projects, work results such as project geology of Ningbo, spatial variability laws of soft clay property parameters by means of probability statistical method, establishing experiential formulas between physico-mechanical indexes and summarizing engineering property of soft clay. Otherwise, the reasons caused the difference between Ningbo soft clay and other areas were analyzed from the points of geological origin, mechanical composition, mineralogical composition and micro-structure.
     Secondly, the thesis improved the determination methods of Geo-testing parameter. Based on the theory of Casagrande method, by adopting cubic polynomial and least square method to fit the compression curve, the preconsolidation pressure was determined through mathematical method and achieved the inquiring process by program. Besides, based on the theory of square-time method to acquire consolidation coefficient, by adopting least square method to fit the test curve and from the point of graphics to analyze the accuracy, a visual program was provided on the platform of commercial software.
     Thirdly, the thesis studied on engineering property of Ningbo soft clay by experiments. Based on the 24 consolidation tests and 70 triaxial shear tests, work results- such as stress history, structural property, creep property and influence factors affect the stress-strain relation were systematic studied. Meanwhile, specialties of Ningbo soft clay were pointed out by contrast with experiment results of others.
     Fourthly, the thesis studied on contrast of select constitutive model for Ningbo soft clay. Providing computing parameters of models such as Mohr-Coulomb model, Drucker-Prager model and modified Cambridge model by means of laboratory test, and adopting the program of ABAQUS to have numerical computation, conclusion was draw that modified Cambridge model was fit for Ningbo soft clay by compared the numerical computation results with actual measurement results. Besides, sensitivity of computing parameter in modified Cambridge model was analyzed.
     Fifthly, the thesis studied on constitutive model for Ningbo soft clay. For describing the structural property, by importing structural damage invariable and combined Shen Zhu-jiang theory of damage mechanics for geological materials with modified Cambridge model, an enlarged elasto-plastic damage model for Ningbo soft clay was presented and determining methods for parameters of this model were also provided. Meanwhile, for describing rheologic property, by combining the creep test and introducing the concept of delayed plastic deformation, thus, inelastic strain was divided into an instantaneous plastic part and a delayer visco-plastic part, an enlarged elasto-viscoplastic model was presented and determining methods for parameters of this model were also provided. Thereinto, instantaneous plastic part was acquired by modified Cambridge model and delayed plastic part includes volumetric creep and deviatoric creep, and the former is acquired by Taylor's secondary compression law, while the latter adopted Singh-Mitchell law. Furthermore, based on the platform of ABAQUS program, development process for UMAT subroutine program of elasto-plastic damage model and elasto-viscoplastic model were introduced.
     Lastly, the thesis studied on the application of elasto-plastic damage model for Ningbo soft clay. By adopting UMAT subroutine program of elasto-plastic damage model, study on application of this model was carried out through numerical analysis from the aspects of consolidation test and surcharge preloading test.
引文
AL-Shamrani, M.A and Sture, S., A time-dependent bounding surface model for anisotropic cohesive soils[J].Soils and Foundations, 1998, 38 (1): 61-76
    Andrzej Niemnnis and Marcin Cudny, On hyperelasticity for clays, Computes and Geotechnics, 1998, (23): 221-236
    Borja R.I, Kavazanjian, E. A constitutive model for the stress-strain-time behaviour of 'wet' clays., Geotechnique 1985, (35): 283-298
    Casagrande A. The determination of the preconsolidation load and its practical significance [J], Proc. Of First ICMFE, 1936 (3): 60-64
    Casagrande, A., The structure of clay and its importance in foundation engineering[J]. J.Boston Soc. Civ. Engris, 1932,19 (4): 168-209
    Chu. J, Bo. M. W, V.Choa, etc. Practical considerations for using vertical drains in soil improvement projects. Geotextiles and Geomembranes, 2004, (22): 101-117
    Chun Chai, Jin Shui-Long Shen, Norihiko Minur etc. Simple method of modeling PVD-improved subsoil[J]. J.Geottech. and Geoenviron Engng. ASCE, 2001, (11): 965-972
    Coon, M. D. and Evans, R. J., Receverable Deformation of cohesionless Soils, J.S.M.F.D., ASCE, 1971, (97): 375-391
    Corkum A G, Martin C D. Analysis of a rock slide stabilized with a toe-brem: a case study in British Columbia, Canada, Internationla Journal of Rock Mechanics & Mining Sciences, 2004,41(7): 1109-1121
    Corotis, R. B., Hassan, M. and Krizek, R. J., Nonlinear Stress-strain Formulation for Soils[J], J.GE.D., ASCE, 1974, (100): 993-1008
    Cour F R. Inflection point method for computing Cv [J]. J Soil Mech Fdn Engng, ASCE,1971,(1): 827-831
    Dafalias, Y. F and Herrmann, L.R., Boundary Surface Formulation of Soil Plasticity, Soil Mechanics-transient and Cyclic Loadings, (Edited by G N. Pande and O.C. Zienkiewicz). John Wiley and Son, 1982:253-282 .
    Dafalias, Y. F., Herrmann, L.R. and Denatale, J. S., Description of Natural Clay Behavior by a Simple Boundary Surface Plasticity Formulation,Proceedings of the workshop on Limit Equilibrium Plasticity and Generalized Stress-strain in Geotechnical Engineering,Mogil Univ.,Canada,May 26-30,1980:711-744
    Domaschuk,L.and Valliappan,P.,Nonlinear Settlement Analysis by Finite Element,J.G.E.D,ASCE,No.GT7,1975,101
    Drucker D C,Prager W,Greenberg H J.Extended limit design theorems for continuous media[J].Quarterly of Applied Mathematics,1952,9(4):381-391
    Duncan J M.Limitations of conventional analysis of consolidation settlement[J],Journal of Geotechnical Engineering,ASCE,1993,119(9):1333-1359
    Duncan,J.M.and Chang,C.Y.,Nonlinear Analysis of stress and strain in soils,J.S.M.F.D.ASCE,1970,96(5):1629-1653
    Duncan,J.M.and Clough,G.W.,Finite Element Analysis of Retaining Wall[J],J.S.M.F.D.,ASCE,1971,(12):1657-1673.
    Eisenstem,Z.and Law,S.T.C.,The Role of Constitutive Laws in Analysis of Embankments.第4届全国土力学与基础工程会议,成都科技大学译
    Esaki T,Jiang Y,Bhattarai T N,et al.Stability analysis and reinforcement system design in a progressively failed steep rock stope by the disctinct element method.International Journal of Rock Mechanics & Mining Sciences,1998,35(4-5):664-666
    Geuze,E.CW.A.,Tan Tjong Kie.The Mechanical Behavior of Clays.Oxford:Proc.2~(nd)Int.Congress on Rheology,1953:67-71
    Haefeli,R.Creep Problems in Soils,Snow and Ice.Mexico:Proc.3~(rd)ICSMFE,Vol.3,1953,122-126
    Hansbo,S.Design aspects of vertical drains and lime column installations[J].Proc.9~(th)Southeast Asian Geotech.-Conf.[C].Bangkok:Southeast Asian Geotechnical Society,1987,2(8):1-12
    Hideki Ohta,Toru Shihaya.An idealized model of soil structure[J].Proceedings of the International Symposium on Soil Structure,1973
    Hiroyuki Tannka,Jacques Locat,Satoru Shibuya.Etc,Characterization of Singapore,Bangkok,and佐贺clays[J]Can.Geotech.,2001,(38):378-400
    Iwan,W.D.,On a Class of Models for the Yield Behavior of Continuous and Composite
    System, Journal of Applied Mechanics, 1967, (34): 612-617
    Johnson, Precompression for improving foundation soil [J]. ASCE J Soil Mech Found Div, 1970, 96(1)
    Kaliakin, V. N and Dafalias, Y. F., Theoretical aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils[J].Soils and Foundations, 1990,30(3): 11 -24
    Keedwell, J. K., Rheology and Soil Mechanics. London: Elsevier Applied Science Publishingers, 1984,91-92
    
    Krige R.D. A practical two surface plastic theory, J Applide Mechanics, 1975,42: 45-78
    Lade, P.V. and Duncan, J.M., Elasto-plastic Stress-strain Theory for Cohesionless Soil, J.GE.D., ASCE, 1975,101 (10)
    Lade, P. V. and Kim, M.K, Single hardening constitutive model for soil, rock and concrete, Int.J. Solids structures, 1995, 32 (14): 1963-1978
    Lin, H.D. and Wang, C.C., Stress-strain-time Function of Clay[J]. Journal of Geothchnical and Geoenvironment Engineering, April, 1998: 289-296
    Mesri, Godlewski. Time and stress compressibility interrelationship[J]. Journal of the geotechnical engineering division, 1977,103(5): 417-430
    Mesri G, Febres-Cordero e, Shields D R & Castro A. Shear stress-strain-time behaviours of clays. Geotechnique, 1981, 31(4): 537-552
    Mesri G, Roskhsar A, Bohor B.F. composition and compressibity of typical samples Mexico City Clay [J]. Geotechnique, 1995,25(3): 527-554
    Mroz, Z., On the Description of Anisotropic Hardening, Journal of Mechanics and Physics of Solids, 1967,(15): 163-175
    Mroz, Z., Norris, V. A. and Zienkiewicz, O.C., An Anisotropic Hardening Model for Soils and its Application to Cyclic Loading, Int, J. for Numerical and Analytical Methods in Geomechanics, Vol.2, 1978: 203-221
    Mroz, Z., Norris, V. A. and Zienkiewicz, O.C., Application of An Anisotropic Hardening Model in the Analin the Analysis of Elasto-plastic Deformation of Soils, Geotechnique, 1979, 29(1): 1 -34
    Nakase A, Kasakabe O. Constitutive Parameters Estimated by Plasticity Index. Jr. of Geotech. Eng., ASCE, 1988,114(7): 210-232
    Nash. D.F.T. Sills, GC.&Davison, L.R. One-dimensional consolidation testing of soft clay from Bothkennar [J]. Geotechnique.1992,42(2): 241-256
    Olson, Roy E. Settlement of embankment on soft clays[J] Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998,124(4): 278-288
    Paul. M. A, Peacock. J. D, Wood. B. F, The engineering geology of the Carse clay at the National Soft Clay Research Site, Bothkennar [J] Geotechnique, 1992(42): 183-198
    Poh, K.W., General Creep-time Equation[J]. Journal of Materials in Civil Engineering, May, 1998,118-120
    Poulos, H.G. and Davis, E.H., Elastic solutions for Soil and Rock Mechanics[J], Developments in Geotechnical Engineering, 1974, (17): 230-241
    Prasad Y V S N, Rao S N. A new two point method of obtaining Cv from a consolidation test [J]. Canada Geotechnical Journal, 1995,32: 741-746
    Prevost, J.H. Plasticity Theory for Soil Stress-strain Behavior, J.Engr.Mech. Div., ASCE, 1978,104(5): 1177-1194
    Puzrin, A.M. and Burland, J.B, Non-linear model of small-strain behavior of Soils[J]. Geotechnique, 1998,48(2): 217-233
    Richardon, J.H.D. and Stallebrass, S. E. Effect of recent stress history on the stiffness of overconsolidated soil. Geotechnique, 1990,40 (4): 531-540
    Roscoe K H, Schofield A N, Wroth C P, On the yielding of soils [J]. Geotechnique, 1958, 8(1): 22-53
    Roth, W. H. and Leroy Crandall, Nonlinear Elastic Finite Element Analysis of Lateral Earth Pressures Against Basement Wall[J], Int. J. Num. Anal. Meth. Geomech., 1981, (4): 32-46
    Saleeb, A. F. and Chen, W.F., Nonlinear Hyperelastic(Green) Constitutive Models for Soils:
    
    Theory and Calibration, Proceedings of the workshop on Limit Equilibrium, Plasticity and Generalized Stress-strain in Geotechnical Engineering, Mogill University, 1980, (28-30): 492-527
    Schmertmann. J. H. The undisturbed consolidation behavior of clay [J]. Transactions of ASCE, 1955, 120(2): 1201-1226
    Schultze,E.and Teusen,G.,A Common Stress-strain Relationship for Soils Proceedings of 9th ICSMFE,1/57,1979,(1):277-280
    Scott R E.New method of consolidation coefficient evaluation[J].ASCE,1976,(1):29-39
    Selvadurai,A.P.S.,Elastic Analysis of soil foundation Interaction,Amsterdam,Elsevier,1979
    Singh,A,Mitchell,J.K.,General stress-strain-time functions for soils[J].J.of Soil Mech.Found.Div.ASCE.,1968,94(1):21-46
    Suksun Horpibulsuk,Satoru Shibuya,Kittitep Fuenkajom.Etc,Assessment of engineering properties of Bangkok clay[J]Can.Geotech.,2007(44):173-187
    Sun,D.A,Matsuoka H,Yao Y.P,An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis,Computes and Geotechnics,31(2004):37-46
    Tavenas,Leroueil.Effects of stresses and time on yielding of clays[C].Proc.Of 9th ICSMFE.Tokyo,1977:319-326
    Valanis,K.C.,A theory of viscoplasticity without yield surfacek,Part Ⅱ:Application to mechanical behavior of metals[J].Archives of Mechanics,1971,(23):535-551
    Valanis,K.C.,Fundamental consequences of a new intrinsic time measure:plasticity as a limit of endochronic theory,Arch.Mech.32(1980):171-191
    Vanmarcke E H.Probabilistic modeling of soil profiles[J].Journal of Geotechnical Engineering Division,ASCE,1977,103(GT11):1227-1246.
    Vyalov,S.S.,Rheological Fundamentals of Soil Mechanics.London:Elsevier Applied Science Publishingers,1986,231-232
    Yong R.N and Sheeran D.E,Fabric unit interaction and soil behavior[z]Proceedings of the International Symposium on Soil Structure,1973
    Zienkiewicz,O.C.,Chang,C.T.and Hinton,T.Nonlinear seismic response and liquefaction,Int.J.Num.Analyt.Methods in Geomechanics,1978,(2):381-404
    包太,刘新荣,朱凡等.固结系数的最小二乘法计算[J].岩土工程学报,2005,(10):1230-1232
    陈慕杰.汕头市区软土的工程地质特性[J].桂林工学院学报.1998,18(3):261-265
    陈书荣.湛江灰色粘土的工程特性[J].西部探矿工程.2006,(6):30-31
    陈水安,屈荣英.湛江软土工程特征[J].西部探矿工程.2005,(4):91-94
    陈晓平,白世伟.软土蠕变-固结特性及计算模型研究[J].岩石力学与工程学报.2003,22(5):728-734
    陈晓平,朱鸿鹄,张芳枝等.软土变形时效特性的试验研究[J].岩石力学与工程学报,2005,24(12):2142-2148
    陈绪禄,刘玉华,詹美礼.上海软粘土地基的次固结现象[J].地下工程与隧道.1994,(1):3-8
    陈艺南,潘华良,刘松玉等.连云港软土工程特性初探[J].路基工程 2002,(6):1-5
    陈远洪,洪宝宁,龚道勇等.一个考虑土体流变的修正剑桥粘弹塑性模型[J].河海大学学报(自然科学版)2002,30(5):44-47
    陈宗基.Structure Mechanics of Clay[J].中国科学,1959,8(1):41-45
    邓健如,谭术魁,伍维周.武汉地区第四纪粘土的地质特征[J].湖北大学学报(自然科学版)1994,16(3):338-345
    杜建成,张利民.广州地区软土应力应变特性研究[J].四川联合大学学报(工程科学版).1997,1(1):24-28
    范镜泓.内蕴时间塑性理论及其新进展[J].力学进展.1985,15(3):250-252
    房后国.结构性粘弹性固结模型研究[博士学位论文].长春:吉林大学,2005
    方佩芹,王建龙.宁波市工程地质图说明书.1986
    冯晓腊.论深圳淤泥类软土微观结构对工程性质的影响[J].中国地质灾害与防治学报.1996,7(3):34-39
    冯紫良,范厚彬.软土流变试验的数值模拟[J].同济大学学报.2003,31(4):379-382
    符必昌,黄英,李琴书 等.昆明盆地浅层软土成因及工程地质分类研究[J].昆明理工大学学报.2000,25(5):22-26
    付裕峰,李芳.对武汉地区软弱地基处理方法的探讨[J].土工基础 2002,16(1):42-45
    甘德福,孙永福.上海地区淤泥质粘性土结构的初步研究[J].勘察技术.1979,(6):62-65
    高大钊 编著.土力学可靠性原理[M]北京:中国建筑工业出版社.1989
    高国瑞.膨胀土微结构特性的研究[J].工程勘察,1981,(5):39-42
    高国瑞,黄土湿陷结构分类与湿陷性[J],中国科学,1980,(12):1203-1208
    高雁.对温州地区软土特性的认识与探讨[J].浙江水利科技.2005,140(4):26-28
    葛修润,任建喜,蒲毅彬等著.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004
    龚晓南.21世纪岩土工程发展展望[J].岩土工程学报.2000,22(2):238-242
    龚晓南.原状土的结构性及其对抗剪强度的影响[J].地基处理,1999,10(1):61-62
    龚晓南,熊传祥.粘性结构性对其力学性质的影响及形成原因分析[J].水利学报.2000,(10):43-47
    郭爱民,卢世宗.矿山边坡破坏机制的离散单元法模拟[J].东北工学院学报.1992,13(1):25-32
    郭成麦.天津塘沽软土的若干工程性质[J].水文地质与工程地质.1992,19(4):53-55
    郭进京,周长青,刘玉桥.天津城市建设中的主要岩土工程问题与研究对策[J].天津城市建设学院学报.2001,7(1):6-9
    何金辉,张立新,陈孝培等.软土地基测试指标的实际应用[M].北京:地质出版社,1997
    何俊.杭州与汉口地区软土结构性及蠕变特性研究[硕士学位论文].长春:吉林大学.2003
    何秀水.上海地区软土地基概况及其设计施工问题[J].住宅科技.1995,(8):34-41
    侯树刚 陈静.软土的工程特性研究及软基处理[J].岩土工程界 2004,6(10):35-36
    胡海浪,方涛,丁红瑞 等.岩体工程问题的现代数值分析方法综述[J].黑龙江水专学报.2007,34(1):55-60
    黄文熙.硬化规律对土的弹塑性应力-应变模型影响的研究[J].岩土工程学报,1980,2(1):1-11
    黄文熙,濮家骝 陈愈炯.土的硬化规律和屈服函数[J].岩土工程学报,1981,3(3):19-26
    姜安龙,赵春风,高大钊.确定先期固结压力的数学模型法[J].岩土力学,2003,24(2):292-295
    蒋鸿海.宁波市水利水电区域工程地质分区及评述[J]浙江水利科技.2001,(3):70-72
    蒋明镜,沈珠江.结构性粘土剪切带的微观分析[J].岩土工程学报,1998,20(2):102-108
    金峰,贾伟伟,王光纶.离散元-边界元动力耦合模型[J].水利学报,2001,22(1):23-26
    孔德森,栾茂田.岩土力学数值分析方法研究[J].岩土工程技术.2005,19(5):249-253
    孔令伟,吕海波,汪埝等.湛江海域结构性海洋土的工程特性及其微观机制[J].水利学报.2002,(9):82-88
    雷华阳.结构性海积软土的弹塑性研究[J].岩土力学,2002,23(6):721-724
    雷华阳,肖树芳.天津海积软土微观结构与工程性质初探[J].地质与勘探.2002,38(6):81-85
    雷华阳,肖树芳.天津软土的次固结变形特性研究[J].工程地质学报,2002,10(4):385-389
    林琛.福州市区软土基本性质的研究[J].福建地质.2000,19(3):175-180
    李广信,土的三维本构关系的探讨与模型验证[博士学位论文].北京:清华大学,1985
    李军世,孙钧.上海淤泥质粘土的Mesri蠕变模型[J].土木工程学报.2001,34(6):74-79
    李金轩,胡金珠.确定固结系数的标准曲线比拟法[J].工程勘察,1996,(1):21-22
    李生林 等编译.土中结合水译文集[M].北京:地质出版社,1982
    李世海,高波,燕琳.三峡永久船闸高边坡开挖三维离散元数值模拟[J].岩土力学,2002,23(3):272-277
    李涛,钱寿易.土样扰动影响的评价及其先期固结压力的确定[J].岩土工程学报,1987,9(5):21-30
    李作勤.有结构强度的欠压密土的力学特性[J].岩土工程学报,1982,4(1):34-45
    梁国钱,张民强,俞炯奇等.浙江沿海地区软土工程特性[J].中国矿业大学学报.2002,31(5):435-437
    廖红建,俞茂宏.粘性土的弹粘塑性本构方程及其应用[J].岩土工程学报.1998,20(2):41-44
    凌泽民.宁波市主要环境地质问题及其防治对策研究[J].中国岩溶1996,15(1):125-130
    刘春平,李中秋,张书宪.如何确定土的先期固结压力的探讨[J].地质与勘探,2003,39(1):91-92
    刘俊洪,陈斌.滨海软土工程特性及其加固效果分析[J].西部探矿工程.2005,(9):8-9
    刘松玉,方磊.试论粘土粒度分布的分析结构[J].工程勘察,1992,(2):1-4
    刘永青.南京市区地基土的工程地质区划[J].水文地质工程地质.1994,(3):49-50
    刘元雪,施建勇.基于应力空间变换的修正剑桥模型改进[J].岩土力学.2003,24(1): 1-7
    刘祖德,陆士强,杨天林等.应力路径对填土应力应变关系的影响及其应用[J].岩土工程学报,1982,4(4):45-54
    马驯.固结系数与固结压力关系的统计分析及研究[J].港口工程,1993(1):46-53
    门福录.上海粘土流变性质及地面沉降问题初步研究(一)[J].自然灾害学报.1999,8(3):117-126
    苗天德,王正贵.考虑微结构失稳的湿陷性和黄土变形机理[J].中国科学(B),1990,(1):86-96
    潘钦生,张可能,周波.广州南沙软土工程特性分析[J].岩土工程界.2006,9(4):46-48
    濮家骝,李广信.土的本构关系及其验证与应用[J].岩土工程学报,1986,8(1):47-82
    齐吉琳,谢定义.孔隙分布曲线及其在土的结构性分析中的应用[J].西安公路交通大学学报,2000,20(2):6-8
    钱家欢,殷宗泽 主编.土工原理与计算(第二版)[M].北京:中国水利水电出版社,2000年
    钱征.天津新港软土的一些工程特性.天津软土地基[C].天津:天津科学技术出版社,1986
    丘建金.深圳地区软弱地基处理若干问题分析[J].土工基础.2004,18(5):26-29
    饶为国,赵成刚,王哲等.一个可考虑结构性影响的土体本构模型[J].固体力学学报.2002,23(1):34-39
    软土地区工程地质勘察规范(JGJ 83-91)[S].北京:中国建筑工业出版社,1992年
    阮永芬,刘岳东,王东 等.昆明泥炭与泥炭质土对建筑地基的影响[J].昆明理工大学学报(理工版).2003,28(3):121-124
    邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[Jr].岩土工程学报,2004,26(4):531-536
    沈宝堂,王泳嘉.边坡破坏机制的离散单元法研究[J].东北工学院学报,1989,10(4):349-354
    沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J]水利水运科学研究,1985:535-609
    沈珠江.土的三重屈服面应力应变模式[J].固体力学学报.1984,(2):163-173
    沈珠江.土体结构性的数学模型--21世纪土力学的核心问题[J].岩土工程学 报,1996,18(1):95-97
    沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报.1993,15(3):21-28
    沈珠江.结构性粘土的堆砌体模型[J].岩土力学.2000,21(1):1-4
    沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100-110
    沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力应变关系[J].岩土工程学报.2005,27(5):489-494
    施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996,4(1):39-44
    施斌.模糊数学在膨胀土胀缩等级评判中的应用[J],工程勘察会议论文集(武汉),1985:95-107
    施斌,李生林.湖北郧县膨胀土的工程性质[J],南京大学学报,1988,(3):406-421
    施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型[J].岩土工程学报,1997,19(3):7-13
    施斌,王友诚,刘响东等.压力注浆加固膨胀土地基的效果与机理分析[J],工程勘察,1995(2):18-21
    苏伯苓.宁波软土流变规律及其工程应用[J].河北地质学院学报.1990,13(2):111-120
    斯月英.南京市城西长江漫滩软土的工程地质特性探讨[J].地基处理.2001,12(2):37-44
    孙德安,姚仰平,殷宗泽.初始应力各向异性土的弹塑性模型[J].岩土力学.2000,21(3):222-226
    孙更生,郑大同 主编.软土地基与地下工程[M].北京:中国建筑工业出版社,1984
    孙吉主,王勇,孔令伟.湛江海域结构性软土的边界面损伤模型[J].岩土力学,2006,27(1):99-101
    孙林.高速公路沉降变形的剪损弹塑性分析[硕士学位论文].南京:河海大学,1997
    孙亚平,确定土的弹塑性本构模型参数的研究[J].全国水利发电中青年科学、工程技术干部学术报告会论文选集,1983
    汤连生,廖化荣,张庆华.土的结构熵及结构性定量化探讨[J].岩石力学与工程学报,2006,25(10):1997-2002
    腾凯,岳敏,王岩等.确定固结系数的两点计算法[J].勘察科学技术,1997,(1):10-11
    拓勇飞,孔令伟,郭爱国 等.湛江地区结构性软土的赋存规律及其工程特性[J].岩土力学.2004,25(12):1879-1884 土工试验方法标准(GB/T 50123-1999)[S].北京:中国计划出版社,1999
    万伟,宁波栎社机场软土地基处理方法探讨[J].机场建设,2005(2):22-24
    王常明,王清,张淑华.滨海软土蠕变特性及蠕交模型[J].岩石力学与工程学报.2004,23(2):227-230
    王常明,肖树芳,夏玉斌.海积软土固结变形的结构性模型研究[J].长春科技大学学报,2001,31(4):363-367
    王凤江.秦皇岛滨海饱和软土的试验研究[J].岩石力学与工程学报.2005,24(增2):5880-5884
    王冠英.不同地区海积软土前期固结压力与结构强度的关系及其成因分析[硕士学位论文].长春:吉林大学,2004
    王国欣.软土结构性及其扰动状态模型研究[D].吉林大学博士学位论文,2003
    王国欣,肖树芳,黄宏伟.杭州海积软土应力-应变特征与结构强度损伤规律研究[J].岩石力学与工程学报.2005,24(9):1555-1560
    王国欣,肖树芳,黄宏伟.天然结构性软粘土应力历史的确定[J].同济大学学报(自然科学版),2005,33(8):1007-1010
    王国欣,周旺高.原状结构性土先期固结压力与结构强度的确定[J].岩土工程学报,2003,25(2):249-251
    王海鹏,陈峰.厦门港湾软土的工程地质性质的研究[J].台湾海峡.1998,17(3):235-243
    王金昌,陈页开编著.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006
    王立忠,丁利,陈云敏等.结构性软土压缩特性研究[J].土木工程学报,2004,37(4):46-53
    王立忠,李玲玲,丁利等.温州煤场软土结构性试验研究[J].土木工程学报.2002,35(1):88-92
    王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯-张模型[J].水利学报,2004,(1):83-89
    王年香,魏汝龙.沿海软粘土取土质量的对比分析[J].工程地质学报,1994,2(2):66-75
    王清.几种粘性土的微观结构特征及变形与强度的时效研究[博士学位论文].长春: 长春科技大学,1997
    王清,王凤艳,肖树芳.土微观结构特征的定量研究及其在工程中的应用[J].成都理工学院学报,2001,28(2):148-153
    王泳嘉.离散单元法-一种适用于节理岩石力学分析的数值方法.第一届全国岩石力学数值计算及模型试验讨论会论文集[B].江西吉安:西南交通大学出版社,1986
    王泳嘉,宋文洲,赵艳娟.离散单元法软件系统2D-Block的现代化特点[J].岩石力学与工程学报,2000,19(supl.):1057-1060
    王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制[J].岩石力学与工程学报,1996,15(3):201-210
    王永炎,腾志宏.中国黄土的微结构及其在时代与地域上的变化[J],科学通报,1982,27(2):102-105
    韦琪,董忠级.准确测求土的先期固结压力[J].大坝观测与土工测试,2000,24(4):48-49
    魏汝龙.正常压密粘土的本构定律[J].岩土工程学报.1981,3(3):10-18
    魏汝龙 著.软粘土的强度和变形[M].北京:人民交通出版社,1987
    魏星,黄茂松.天然结构性黏土的各向异性边界面模型[J].岩土工程学报.2007,29(8):1224-1229
    吴长富.杭州地区土性概率特征及单桩承载力可靠度研究[博士学位论文].杭州:浙江大学.2005
    吴长富,朱向荣,刘雪梅.杭州地区典型土层抗剪强度指标的变异性研究[J].岩土工程学报.2005,27(1):94-99
    吴义祥.工程粘性土微观结构的定量评价[J].中国地质科学院院报.1991,(23):143-150
    厦佳,陈新民.南京地区近代河漫滩淤泥质土的工程地质特性[J].南京建筑工程学院学报.1991,(2):55-59
    薛传东,谈树成,李峰 等.昆明盆地第四系粘性土中的粘土矿物与地面沉降[J].岩石矿物学杂志.2001,20(4):437-440
    谢定义.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35-41
    谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999, 21(6):651-636
    谢宁,孙钧.上海地区饱和软粘土流变特性[J].同济大学学报.1996,24(3):233-237
    谢宁,姚海明.土流变研究综述[J].云南工业大学学报.1999,15(1):52-56
    熊传祥.软土结构性与软土地基损伤数值模拟[博士学位论文].杭州:浙江大学.2000
    熊传祥 龚晓南.一种改进的软土结构性弹塑性损伤模型[J].岩土力学,2006,27(3):395-398
    熊恩来,阮永芬,刘文连.昆明泥炭、泥炭质土的力学特性研究[J].土工基础.2006,20(1):53-56
    熊兴邦,陈钟.固结系数的计算方法[J].工程勘察,1994,(6):17-21
    徐定.福州软土地区上浅基的岩土工程问题[J].岩土力学.1993,14(3):73-80
    徐志英,沈珠江.高尾矿坝地震液化和稳定分析[J].岩土工程学报,1981,3(4):22-31
    杨诗骞.对厦门淤泥地基处理方法的探讨[J].厦门科技.1995,(3):21-22
    杨顺安,冯晓腊,张聪辰 著.软土理论与工程[M].北京:地质出版社,2000
    E.W.Brand,R.P.Benner编著 叶书麟,宰金璋,史佩栋 等 译校 软粘土工程学[M].北京:中国铁道出版社,1991
    殷德顺,任俊娟,和成亮 等.一种新的岩土流变模型元件[J].岩石力学与工程学报.2007,26(9):1899-1903
    殷宗泽.一个土体的双屈服面应力应变模型[J].岩土工程学报.1988,10(4):64-71
    殷宗泽,张海波,朱俊高等.软土的次固结[J].岩土工程学报,2003,25(5):521-526
    余平安,赵群霞.先期固结压力图解法电算程序[J].勘察科学技术,1999(1):24-25
    余湘娟,殷宗泽,董卫军.荷载对软土次固结影响的试验研究[J].岩土工程学报.2007,29(6):913-916
    喻维选,杨长安.深圳湾软土的次固结变形特性[J].兰州铁道学院学报.1999,18(2):39-42
    俞尧良.杭州软土特征及软基加固方法的合理选择[J].中南公路工程.2002,27(1):42-44
    袁静,龚晓南,刘兴旺 等.软土各向异性三屈服面流变模型[J].岩土工程学报.2004,26(1):88-94
    曾国熙,王铁儒,顾尧章.砂井地基的若干问题[J].岩土工程学报.1981,3(3):74-81
    詹美礼,钱家欢.软土流变特性试验及流变模型[J].岩土工程学报.1993,15(3):54-62
    章根德 著.土的本构模型及其工程应用[M].北京:科学出版社 1995
    张超杰.结构性软土的弹粘塑性固结性状研究[博士学位论文].杭州:浙江大学,2003
    张诚厚.两种结构性粘土的土工特性[J]水利水运科学研究.1983,(4):65-71
    章定文,刘松玉,于新豹.连云港海相软土特性研究[J].华中科技大学学报(城市科学版).2003,20(4):71-74
    章根德 著 土的本构关系及其工程应用[M].北京:科学出版社,1995
    张芳枝,陈晓平,黄国怡.珠江三角洲饱和软粘土的固结特性试验研究[J].岩土力学.2003,(24增刊):192-194
    张惠明,徐玉胜,曾巧玲.深圳软土变形特性与工后沉降[J].岩土工程学报.2002,24(4):509-514
    张军辉,缪林昌.连云港海相软土流变特性试验及双屈服面流变模型[J].岩土力学.2005,26(1):145-149
    张矿生,钟辉虹.流变性粘土变形特性的弹/粘塑性研究[J].株洲工学院学报.2003,17(2):92-95
    张敏江,姚敏,邱欣 等.辽南海积软土流变本构模型的研究[J].沈阳建筑工程学院学报(自然科学版).2003,19(4):260-263
    张书宪.用计算机绘图确定先期固结压力的一种方法[J].岩土工程界,2000,3(8):45-46
    张贤奎.汕头市软土的分布及工程地质特性[J].西部探矿工程.2001,增刊(021):137-139
    张仪萍,俞亚南,张土乔等.室内固结系数的一种推算方法[J].岩土工程学报,2002,(9):616-618
    张勇,孔令伟,孟庆山等.武汉软土固结不排水应力应变归一化特性分析[J].岩土力学 2006,27(9):1509-1518
    张宗诂.我国黄土类土显微结构的研究[J].地质学报,1964(03)
    钟晓雄,袁建新.散粒体的微观组构与本构关系[J].岩土工程学报,1992,4(增刊):39-48
    赵宁,卓家寿.动力分析的刚体-界面元与有限元耦合法[J].河海大学学报,1994,22(6):8-15
    赵锡宏.损伤土力学[M].上海:同济大学出版社,2002
    赵志远.考虑土体结构性的修正邓肯-张模型[硕士学位论文].杭州:浙江大学,2003
    周龙翔,童华炜,王梦恕等.广州软土的工程特性及地基处理方法的对比研究[J].北京交通大学学报.2006,30(1):17-20
    周秋娟,陈晓平.软土蠕变特性试验研究[J].岩土工程学报.2006,28(5):626-630
    周先贵,曹国金.岩土力学数值方法研究进展[J].建筑技术开发.2002,29(8):15-18
    周小平.宁波地区软土地基设计及处理之要点[J].有色冶金设计与研究 1995,16(2):50-54
    朱向荣,潘秋元,卞守中等.超载预压加固宁波机场场道软基[J].岩土工程学报.1992,14(增刊):30-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700