RNAi靶向人端粒酶逆转录酶基因治疗大肠癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的构建含有小发夹RNA (shRNA)的针对hTERT基因的重组真核质粒pGPU6/GFP/Neo-hTERT-shRNA,并探讨RNA干扰人端粒酶逆转录酶(human telomerase reverse transcriptase, hTERT)的表达对大肠癌SW480细胞凋亡的影响。
     方法设计合成3条针对hTERT基因的siRNA,将筛选出最有效的siRNA合成shRNA寡核苷酸片段插入到真核质粒pGPU6/GFP/Neo中,进行酶切和测序鉴定。将构建好的重组真核质粒pGPU6/GFP/Neo-hTERT-shRNA,采用脂质体法转染人大肠癌SW480细胞。在荧光显微镜下观察细胞转染效率及细胞形态学变化。RT-PCR法检测不同转染时间SW480细胞中hTERTmRNA的表达水平。TRAP-PCR-ELISA法检测转染48小时后SW480细胞的端粒酶活性。免疫组化法检测SW480细胞中hTERT蛋白的表达。流式细胞仪检测转染后细胞周期分布。TUNEL法检测转染后细胞凋亡状况。激光共聚焦显微镜观察细胞线粒体跨膜电位(MMP)的变化。透射电镜观察转染后细胞超微结构。
     结果将筛选出干扰效率较好的的siRNA序列合成shRNA片段后,将其成功插入质粒pGPU6/GFP/Neo中,构成重组真核质粒pGPU6/GFP/ Neo-hTERT-shRNA。SW480细胞以质粒与脂质体比例为1:2.5、转染48h时的转染效率较高,其转染率达59%。RT-PCR结果显示,hTERT-shRNA组的hTERTmRNA表达水平在转染48h时降低较明显,与空白组、脂质体组、NC-shRNA组比较,抑制率分别是39.20%,33.28%,27.95%。TRAP-PCR-ELISA结果示,hTERT-shRNA组SW480细胞端粒酶活性显著降低18.7%,与其它三组比较,差别均有统计学意义(P<0.05)。免疫组化结果示,hTERT-shRNA组被染色的阳性细胞明显少于其他组,经病理图像分析软件分析灰度值后得出,转染48h后hTERT-shRNA组与空白组比较,差异有明显统计学意义(P<0.05),同时与脂质体组和NC-shRNA组比较,差异均有统计学意义(P<0.01)。流式细胞仪结果示,hTERT-shRNA组G0/G1期细胞显著增加,S期细胞减少,提示hTERT-shRNA质粒转染SW480细胞后,使进入静止状态的细胞增多,细胞增殖指数下降约14.2%,与NC-shRNA组比较,差别有显著统计学意义(P<0.05)。TUNEL结果示,与其他组比较,hTERT-shRNA组凋亡细胞数显著增多,凋亡指数为21.5%,明显比其他组增高,差异有统计学意义(P<0.01)。激光共聚焦显微镜观察结果,hTERT-shRNA组可见多个含有核分裂相的细胞,细胞Rh123荧光强度明显增强,MMP显著下降,与其他组比较,差异有统计学意义(P<0.01)。透射电镜观察结果示,SW480细胞体积明显缩小,表面突起及微绒毛减少,甚至消失,细胞核固缩,染色质不均匀地沿核膜下聚集,空泡增多。
     结论成功构建了针对hTERT基因的重组真核表达质粒pGPU6/GF P/Neo-hTERT-shRNA。它能有效沉默hTERT基因,因而能有效抑制人大肠癌SW480细胞增殖生长,降低端粒酶活性,最终促使肿瘤细胞凋亡。
     目的研究靶向hTERT基因的重组质粒pGPU6/GFP/Neo-hTERT-shRNA对人大肠癌SW480细胞裸鼠移植瘤的治疗作用。
     方法于裸鼠右侧腋下皮下注射人大肠癌SW480细胞建立大肠癌移植瘤动物模型,待肿瘤长到一定大小时,随机分为生理盐水组(NS组)、NC-shRNA组和hTERT-shRNA组。各组连续进行相应治疗6次后,观察肿瘤的生长状况,测量肿瘤体积,绘制肿瘤生长曲线,HE染色观察肿瘤组织细胞形态学变化,免疫组化法检测移植瘤组织中hTERT蛋白的表达,TUNEL法检测肿瘤组织中细胞凋亡情况,RT-PCR法检测瘤组织中hTERTmRNA的表达,PCR-TRAP-ELISA法检测肿瘤组织的端粒酶活性。
     结果所有裸鼠在接种SW480细胞第14天后,皮下肿瘤结节直径达5-7mm,成功构建了裸鼠移植瘤模型,成瘤率为100%。荷瘤裸鼠开始治疗后,hTERT-shRNA组瘤体积增长速度慢于NS组和NC-ShRNA组,并于第18天开始明显减慢。HE染结果示,hTERT-shRNA组肿瘤组织出现局部坏死区,瘤组织细胞形态发生明显改变。免疫组化法检测结果示,hTERT-shRNA组肿瘤组织中hTERT蛋白表达水平下降,可见少量hTERT蛋白阳性细胞,细胞呈浅棕色。TUNEL法检测结果示,hTERT-shRNA组凋亡细胞数明显增多,细胞分布密集,与NS组和NC-shRNA组比较,凋亡指数分别增加29.4%和31.1%,差异有显著统计学意义(P<0.01);RT-PCR法检测结果示,hTERT-shRNA组hTERT mRNA表达水平较NS组和NC-shRNA组分别下降52.1%和48.3%,差异具有显著性意义(P<0.01)。PCR-TRAP-ELISA法检测结果示,hTERT-shRNA组与NS组和NC-shRNA组比较,端粒酶活性降低较明显,抑制率分别为48.5%和53.0%,差异有统计学意义(P<0.05)。
     结论重组质粒pGPU6/GFP/Neo-hTERT-shRNA通过下调hTERTmRNA和hTERT蛋白的表达,促进肿瘤细胞的凋亡,从而抑制大肠癌移植瘤的生长。
Part I:Constuction of shRNA recombinant eukaryotic expression vector and the effect on apoptosis of colorectal cancer SW480 cells
     Objective To construct the recombinant eukaryotic plasmid containing small hairpin RNA (shRNA) targeting hTERT and investigate the effect of RNA-mediated interference hTERT (human telomerase reverse transcriptase,hTERT) expression on the biological behaviour of colorectal cancer sw480 cells.
     Methods Three small interfering RNA (siRNA) targeting hTERT gene were synthesized chemically, one pair of siRNA fragments which had the most silencing effect was synthesized into oligodeoxynucleotide fragment,and constructed into eukaryotic vector pGPU6/GFP/Neo.The recombinant eukaryotic vector pGPU6/GFP/Neo was identified by restriction enzyme digestion and sequencing.The constructed recombinant eukaryotic vector pGPU6/GFP/Neo-hTERT-shRNA was transfected into human colorectal cancer SW480 cells by lipofectamine.Cells carrying efficiency and morphology changes was observed by fluorescence microscope.The expression level of hTERT mRNA in SW480 cells in different times was detected by RT-PCR analysis. The telomerase activity of SW480 cells after transfected 48h was examined by TRAP-PCR-ELISA analysis.The hTERT protein expression of SW480 cells was detected by immunohistochemical method.The distribution of cell cycle was analyzed by FCCS.The apoptosis changes of SW480 cells were monitored by TUNEL assay.The changes of mitochondrial membrane potential (MMP) were detected by laser confocal microscope. The ultrastructure changes of SW480 cells after transfected was examined by TEM (The transmission electron microscope).
     Results The shRNA fragment was successfully inserted into the eukaryotic plasmid pGPU6/GFP/Neo to constitute recombinant eukaryotic plasmid pGPU6/GFP/Neo-hTERT-shRNA.The transfection efficiency of SW480 cells was higher when the ratio of plasmid and Lipofectamine at 1:2.5 and transfected 48h, and the transfected percentage of cell is 59%. RT-PCR assay showed that the hTERTmRNA expression level of hTERT-shRNA group reduced remarkably, compared with the blank group, liposome group, NC-shRNA group, its inhibition rate was respectively 39.2%,33.28%, 27.95%. TRAP-PCR-ELISA showed that the telomerase activity in the hTERT-shRNA group after transfection decreased for 18.7% significantly,compared with another three groups,the difference was statistic significance(P<0.05).Immunohistochemistry assay showed that the number of stained positive SW480 cell in hTERT-shRNA group was less markedly than that of in other three groups. Through pathological image software assay, the difference between hTERT-shRNA group and blank group had clear statistic significance (P<0.05), as well as there were statistic significance compared with Lipofectamine group and NC-shRNA group (P<0.01).FACS method showed that the SW480 cells number at phase G0/G1 increased obviously in hTERT-shRNA group. This pointed out that the silence S W480 cells increased after transfection plasmid hTERT-shRNA, compared with NC-shRNA group, the proliferation index(PI) went down about 14.2%,there was obvious statistics significance (P<0.05). TUNEL assay showed that the number of apoptotic cells for hTERT-shRNA group increased remarkably and the apoptosis index(AI) was evidently higher than that of other groups, it had obvious statistics significance (P<0.01). Transmission Electron Microscope assay showed that nucleolus fissions seen in some cells, MMP went down markedly and fluorescent intensity of Rh 123 enhanced for hTERT-shRNA group, compared with other groups, the difference had statistic significance(P<0.01). Transmission Electron Microscope:the volume of SW480 cells got smaller significantly, the minovillus and protrusions reduce, some disappeared even, chromatin gathered unevenly along the nuclear membrane. Lunularosome could be seen and more vacuolizations increased in part of cells.
     Conclusions Recombinant eukaryotic expression vector pGPU6/GFP/ Neo-hTERT-shRNA targeting hTERT gene was successfully construct.It c ould silence hTERT gene effectively, be able to inhibit the proliferation andgrowth of human colorectal cancer SW480 cells, reduce the telomer ase activity and promote apoptosis of tumor cells finally.
     Objective To investigate the treatment effect of recombinant plasmid pGPU6/GFP/Neo-hTERT-shRNA targeting hTERT gene on human colorectal cancer SW480 cells in transplanted nude mice.
     Methods Human colorectal cancer SW480 cells were subcutaneously implanted under the skin of the right armpit to establish nude mice models of colorectal cancer, after the tumors grew to a definite size, the mice were randomly divided into three groups:normal saline (NS group), NC-shRNA group and hTERT-shRNA group. Each group was respectively treated for 6 consecutive times, the growth status of the tumor was observed, tumor volume was measured, tumor growth curve was drawn, tumor tissue morphology was observed with HE staining, the expression of hTERT protein in the tumor was detected by immunohistochemistry, cell apoptosis was inspected by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling(TUNEL), the expression of hTERT mRNA was checked by RT-PCR and the telomerase activity was detected by PCR-TRAP-ELISA.
     Results All nude mouce after implanted SW480 cells subcutaneously at the 14th day had formed tumors and the diameters of tumor nodules were up to 5-7mm.The transplanted nude mice models had been constructed successfully. The rate is of 100% into tumors.After nude mouce starting treatment, the growth of tumor volume in hTERT-shRNA group became slower than the NS group and the NC-ShRNA group, and significantly slower at the beginning of the 18th days. HE assay showed that partial tumor tissue in hTERT-shRNA group presented necrosis and tumor cells morphology changed obviously. Immunohistochemistry detection showed that the expression levels of hTERT protein in tumor tissue of hTERT-shRNA group decreased, and a small amount of hTERT protein positive cells had been seen. TUNEL assay showed that the number of apoptotic cells in hTERT-shRNA group increased significantly and distributed densely. Compared with the NS group and the NC-shRNA group, the apoptosis index in hTERT-shRNA group increased by 29.4% and 31.1% separately,the difference was statistically significant (P<0.01). RT-PCR analysis showed that the expression levels of hTERT mRNA in hTERT-shRNA group compared with NS group and NC-shRNA group decreased by 52.1% and 48.3% respectively,and the differences were significant(P<0.01).PCR-TRAP-ELISA analysis showed that the telomerase activity of hTERT-shRNA group was observably lower than NS group and NC-shRNA group, the inhibition rates were 48.5% and 53.0% respectively, the differences were statistically significant (P<0.05).
     Conclusions Recombinant plasmid pGPU6/GFP/Neo-hTERT-shRNA inhibits the growth and promotes apoptosis of implanted human colorectal cancer by down-regulating the expression of hTERT mRNA和hTERT protein in tumor tissues.
引文
[1]Huerta S. Recent advances in the molecular diagnosis and prognosis of colorectal cancer [J].Expert Rev Mol Diagn 2008,8:277-88.
    [2]Chua YJ, Zalcberg JR. Progress and challenges in the adjuvant treatment of stage II and III colon cancers [J].Expert Rev Anticancer Ther 2008; 8:595-604.
    [3]Zhou XH, Wei X, Huang ZS, Cen C, Yin YX, Qin YQ, Su QB。Effects of matrine on proliferation and telomerase activity of colon cancer SW1116 cells [J].Zhong Yao Cai,2009,32(6):923-5.
    [4]Manoharan M. RNA interference and chemically modified siRNAs [J].Nucleic Acids Res Suppl 2003,3:115-6.
    [5]Fang Lin, Rui Wang, Jian-Jun Shen, Xi Wang,Ping Gao, Ke Dong Hui-Zhong Zhang Knockdown of RCK/p54 expression by RNAi inhibits proliferation of human colorectal cancer cells in vitro and in vivo Cancer[J]. Cancer Biol Ther,2008,7(10):1669-76.
    [6]Alan E. Bilsland, Stacey Hoare, Katrina Stevenson, Jane Plumb et al. Dynamic Telomerase Gene Suppression via Network Effects of GSK3 Inhibition[J].PLoS ONE,2009,4(7):6459.
    [7]Palm W, De Lange T.How shelterin protects Mammalian telomeres [J]. Annu Rev Genet 2008,42:301-334.
    [8]Keith WN, Bilsland AE.Targeting telomerase:Therapeutic options for cancer treatment. Telomeres and Telomerase in Ageing, Disease, and Cancer [J].Berlin:Springer-Verlag,2008,247-283.
    [9]Atkinson SP, Hoare SF, Glasspool RM, Keith WN. Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters [J].Cancer Res,2005,65:7585-90.
    [10]Kyo S, Takakura M, Fujiwara T, Inoue M. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers.Cancer Sci,2008,99:1528-1538.
    [11]Harley CB. Telomerase and cancer therapeutics [J].Nat Rev Cancer 2008,8:167-179.
    [12]Helder MN, Wisman GB, van der Zee GJ. Telomerase and telomeres: From basic biology to cancer treatment [J].Cancer Invest,2002, 20:82-101.
    [13]Lledo SM, Garcia-Granero E, Dasi F, Ripoli R, Garcia SA, Cervantes A, et al. Real-time quantification in plasma of human telomerase reverse transcriptase (hTERT) mRNA in patients with colorectal cancer[J].Colorectal Dis,2004,6(4):236-42.
    [14]Fire A, Xu S, Montgomery MK, Kostas SA, et al. Potent and specificgenetic interference by double-stranded RNA in Caenorhabditis elegans [J].Nature,1998,391 (6669):806-811.
    [15]S.M.Hammond, E.Bernstein, D.Beach, GJ. Hannon.An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J].Nature,2000,404(6775):293-296.
    [16]P.D. Zamore, T.Tuschl, P.A. Sharp, D.P. Bartel. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals [J].Cell,2000,101(1):25-33.
    [17]S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K.Weber, T. Tuschl.Duplexes of 21-nucleotide RNAsmediate RNA interference in cultured mammalian cells [J].Nature,2001,411(6836):494-498.
    [18]Antonio Strillacci, Cristiana Griffoni, Maria Chiara Valerii, Giorgia Lazzari, Vittorio Tomasi, Enzo Spisni.RNAi-Based Strategies for Cyclooxygenase-2 Inhibition in Cancer [J].Journal of Biomedicine and Biotechnology,2010,11:1155.
    [19]Elbashir SM, Harborth J, LendeckelW, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature,2001,411 (6836):494-498.
    [20]余利红余新炳项鹏neurona tin shRNA真核表达载体的构建及其生物学功能[J].中国生物工程杂志,2009,30(3):97-102.
    [21]Harborth J, Elbashir S M, Vandenburgh K, et al. Sequence, chemical,and structural variation of small interfering RNAs and short hairp in RNAs and the effect on mammalian gene silencing [J].Antisense Nucleic Acid Drug Dev,2003,13(2):83-105.
    [22]Thijn R Brummelkamp, Rene Bernards, Reuven Agami. Stable suppression of tumorigenicity by virus-mediated RNA interference [J].Cancer Cell,2002,2(3),243-247.
    [23]王建辉 雷小婷 赵国强 张国俊FasL基因siRNA真核表达载体的构建及意义[J].山东医药,2009,49(7):35-7.
    [24]Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucle-otide RNAs [J].Genes,2001,15:188-200.
    [25]Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucle-otide RNAs [J].Genes 2001,15:188-200.
    [26]Bakalova R. RNA interference-about the reality to be exploited in cancer therapy [J].Methods Find Exp Clin Pharmacol 2007,29:417-21.
    [27]Waseem T. RNA interference:A potential revolution in disease therapy [J].Coll Physicians Surg Pak,2006,16:491-2.
    [28]Bagasra O. RNAi as an antiviral therapy [J]. Expert Opin Biol Ther 2005,5:1463-74.
    [29]陈连旭 傅欣 王海军 林霖 魏学磊 张继英 于长隆NF-κ Bp65特异性siRNA的筛选和功能鉴定[J].中国运动医学杂志2008,27(1):72-77.
    [30]Ui-Tei K,Naito Y,Takahashi F,et al.Guidelines for the selection of highly effective siRNA sequences for mammalian and click RNA interference [J].Nucleic Acids Res,2004,22:936-948.
    [31]Schwarz DS, Hutvagner G, Du T,et al.Asymmetry in the assembly of the RNAi enzyme comPlex [J].Cell,2003,115:199-208.
    [32]李保顺等.hTERT siRNA对肺癌细胞及肺癌移植瘤生长抑制的研究.硕士研究生毕业论文.2006.
    [33]Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference [J].Nat Biotechnol,2004,22(3):326.
    [34]Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate [J].Embo,2001,20(23):6877.
    [35]Masood A Shammas, Hemanta Koley, Ramesh B Batchu.Telomerase inhibition by siRNA causes senescence and apoptosis in Barrett's adenocarcinoma cells:mechanism and theraPeutic potential [J].Molecular cancer,2005,24(4).
    [36]Barbara A, Kosciolek, Kriton Kalantidis,Ihhibition of Telomerase Activity in Human Cancer Cells by RNA Interference [J].Molec μ lar Cancer TheraPeutics,2003,2:209-216.
    [37]Xiao-Hua Fu, Jian-Song Zhang, Na Zhang.Combination of telomerase antisense oligonucleotides simμltaneously targeting hTR and hTERT Produces synergism of inhibition of telomerase activity and growth in human colon cancer cell line [J].World Gastroenterol 2005, 11(6):785-790.
    [38]Nykanen A, Haley B, Zamore PD. ATP requirement sand small interfering RNA st ructure in the RNA interference pathway. Cell, 2001,107(3):309.
    [39]Arendt CW, Tang G, Zilberstein A. Vector systems for the delivery of small interfering RNAs:managing the RISC [J].ChemBioChem 2003, 4:1129-36.
    [40]Kwak YD, Koike H, Sugaya K. RNA interference with small hairpin RNAs transcribed from a human U6 promoter-driven DNA vector [J].Pharmacol Sci,2003,93:214-7.
    [41]Yu J Y, DeRuiter SL, Turner DL et al. RNA interference by expression of short interfering RNAs and hairpin RNAs in mammalian cells [J].Proc Natl Acad Sci USA,2002,99(9):6047.
    [42]张士龙 董继华 曾甫清 朱朝辉 彭世波 汪良 DNA甲基转移酶3b催化区保守序列shRNA真核表达载体构建[J].华中医学杂志2008,32(4):265-7.
    [43]Tuschl T. ExPanding small RNA interference [J].Nat Biotech,2002, 20:446-8.
    [44]Pmsher DC, Eckenrode VI, Ward W W, et al. Primary Structure of the Aequorea Victoria green fluorescent protein [J].Gene,1992,111(2): 229-33.
    [45]Cormack B P, Valdivia R H, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP) [J].Gene,1996,173 (1):33-8.
    [46]刘莉,周政,采克俊,张易祥,何湃,曹访.EGFP-LacZ双报告基因真核表达载体的构建及体外表达[J].中国生物工程杂志,2009,29(1):65-69.
    [47]Glasgow JN, Everts M, CurielDT. Transductional targeting of adenovirus vectors for gene therapy [J].Cancer Gene Ther,2006, 13(9):830-844.
    [48]高兴成,黄伟佳,钟剑锋,刘平,陈志勇,赖永通.脂质体介导的端粒酶反义寡核苷酸在人膀胱癌EJ细胞中的转染率及稳定性[J].中华实验外科杂志,2006,23(7):856-857.
    [49]Klinik F. Telomerase inhibition by an siRNA directed against hTERT leads to telomere attrition in HT29 cells [J]. Oncol Rep,2006, 16(2):423-8.
    [50]张汝钢,房殿春,高春芳.人端粒酶逆转录酶RNA干扰对结肠癌细胞生物学行为的影响[J].胃肠病学和肝病学杂志.2009,18(3):342-246.
    [51]Naira Baregamian, Jun song, C.Eric Bailey, John Papaconstantinou, B. Mark Evers. Tumor necrosis factor-α and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis[J]. Oxidative Medicine and Cellular Longevity,2009,2(5):297-306.
    [52]Gupta S.Molecular signaling in death recePtor and mitochondrial Pathways of apoptosis [J].Int J Oncol,2003,22(1):15-20.
    [53]Zimmermann KC, Green DR.How cells die:Apoptosis Pathways [J].Allergy Clin Immunol,2001,108(4):99-103.
    [54]Haeberlein SL.Mitochondrial function in aPoPtotic neuronal cell death [J].Neurochem Res,2004,29(3):521-530.
    [55]王新生,骆抗先,朱幼芙,等.肝细胞癌电镜下细胞凋亡的自然状态观察[J].中国癌症杂志,1998;8(2):94-6.
    [56]Laura J. Ng, Jennifer E. Cropley, et al. Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription [J]. Nucleic Acids Res,2009,37(4):1152-9.
    [57]Liang QL, Shi HZ, Qin XJ, et al. Diagnostic accuracy of tumor markers for malignant pleural effusion:a meta-analysis [J]. Thorax, 2008,63(1):35-41.
    [58]唐孝青,李斌,伍小兵,等.绿色荧光蛋白及其应用的研究进展[J].陕西农业科学,2007,1:123-5.
    [59]Timmons L, Becker J, Barthmaier P, et al. Green fluorescent protein/beta-galactosidase double reporters for visualizing Drosophila gene expression patterns [J]. Dev Genet,1997,20(4):338-347.
    [60]Castro PH, Oppermann M, Weiss Y, et al. Reporter gene recombination in juxtaglomerular granular and collecting duct cells by human renin promoter-Cre recombinase transgene [J]. Physiol Genomics,2006, 25(2):277-85.
    [61]Lepore DA, Thomas GP, Knight K R, et al. Survival and differentiation of pituitary colony-forming cells in vivo [J]. Stem Cells,2007,25(7):1730-6.
    [62]Goring D R, Rossant J, Clapoff S, et al.In situ detection of beta-galactosidase in lenses of transgenic mice with a gamma-crystallin/LacZ gene [J]. Science,1987,235(4787):456-8.
    [63]Sanes JR, Rubenstein JL, Nicolas JF. Use of a recombinant retrouvirus to study post-implantation lineage in mouse embryos [J].EMBO,1986,5(12):3133-42.
    [64]Tuschl T. Expanding small RNA interference [J].Nat Biotech,2002, 20:446-448.
    [65]Ui-Tei K,Naito Y,Takahashi F,et al.Guidelines for the selection of highly effective siRNA sequences for mammalian and click RNA interference [J].Nucleic Acids Res,2004,22:936-948.
    [66]Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference [J].Nat Biotechnol,2004,22:326-33.
    [1]Huerta S. Recent advances in the molecular diagnosis and prognosis of colorectal cancer [J]. Expert Rev Mol Diagn 2008,8:277-88.
    [2]张巍,邓明明,王开正.SELDI蛋白质芯片技术在结直肠癌临床诊断中的应用研究[J].泸州医学院学报,2010,33(1):5-10.
    [3]中华人民共和国卫生部.2008中国卫生统计年鉴[M].北京:中国协和医科大学出版社,2008:52-53.
    [4]聂绍发,姚璇,朱桂荣,等.武汉市大肠癌危险因素的2:3配比病例对照研究[J].中国公共卫生,2003,29(23):2593-2595.
    [5]顾晋.下消化道肿瘤学[M].北京:北京大学医学出版社,2004:2-7.
    [6]杨剑锋,张森,高枫,陈利生.结直肠癌肝转移动物模型的建立[J].结直肠肛门外科,2009,15(3):139-143.
    [7]张树春,白松,邵佳发,周媛媛.大肠癌基因治疗的研究进展[J].河南外科学杂志,2009,15(6):59-61.
    [8]王学虎,傅仲学.结直肠癌基因治疗研究进展[J].现代医药卫生,2009,25(13):2013-14.
    [9]田相龙,钟捷.大肠癌基因治疗研究进展[J].国际消化病杂志,2008,28(2):148-151.
    [10]何庆泗,魏冬,牛洪欣,谭伟,王琰珉.TK/GCV、CD/5-Fc双自杀基因系统治疗人结肠癌的动物实验研究[J].山东大学学报,2006,44(10):1053-6.
    [11]Fearon ER Vogelstein B. A genetic model for colorectal tumorigenesis [J].Cell,2004,118(6):671.
    [12]Lled S, Alfonso R,Alio SF, et al. Antisense gene therapy using anti-k-ras and anti telomerase oligonucleotides in colorectal cancer [J]. Rev EspEnferm Dig,2005,97(7):472-480.
    [13]牟江洪,李增鹏,王东,等.大肠癌多种肿瘤标志物蛋白芯片联合检测及其在诊断中的意义[J].消化外科,2005,4(4):268-270.
    [14]何奇.大肠癌标本端粒酶活性检测的应用价值[J].Westchina medical joumal,2007,22(1):12-13.
    [15]Shammas MA, Koley H, Batchu RB, et al. Telomerase inhibition by siRNA causes senescence and apoptosis in Barrett's adenocarcinoma cells:mechanism and therapeutic potential [J]. Mol Cancer,2005, 4(1):24.
    [16]Lin SY, Elledge SJ. Multiple tumor suppress or pathways negatively regulate telomerase [J]. Cell,2003,113 (27):881-9.
    [17]Rahman R, Latonen L, Wiman KG. hTERT antagonizes p53-induced apoptosis independently of telomerase activity [J]. Oncogene,2005, 24(8):1320-27.
    [18]Crea F, SartiD, Falciani F, et al. Over expression of hTERT in CHOK1 results in decreased apoptosis and reduced serum dependency [J].Biotechnol,2006,121(2):109-123.
    [19]Nakamura M, Masutomi K, Kyo S, et al. Efficient inhibition of human telomerase reverse transcriptase expression by RNA interference sensitizes cancer cells toionizing radiation and chemotherapy [J]. Hum Gene Ther,2005,16(7):859-68.
    [20]BERNSTEI NE, CAUDY A A, HAMMOND SM, et al. Role for abidentate in the initiation step of RNA interference [J].Nature,2001, 409(6818):363-6.
    [21]Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded anti-sense siRNAs guide target RNA cleavage in RNAi [J]. Cell,2002, 110(5):563-74.
    [22]Paddis on PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells [J].Proc Natl Acad Sci.USA, 2002,99(3):1443-8.
    [23]毕允力高解春.5-Fu对表达胞嘧啶脱氨酶的人肾母细胞瘤裸鼠异种移植瘤[J].中华肿瘤杂志,2000,22(2):113-115.
    [24]陈陵际,等.运用人癌裸小鼠移植瘤模型进行抗癌新药评价[J].上海实验动物科学.2001,21(4):247-250.
    [25]张东兴,颜登国,赵丙波.人大肠癌裸鼠皮下移植瘤模型的建立[J].贵阳医学院学报,2010,135(3):247-250.
    [26]Yamamoto C, Takemoto H, Kuno K, et al. Cyclopmdigiosin hydrochloride,a new H(+)/CI(-) symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice [J].Hepatology,1999,30(4):894-902.
    [27]Yili Z, Ni S, Yang X, et al. Xenograft models for liver metastasis: Relationship between tumor morphology and adenovirus vector transduction [J].MolTher,2004,9(5):650-7.
    [28]Xie Q, Liang BL, Jiang XQ, et al. Hepatic metastasis of human colon carcinoma:establishment of a nude mouse model and its magnetic resonance imaging [J].Nan Fang Yi Ke Da Xue Xue Bao,2008,28(1):97-100.
    [29]黎成金,王羊,张宝,王烈.裸鼠结肠癌肝转移模型的建立[J].肝胆外科杂志,2008,16(4):308-310.
    [30]Genot D,Guerin E,Aguillon Romain S,et al. Primary tumour genetic alterations and intra-tumoral heterogeneity are maintained in xenografts of human colon cancers showing chromosome instability [J].Pathol,2006(5):643-652.
    [31]宋晖,辛晓燕,肖锋,赵海波,张建芳,王德堂,等.Survivin基因RNAi对子宫颈癌裸鼠移植瘤生长与凋亡的影响[J].中国肿瘤生物治疗杂志,2009,16(4):374-378.
    [32]王丽芳,刘丽华,马毓梅,孟凡茹,单铁强,单保恩.香加皮三萜类化合物抑制食管癌Eca109细胞裸鼠成瘤及其机制[J].中国肿瘤生物治疗杂志,2010,17(6):620-624.
    [33]饶华民,罗庆丰,高文.hTERT蛋白在贲门癌及癌旁组织中表达的临床意义[J].实用癌症杂志,2009,24(1):26-28.
    [1]王燕,李文平.端粒与恶性肿瘤临床研究进展[J].疑难病杂志.2005,4(4):251-252.
    [2]William C, Hahn. Role of telomere and telomerase in the pathogenesis of human cancer [J].Clinical Oncology.2003,21(10):2034-43.
    [3]Meyerson M. Role of telomerase in normal and cancer cells [J].Clinical Oncology.2000,18(13):2626-34.
    [4]Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop [J].Cell.1999,97(4):503-14.
    [5]Biackbum EH. Structure and function of telomeres [J].Science.1990, 249(4968):489.
    [6]Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts [J].Nature.1990,345(6274):458-60.
    [7]Shay JW, Wright WE. Hayflick, his limit, and cellular aging. Nat Rew Mol Cell Biol.2000,1(1):72-6.
    [8]Balmain A.Cancer as a complex genetic trait:Tumor susceptibility in humans and mouse models [J].Cell.2002,108(2):145-52.
    [9]Kyle LW, Alan Bilsland,et al. TCEAL7 inhibitiong of c-Myc activity in alternative lengthening of telomerase regulate hTERT expression[J].Neo Plasia.2010,12(5):405-14.
    [10]Bilsland AE, Fletcher-Monaghan A, Keith WN. Properties of a telomerase-specific Cre/Lox switch for transcriptionally targeted cancer gene therapy [J].Neoplasia.2005,7(11):1020-9.
    [11]Perez JM, Grimm J, Josephson L, Weissleder R. Integrated nanosensors to determine levels and functional activity of human telomerase [J].Neoplasia.2008,10(10),1066-72.
    [12]Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity[J].MBO J.1992,11(5):1921-9.
    [13]杜德伟,周永兴。端粒酶与肿瘤研究新进展.国外医学肿瘤学分册.1999;26(增刊)82-84.
    [14]Johans F, Delphine TME, Jose-Arturo LV, Chantal A. Telomeric function of mammalian telomerase at short telomeres [J].2010, 123(10):1693-704.
    [15]Julieta P, Jorge A, Dorotea BF, et al. Altered mRNA expression of telomere-associated genes in monoclonal gammopathy of undetermined significance and multiple myeloma [J].MOL MED.2010, 16(11-12):471-478.
    [16]Rieko Ohkil, Fuyuki Ishikawal. Telomere-bound TRF1 and TRF2 stall the replication fork at telomeric repeats [J].Nucleic Acids Res.2004, 32(5):1627-37.
    [17]Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, et al. Specific association of human telomerase activity with immortal cell and cancer [J].Science.1994,266(5193):2011-5.
    [18]Yamada K, Yajima T, Yagihashi A, et al. Role of human telomerase reverse transcriptase and telomeric-repeat binding factor proteins land 2 in human hematopoietic cells[J].Cancer Res.2000,91(12):1278-84.
    [19]Xu D, Popov N, Hou M, et al. Switch from Myc/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells[J]. Proc Natl Acad Sci, USA.2001,98(7):3826-31.
    [20]Greenberg RA, O'Hagan RC, Deng H, Xiao Q, Hann SR, Adams RR, Lichtsteiner S, Chin L, Morin GB, DePinho RA. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation [J].Oncogene.1999, 18(5):1219-26.
    [21]Xu D,Wang Q,Gruber A,et al. Down-regulation of telomerase reverse-transcriptase mRNA expression by wild type p53 in human tumor cells [J].Oncogene.2000,19(45):5123-33.
    [22]Gunes C, Lichtsteiner S, Vasserot AP, et al. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Madl[J]. Cancer Res.2000,60(8):2116-21.
    [23]万文徽肿瘤标志临床应用于研究进展北京:北京大学医学出版社2005:233-241.
    [24]杨江山,高英堂.端粒酶活性检测方法的的研究进展.国外医学.临床生物化学与检验学分册.1999,20(6):243-7.
    [25]Miura N, Osaki Y, Nagashima M, Kohno M,et al. A novel biomarker TERTmRNA is applicable for early detection of hepatoma [J].BMC Gastroenterol,2010,18;10:46.
    [26]Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. [J].Cell.1989, 59(3):521-9.
    [27]陈意生,史景泉.肿瘤分子细胞生物学北京:人民军区出版社.2004,127-141.
    [28]Tzankov A, Pehrs AC, Zimpfer A, et al. Prognostic significance of CD44 expression in diffuse large B cell lymphoma of activated and germinal centre B cell-like types:a tissue microarray analysis of 90 cases [J]. Clin Pathol.2003,56(10):747-52.
    [29]Sehindler A, Fledler U, Meye A, et al. Human telomerase reverse transcriptase antisense treatment downregulates the viability of prostate cancer cells invitro [J]. Oncology.2001,19(1):25-30.
    [30]Kraemer K, Fuessel S, Sehlnidt U, et al. Antisense-mediated hTERT inhibition specifically reduces the gowth of human bladder cancer cells [J].Clin Cancer Res.2003,9(10-1):3794-3800.
    [31]李志高,李晓冬,王希尧,董新舒,高婧,鲁祥石.RAB5A反义寡脱氧核苷酸抑制大肠癌细胞转移侵袭的实验研究[J].哈尔滨医科大学学报.2007,41(5):425-8.
    [32]Zhang X, Mar V, Zhou W, et al. Telomerase shortening and apoptosis in telomerase-inhibition human tumor cells[J].Genes Deu,1999, 13(18):2388-99.
    [33]Lingner J, Hughes TR, Shvchenko A, et al. Reverse-transcriptase motifs in the catalytic subunie of telomerase [J].Science.1997, 276(5312):561-7.
    [34]Dietmar Jaeob, John Davis, Hongbo Zhu,et al. Suppressing orthotopic pancreatic tumor growth with a fiber-modified adenovector expressing the TRAIL gene from the human telomerase reverse transcriptase promoter [J].Clinical Cancer Research.2004,10(10):3535-41.
    [35]Yi-Gang WANG, Jin-Hui WANG, Yan-Hong ZhANQ et al. Antitumor effect of a novel adeno-associated virus vector targeting to telomerase activity in tumor cells [J].Acta Biochim Biophys Sin.2004,36(7): 492-500.
    [36]Lanson NA Jr, Friedlander PL, Schwarzenberger P,et al. Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis [J]. Cancer Research.2003,63(22):7936-41.
    [37]Park WR, Nakamura Y.p53-CSV, a novel p53-inducible gene involved in the p53-dependent cell survival pathway [J].Cancer Res.2005, 65(4):1197-1206.
    [38]Shammas MA, Koley H, Batchu RB, et al. Telomerase inhibition by siRNA causes senescence and apoptosis in Barrett's adenocarcinoma cells:mechanism and therapeutic potential [J].Mol Cancer.2005,4:24.
    [39]Vonderheide RH, Hahn WC, Schultze JL, et al. The telomerase catalytic subunit is a widely expressed tumor-assoeiated antigen recognized by cytotoxic T lymphocytes [J].Immunity.1999, 10(6):673-9.
    [40]Nguyen B, Elmore LW, Holt SE. Telomerase as a target for cancer immunology [J].Cancer Biology Therapy.2003,2(2):131-6.
    [41]Adotevi O, Mollier K, Neuveut C, Dosset M, Ravel P, Fridman WH,et al. Targeting human telomerase reverse transcriptase with recombinant lentivector is highly effective to stimulate antitumor CD8 T-cell immunity in vivo [J]. Blood,2010,115(15):3025-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700