外生菌根真菌氮、钾营养特性及其对汞胁迫的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮和钾均是树木需要量最多的必需元素,对森林的发生、发展、演替和衰亡具有极其重要的作用。在森林土壤中,绝大多数氮是植物不能直接吸收的有机氮,有效氮通常处于缺乏状态。我国南方有大面积的红壤、黄壤和石灰岩土壤,由于受到强烈淋溶等多种因素的影响,土壤有效钾含量一般较低,大部分钾是难于利用的无效钾。森林一般不施肥,主要依靠土壤供应植物的氮、钾营养。此外,汞污染是目前全球性的普遍问题,全世界每年因人类活动而释放的汞超过2909吨,中国是最大的汞污染源。在汞污染严重的地区,抑制树根吸收氮、钾等养分,妨碍树木生长发育和天然更新,最终导致森林退化和衰亡。菌根是植物根系与菌根真菌形成的共生体,是植物与真菌长期共同进化的结果。优良的外生菌根真菌与木本植物的根系形成外生菌根后,能促进树木的生长,改善它们的营养状况,提高其抗逆(干旱、病害、重金属等)能力。所以,研究外生菌根真菌的氮、钾营养特性及其对汞胁迫的反应,对于我国天然林的保护和人工林的营造,以及汞污染的土地上植树造林具有重要意义。
     试验利用源于我国南北方和国外的14株外生菌根真菌为材料。供试菌株为:彩色豆马勃Pt715(采自四川西昌桉树林)[Pisolithus tinctorius (Pers.) Coker & Couch (Strain Pt 715)],松乳菇Ld-1、Ld-2和Ld-3(采自重庆缙云山马尾松林)[Lactarius deliciosus (L.:Fr.) Gray (strain Ld-1, Ld-2 & Ld-3)],硬皮马勃Sp01(采自重庆金佛山马尾松林)[Scleroderma polyrhizum Pers. (strain Sp-01)],牛肝菌Bo 02(采自重庆金佛山马尾松林)[Boletus spp. (strain Bo-02)],褐环乳牛肝菌Sl07和Sl14(采自重庆金佛山马尾松林)[Suillus luteus(L.:Fr.) Gray (strain Sl 07 & Sl 14)],黄空柄牛肝菌Gc 99(采自内蒙古大青山)[Gyroporus cyanescens(Bull.:Fr.) Quel.(strain Gc 99)],土生空团菌Cg04(采自内蒙古大青山)[Cenococcum geophilum Fr. (strain Cg 04)],厚环乳牛肝菌Sg03(采自内蒙古大青山)[Suillus grevillei (Kl.)Sing. (strain Sg 03)],网纹灰包Lp01(采自内蒙古大青山)[Lycoperdon perlatum Pers (strain Sp 01)],乳牛肝菌Sb05(采自内蒙古大青山)[Suillus bovinus (L.:Fr.)Kuntze (strain Sb 05)],以及土生空团菌Cg SIV(采自西班牙欧洲火炬松林)[Cenococcum geophilum Fr. (Strain Cg SIV)]等。在Pachlewski液体培养基中,提供不同的氮源,加入不同浓度的钾,以及设置不同程度的汞胁迫,研究了外生菌根真菌对不同氮源(氨态氮、硝态氮、尿素和蛋白质)的利用能力;不同供钾条件下,外生菌根真菌的生长、氮磷钾吸收、有机酸分泌,草酸代谢关键酶的活性;以及汞对外生菌根真菌生长、氮磷钾吸收、有机酸分泌、氮素利用酶活性等的影响。获得主要结论如下:
     1.1多数外生菌根真菌在以铵态氮为氮源的培养基中生长良好,蛋白质氮其次,尿素和硝态氮对生长的促进作用相对较差。说明供试菌株对不同的氮源既具有偏嗜性,同时也具有多样性,可适应多种不同的生态条件。在植树造林工作中,应充分考虑土壤—菌株适配性。在供试菌株体内,均能检测到蛋白酶、几丁质酶、脲酶和硝酸还原酶,不同菌株之间酶活性差异显著。在外生菌根真菌体内,氮素利用酶的存在与活性高低是它们利用不同氮源的生理基础。
     1.2培养基中的钾离子浓度显著影响外生菌根真菌的生长。无钾生长不良,多数情况下中钾浓度适合外生菌根真菌生长。在供应低钾时,Sp01和Pt 715的生长量最大,中钾和高钾时降低,表明Sp01和Pt715可在低钾条件下正常生长,可能比较适宜缺钾的土壤。钾对外生菌根真菌含氮量的影响因菌株而异,一般以中钾或高钾时含氮量较高。除Sl14以外,培养基中较高的钾浓度在一定程度上会抑制外生菌根真菌对磷的吸收。培养基钾浓度是决定外生菌根真菌含钾量的直接原因,供钾水平的升高促进外生菌根真菌吸收钾。
     1.3 K+显著影响外生菌根真菌分泌草酸、乙酸和H+。无钾或低钾时草酸和乙酸均分泌最多,中钾或高钾时减少;多数菌株无钾或低钾时H+分泌最多,但Bo 02和Lp01、Pt715和Sb05分别在高钾和中钾时H+分泌量最大。外生菌根真菌能分泌较多的草酸、乙酸和H+可能有利于含钾矿物的风化,促进矿物结构钾和层间钾的释放,可视为外生菌根真菌活化土壤无效钾的机理之一。
     1.4缺钾提高外生菌根真菌苹果酸脱氢酶、乙醛酸脱氢酶和草酰乙酸酶的活性,其变化趋势与类似草酸分泌。推测在供钾较低时,促进外生菌根真菌草酸合成关键酶基因的表达。此外,不同菌株苹果酸脱氢酶、乙醛酸脱氢酶和草酰乙酸酶活性差异较大,推测在不同菌株体内中,上述草酸代谢途径酶的相对重要性有所不同。
     1.5在0~150gmol Hg·L-1的范围内,汞对Cg SIV生长的抑制作用不明显,在高汞浓度的培养基中生物量仅比对照减少9.7%,外生菌根真菌具有较高的耐汞性;汞虽然使Pt 715和Ld-3的生物量有所降低,但它们的生物量仍然较高。在汞胁迫条件下,外生菌根真菌的含氮量有升有降,磷、钾含量总体上增加。氮、磷、钾的吸收量Pt715和Ld-3最多。
     1.6在汞胁迫条件下,蛋白酶、几丁质酶、脲酶和硝酸还原酶的活性不同,推测外生菌根真菌可能合成对汞敏感性不同的等位酶。此外,5μmol Hg2+.L-1~50μmol Hg2+.L-1的培养基中,有关氮素利用酶的活性无显著变化甚至有所提高,推测在一定的汞污染条件下,对外生菌根真菌氮素利用能力无显著影响。值得注意的是,在正常和汞胁迫条件下,Pt 715和Ld-3的蛋白酶、脲酶、硝酸还原酶和几丁质酶的活性均最高,表现出较强的氮素利用能力。推断在汞污染的土壤上种植桉树和松树,接种Pt 715和Ld-3可能改善寄主植物的氮素营养。
     1.7在汞胁迫条件下,外生菌根真菌分泌草酸具有普遍性,菌株Sp01、Sl14和Cg04能分泌酒石酸,Sp01、Cg04和Pt715能分泌丁二酸。草酸、酒石酸和琥珀酸分泌量均表现出高汞>中汞>低汞>无汞的规律。由于草酸、酒石酸和琥珀酸具有络合汞的能力,降低外界环境和菌丝体内活性汞的浓度,故在汞胁迫的条件下外生菌根真菌分泌有机酸可视为抗(耐)汞危害的机理之一。
Nitrogen and potassium, both of which play critical roles in origin, development, succession and decline of forests, are most needed essential elements by trees. In forest ecosystems, the exchangeable N in the soil solution is very low relative to total soil N and most of the soil nitrogen is in organic form. Large areas of red, yellow and limestone soil that distribute in the south of China are leaching strongly, thus the readily available potassium in soil is also very low. Since fertilization is difficult in forest, nitrogen and potassium nutrition of plants are mainly supplied by soil. On the other hand, mercury pollution becomes a global problem due to anthropic mercury release, which is more than 2909 tons per year with the largest part contributed by China. In areas with severe mercury pollution, absorption of nutrients including nitrogen and potassium by plants is restrained, development and renewal of trees are disturbed, and ultimately lead to forest degradation and decline. Ectomycorrhizal fungi are symbiotically associated with the roots of many woody plants and can dramatically enhance plant growth. Ectomycorrhiza-forming fungi alter the nutrient-acquisition capabilities of vascular plants, and may play an important role in tolerance of plant to drought, disease and heavy metal. Therefor, studying nitrogen and potassium nutrition of ectomycorrhizal fungi and their response to mercury stress is important to natural forest protection, afforestation and tree planting on mercury contaminated soil.
     14 ectomycorrhizal fungal strains involved in this study, including Pisolithus tinctorius (Pers.) Coker & Couch (Strain Pt 715, isolated from soils under eucalyptus, Xichang, Sichuan province), Lactarius deliciosus (L.:Fr.) Gray (strain Ld-1, Ld-2 & Ld-3, isolated from soils under masson pine, Jinyun mountain, Chongqin), Scleroderma polyrhizum Pers. (strain Sp-01, isolated from soils under masson pine, Jinfo mountain, Chongqin), Scleroderma polyrhizum Pers. (strain Sp-01, isolated from soils under masson pine, Jinfo mountain, Chongqin), Boletus spp. (strain Bo-02, isolated from soils under masson pine, Jinfo mountain, Chongqin), Suillus luteus(L.:Fr.) Gray (strain Sl 07 & Sl 14, isolated from soils under masson pine, Jinfo mountain, Chongqin), Gyroporus cyanescens(Bull.:Fr.) Quel.(strain Gc 99, isolated from Daqing mountain, Inner Mongolia), Cenococcum geophilum Fr. (strain Cg 04, isolated from Daqing mountain, Inner Mongolia), Suillus grevillei (Kl.)Sing. (strain Sg 03, isolated from Daqing mountain, Inner Mongolia), Lycoperdon perlatum Pers (strain Lp 01, isolated from Daqing mountain, Inner Mongolia), Suillus bovinus (L.:Fr.)Kuntze (strain Sb 05, isolated from Daqing mountain, Inner Mongolia), Cenococcum geophilum Fr. (Strain Cg SIV, from Spain). Ectomycorrhizal fungi were cultured in Pachlewski liquid media with different nitrogen resources, different potassium concentrations or different mercury concentrations. Nitrogen utilization to different nitrogen resources (NH_4~+-N, NO_3~--N, urea and protein)by ectomycorrhizal fungi, growth rate, absorption of nitrogen, potassium and phosphorus, organic acids secretion and activities of key enzymes in oxalate metabolism pathways of ectomycorrhizal fungi under different potassium concentrations, as well as effects of mercury on growth rate, absorption of nitrogen, phosphorus and potassium, organic acids secretion and activities of nitrogen utilizing enzymes of ectomycorrhizal fungi, were studied. The result showed:
     Growth rate of most ectomycorrhizal fungi strains was promoted by ammonium as nitrogen resource. Protein was in the next place, whereas urea and nitrate performed poorly in promoting growth of ectomycorrhizal fungi. It is implied that the tested strains might not only benefit to nitrogen utilization diversity of host plants, but also favored different nitrogen sources. It suggested that the adaptation between soil and ectomycorrhizal fungal strains should be considered during afforestation. All of the four tested strains expressed protease, chitinase, urease and nitrate reductase, and there were significant differences among them. The existence and activity of nitrogen utilizing enzymes in the mycelia are the physiological basis of utilizing of different nitrogen resources by ectomycorrhizal fungi.
     Potassium concentration in the media influenced the growth rate of ectomycorrhizal fungi significantly. Growth was restrained without potassium, while most strains growed optimized in the concentration of middle-potassium. Sp 01 and Pt 715 got the fastest growth rate in low-potassium media, which suggested that Sp 01 and Pt 715 might both adapt to soils short of potassium. Effects of potassium on the nitrogen concentration of ectomycorrhizal fungi differed between strains. Higher concentration of potassium restrained phosphorus absorption by ectomycorrhizal fungi to some extents except SI 14. potassium concenteation in the media determined the potassium content in ectomycorrhizal fungal hyphae, as the increase of potassium level promoted potassium absorption by ectomycorrhizal fungi.
     K~+ affected secretion of oxalate, acetic acid and H~+ significantly. The secretion of oxalate and acetic acid reached the highest in no-K~+ or low-K~+ media, while was the lowest in middle or high-K~+ media. Most strains secreted H~+ at the utmost in no-K~+ or low-K~+ media, but Bo 02 and Lp 01, Pt 715 and Sb 05 secreted H~+ at the utmost in middle or high-K~+ media, respectively. Oxalate, acetic acid and proton secreted by ectomycorrhizal fungi may benefit to mineral weathering and the release of K trapped between clay layers.
     Activities of malate dehydrogenase, glyoxylate dehydrogenase and oxaloacetate hydrase in ectomycorrhizal fungi increased when lack of K, which showed some similarities with oxalate secretion. It suggested that low concentration of potassium may promote the expression of key enzymes in oxlate metabolism pathways. Furthermore, Activities of malate dehydrogenase, glyoxylate dehydrogenase and oxaloacetate hydrase in different strains differed siglificantly, which may imply the relative importance of these oxalate metabolism enzymes is different in different strains.
     Growth of fungal hyphae was restrained by mercury, whereas Cg SIV showed tolerance to Hg in some extent, with the least decrease on biomass. Although the biomass of Pt 715 and Ld-3 decreased by mercury treatment, their biomass are still the highest among tested strains.
     Effects of Hg on activities of nitrogen utilizing enzymes in ectomycorrhizal fungi varied with strains, enzyme categories and Hg~(2+) concentration. Since the inherited characteristics differ among strains, enzyme synthesis may vary under condition of the mercury existence, and express allozymes with different sensitivity to Hg. Moreover, low to medium Hg concentration promoted or did not affect the activities of nitrogen utilizing enzymes, which suggested that nitrogen utilization by ectomycorrhizal fungi might not be restraint or even be promoted. Activities of protease, urease, nitrate reductase and chitinase were the highest in Pt15 and Ld-3 with or without Hg treatment, which showed relatively high capacity of nitrogen utilization. Inoculating Pt715 and Ld-3 may improve nitrogen nutrition of eucalyptuses and pines planting in mercury contaminated soils.
     Under mercury stress, all of the tested strains secreted oxalate, while Sp 01, Sl 14 and Cg 04 secreted tartaric acid, and Sp 01, Cg 04 and Pt 715 secreted succinic acid. The efflux rate of oxalate, tartaric acid and succinic acid all showed the order of high Hg> middle Hg> low Hg> no Hg. Oxalate, tartaric acid and succinic acid are chelators of heavy metals, thus may reduce mercury concentration in the hyphae and the environment.
引文
[1]Smith S. E.& Read D. Mycorrhizal symbiosis 3rd ed. London:Academic Press,2008.
    [2]弓明钦,陈应龙,仲崇禄.菌根研究及应用.北京:中国林业出版社,1997.
    [3]郭秀珍,毕国昌编.林木菌根及应用.北京:中国出版社,1989.
    [4]孟繁荣.林木菌根学.哈尔滨:东北林业大学出版社,1996,159-162
    [5]陈文新.土壤与环境微生物,北京:北京农业大学出版社,1990.
    [6]王成彬,林久志.中国外生菌根资源的研究进展与展望.中国林副特产.2006.4,83(4):105-106
    [7]花晓梅.菌根概论.林木菌根研究.北京:中国科学技术出版社,1995.1-20
    [8]弓明钦.我国热带林菌根研究.热带林业.1998.26(2):57-64
    [9]雷增普.中国外生菌根研究概况.土壤学报.1994.31(增刊):1-10
    [10]陈怀满,文启孝,邢光熹.土壤一植物系统中的重金属污染.北京:科学出版社,1996,168-194
    [11]Marx D.H.&davey C.B.. The in fluence of ectotrophc mycorrhizal fungi on the resistance of Pine roots to pathogenic infeetions. Ⅲ&Ⅳ.phytoPathology.1969.59:549~ 559
    [12]Hadley G. Mycorrhiza in tropical orchids, In Varma A.ed.Proeeedings of the Fifth Asian Orehid Congress Seminar.1985.154~159
    [13]Hageman, R.H.andD. R Hucklesby. Methods in Enzymology.1971.23A:491~503。
    [14]刘旭东.中国野生大型真菌彩色图鉴.北京:中国林业出版社.2002,12
    [15]Lin Xian gui, Wang Shu guang and Shi Ya qin. Tolerance of VA Mycorrhizal Fungi to soil Acidity. Pedosphere.2001.11(2):105~113
    [16]王向华.云南乳菇属贸易种的分类学研究.云南植物研究.2000,22(4):419-427
    [17]黄亦存,黄永青,王有智.乳菇属真菌与松属植物形成的外生菌根.真菌学报.1996.15(4):278~283
    [18]杨国亭,宋关玲,高兴喜.外生菌根在森林生态系统中的重要性.(Ⅰ)-外生菌根对宿主树木的影响.东北林业大学学报.1999.27(6):72~77
    [19]王有智,黄亦存.四种外生菌根真菌产生植物激素的研究.微生物学报.1997.24(2):72~74
    [20]赵志鹏,郭秀珍.外生菌根真菌纯培养中生理活性物质代谢的研究.林业科学.1990.26(5):465~469
    [21]Kraigher H, Grayling A and Wang T.L. et al. Cytolinin production by two ectomycorrhizal fungi in liquid culture.Phytochemistry.1991.30:2249~2254
    [22]Ljungquist P.O.E.K.M and Stenstrom EIndole-3-acetic production by mycorrhizal fungi determined by gas chromatogra-phymass spectrometry.New Phytologist,.1983.94:401~407
    [23]Levisohn I.Growth stimulation of forest tree seedlings by the activity of free-living mycorrhizal mycelia.Foresty,1956.29:53~57
    [24]Boyle CD, Hellenbrand KE. Assesment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can J Bot.1990.69:1764-1771
    [25]Loewe A, Einig W et al. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol. 2000.145:565-574
    [26]Muhsin TM, Zwiazek JJ. Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytol.2002.153:153-158
    [27]Varma A. Mycorrhiza:State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics,3rd Edition. Berlin:Springer, 2008.
    [28]Nardini A, Salleo S, Lo Gullo MA, Pitt F. Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient. Plant Ecol.2000. 148:139-147
    [29]Kottke I, Munzenberger B, Oberwinkler F. Structural approach to function in ectomycorrhizae. In:Rennenberg H, Eschrich W, Ziegler H (eds) Trees-contribution to modern tree physiology.1997.Backhuys, Leiden, pp 357-376
    [30]Muhsin TM, Zwiazek JJ. Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings. Plant Soil.2002.238:217-225
    [31]Chaumont F, Moshelion M, Daniels MJ. Regulation of plant aquaporin activity. Biol Cell.2005.97:749-64
    [32]Marjanovic Z, Uehlein N, Kaldenhoff R,et al. Aquaporins in poplar:what a difference a symbiont makesl Planta.2005.222:258-268
    [33]Kohler A, Delaruelle C, Martin D, Encelot N, Martin F. The poplar root transcriptome: analysis of 7000 expressed sequence tags. FEBS Lett.2003.542:37-41
    [34]Marjanovic Z, Nehls U, Hampp R. Mycorrhiza formation enhances adaptive response of hybrid poplar to drought. Ann NY Acad Sci.2005.104(8):496-499
    [35]Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett.2005.579:5814-5820
    [36]Frettinger, P, Derory J, Herrmann S, Plomion C, Lapeyrie F, Oelmuller R, Martin F, Buscot F O Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Piloderma croceum. Planta. 2007.225:331-40
    [37]Le Quere A, Wright D, Soderstrom B, Tunlid A. Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant Microb Interact.2005.18:659-673
    [38]Sands R, Fiscus EL, Reid CPP. Hydraulic properties of pine and bean roots with varying degrees of suberization, vascular differentiation and mycorrhizal infection. Aust J Plant Physiol.1982.9:559-569
    [39]Parke JL, Linderman RG, Black CH. The role of mycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol.1983.95:83-95
    [40]Lamhamedi MS, Bernier PY, Fortin JA. Hydraulic conductance and soil water potential at the soil root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol.1992.10:231-244
    [41]Perez-Moreno J, Read DJ. Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol. 2000.145:301-309
    [42]Kennedy PG, Peay KG. Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil. 2007.291:155-165
    [43]Jany JL, Bousquet J, Khasa DP. Microsatellite markers for Hebeloma species developed from expressed sequence tags in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Ecol Notes.2003.3:659-661
    [44]Queretejeta JF, Egerton-Warburton LI, Allen MI. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia.2003.134:55-64
    [45]Caldwell MM, Dawson TE, Richards JH. Hydraulic lift:consequences of water efflux from the roots of plants. Oecologia.1998.113:151-161
    [46]雷增普,金均然,王昌温.外生菌根真菌对植物根部病虫害拮抗作用的研究.1989,25(6):502-507
    [47]Sasek V and Musiled V.Cultivation and antibiotic activity of mycorrhizal basidiomycetes.Folia Microbiol(Prague),1987.12:512~518
    [48].唐明娟,郭顺星.菌根提高植物抗病性机理的研究进展.微生物学通报.2000.27(6):446-449
    [49]陈辉,唐明.杨树菌根研究进展.林业科学.1997.33(2):183-187
    [50]壬生荣,朱克恭.植物系统获得抗病性研究进展.中国生态农业学报.2002.1O(2):32-35
    [51]唐明.陕西林木菌根研究.西安:西安地图出版社,2000
    [52]赵平娟,安锋,丁明明.菌根提高植物抗病机理的研究西北林学院学报.2004.19(1):93-97
    [53]徐大平,Bernie Dell,弓明钦,Nick Malajczuk,王志和.施P肥和外生菌根菌接种对蓝桉林产量和养分积累的影响.林业科学研究.2004.17(1):26~35
    [54]吕全,雷增普.外生菌根真菌提高板栗木抗旱性能及其机理的研究.林业科学研究.2000.13(3):249-256
    [55]黄艺,陶澍.过量铜锌对外生菌根真菌生长、碳氮和铜积累的影响.微生物学报.2002.42(6):737~743
    [56]Martin F. and B. Botton. Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza. Advances in Plant Pathology.1993.9:83-102
    [57]Keeney D.R.. Prediction of soil nitrogen availability in forest ecosystem. A literature review. Forest Science,1980.26:159-171
    [58]-Vitousek and Metson, Vitousek P. M. and P. A. Matson.1984. Mechanism of nitrogen retention in forest ecosystems:a field experiment. Science.1984.225:51-52
    [59].Attiwill P. M. and M. A. Adams. Nutrient cycling in forests. New Phytologist, 1993.124:561-582
    [60]Botton B. and M. Chalot. Nitrogen assimilation:enzymology in ectomycorrhizas. In: Mycorrhizas. Structure, Function, Molecular Biology and Biotechnology. Varma A. and B. Hock. eds. Berlin:Springer-Verlag,1995.325-363
    [61]France R. C. and C. P. P. Reid. Pure culture growth of ectomycorrhizal fungi on inorganic nitrogen sources. Microbial Ecology.1984.10:187-195
    [62]Read D. J.. Mycorrhizas and nutrient cycling in sand dune ecosystems. Proceedings of the Royal Society of Edinburgh.1989.96:80-110
    [63]Finlay R. D., A. Frosteregard and A. M. Sonnerfeldt. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. Ex Loud. New Phytologist.1992.120:105-115
    [64]Scheromm P., C. Plassard and L. Salsac. Nitrate nutrition of maritime pine (Pinus pinaster Soland in Ait.) ectomycorrhizal with Hebeloma cylindrosporum Romagn. New Phytologist,1990.114:93-98
    [65]Martin F. and Botton B. Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza. Advances in Plant Pathology,1993.9:83-102
    [66]Genetet I., F. Martin and G. R. Stewart. Nitrogen assimilation in mycorrhizas. Ammonium assimilation in the N-starved ectomycorrhizal fungus Cenococcum graniforme. Plant Physiology,1984.76:395-399
    [67]Martin F.. Nitrogen~(15)-NMR studies on nitrogen assimilation and amino acid biosynthesis in the ectomycorrhizal fungus Cenococcum graniforme. FEBS Letters, 1985.182:350-354
    [68]Martin F., G. R. Stewart, I. Genetet and B. Mourot. The involvement of glutamate gehydrogenase and glutamine synthetase in ammonia assimilation by the rapidly growing ectomycorrhizal ascomycete, Cenococcum graniforme Fr. New phytologist,1988.110: 541-550
    [69]Chalot M., A. Brun, J.C. Debaud and B. Botton. Ammonium-assimilating enzymes and their regulation in wild and NADP-glutamate dehydrogenase-deficient strains of the ectomycorrhizal fungus Hebeloma cylindrosporum. Physiologia Plaritarum,1991.83: 122-128
    [70]Brun A., M. Chalot, B. Botton and F. Martin. Purification and characterization of glutamine synthetase and NADP-glutamate dehydrogenase from the ectomycorrhizal fungus Laccaria Laccata. Plant Physiology,1992.99:938-944
    [71]Quoreshi A. M, I. Ahmad, D. Malloch, et al. Nitrogen metabolism in the ectomycorrhizal fungus Hebeloma crustuliniforme. New Phytologist,1995.131:263-271
    [72]Ahmad I., T. J. Carleton, D.W. Malloch and J. A. Hellebust. Nitrogen metabolism in the ectomycorrhizal fungus Laccaria bicolor (R. Mre.) Orton. New Phytologist,1990.116: 431-441
    [73]Dell B., N. Malajczuk and G. T. Thomson. Ectomycorrhiza formation in Eucalyptus. V. A tuberculate ectomycorrhiza of Eucalyptus pilularis. New Phytologist,1990. 114:633-640
    [74]Botton B. and M. Chalot. Nitrogen assimilation:enzymology in ectomycorrhizas. In: Mycorrhizas. Structure, Function, Molecular Biology and Biotechnology. Varma A. and B. Hock. eds. Berlin:Springer-Verlag,1995.325-363
    [75]Martin F., Y. Msatef and B. Botton.Nitrogen assimilation in mycorrhizas. I. Purification and properties of nicotinanide adenine dinucleotide phosphate-specific glutamate dehydrogenase of the ectomycorrhizal fungus Cenococcum graniforme. New phytologist,1983.93:415-422
    [76]Dell B., B. Botton, F. Martin and F. le Tacon. Glutamate dehydrogenases in ectomycorrhizas of spruce (Picea excelsa L.) and beech (Fagus sylvatica L.). New Phytologist,1989.111:683-692
    [77]Ahmad I. and J.A. Hellebust Enzymology of nitrogen assimilation in mycorrhiza. Methods in Microbiology,1991.23:181-202
    [78]Brun A., M. Chalot, B. Botton and F. Martin. Purification and characterization of glutamine synthetase and NADP-glutamate dehydrogenase from the ectomycorrhizal fungus Laccaria Laccata. Plant Physiology,1992.99:938-944
    [79]Chalot M., A. Brun, R.D. Finlay and Soderstrom. Respiration of (~(14)C) alanine by the ectomycorrhizal fungus Paxillus involutus. FEMS Microbiology Letters,1994.121: 87-92
    [80]Vezina L. P., H. A. Margolis and S. Delaney. Changes in the activity of enzymes involved with primary nitrogen metabolism due to ectomycorrhizal symbiosis on jack pine seedlings. Physiologia Plantarum,1989.75:55-62
    [81]France R. C. and C. P. P. Reid. Interactions of nitrogen and carbon in the physiology of ectomycorrhizas. Canadian Journal of Botany,1983.61:964-984
    [82]Finlay R. D., A. Frosteregard and A. M. Sonnerfeldt. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. Ex Loud. New Phytologist,1992.120:105-115
    [83]Ek H., S. Andersson, K. Arnebrant and B. Soderstrom. Growth and assimilation of NH_4~+ and NO_3~~ by Paxillus involutus in association with Betula pendula and Picea abies as affected by substrate pH. New Phytologist,1994.128:629-637
    [84]Dell B., B. Botton, F. Martin and F. le Tacon. Glutamate dehydrogenases in ectomycorrhizas of spruce (Picea excelsa L.) and beech (Fagus sylvatica L.). New Phytologist,1989.111:683-692
    [85]Chalot M., A. Brun, and B. Botton. Occurrence and distribution of the fungal NADP-dependent glutamate dehydrogenase in spruce and beech ectomycorrhizas. In:Fast Growing Trees and Nitrogen Fixing Trees. Werner D. and P. Muller. eds. Gustav Fischer, Stuttgart, Germany.1990.324-327
    [86]Ahmad I. and Hellebust J.A. Enzymology of nitrogen assimilation in mycorrhiza. Methods in Microbiology,1991.23:181-202
    [87]1990a Scheromm P., C. Plassard and L. Salsac. Nitrate nutrition of maritime pine (Pinus pinaster Soland in Ait.) ectomycorrhizal with Hebeloma cylindrosporum Romagn. New Phytologist,1990,114:93-98
    [88]Rygiewicz P.T., C. S. Bledsoe and R. J. Zasoski. Effects of ectomycorrhizae and solution pH on (~(15)N)ammonium uptake by coniferous seedlings. Canadian Journal of Forest Research,1984.14:885-892
    [89]Finlay R. D., H. Ek, G. Odham and B. Soderstrom. Uptake, translation and assimlation of nitrogen from 15N-labelled ammonium and nitrate'sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytologist,1989.113:47-55
    [90]Reinhold L. and A. Kaplan. Membrane transport of sugars and amino acids. Annual Review of Plant Physiology.1984.35:45-83
    [91]Bush D. R.. Proton~coupled sugar and amino acid transporters in plants. Annual Review of Plant Physiology and Plant Molecular Biology,1993.44:513-542
    [92]Melin E. and H. Nilsson. Transfer of labeled nitrogen from glutamic acid to pine seedlings through the mycelium of Boletus variegates (S.W.) Fr. Nature,1953.171:434
    [93]Alexander I. J.. The significance of ectomycorrhizas in the nitrogen cycle. In: Nitrogen as an Ecological Factor. Lee J. A., S. McNeill and I.H. Rorison. eds.. Blackwell, Oxford, UK.1983.69-94
    [94]Sangwanit V. and S. C. Bledsoe. Mycorrhizal fungi enhance uptake and storage of amino acids in mycorrhizal Douglas-fir and western hemlock seedlings. In:Mycorrhizae in the Next Decade. Sylvia D.M., L.L. Hung and J.H. Graham, eds.. Institute of food and Agriculture Sciences, University of Florida, Gainsville, Florida, USA.1987.262
    [95]Abuzinadah R. A. and D. J. Read. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytologist,1986.103:481-493
    [96]Wallander H., K. Arnebrant and A. Dahlberg. Relationships between fungal uptake of ammonium, fungal growth and nitrogen availability in ectomycorrhizal Pinus sylvestris seedlings. Mycorrhiza,1999.8:215-223
    [97]Turnbull M. H., R. Goodall and G. R. Stewart. The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook. Plant cell and Environment, 1995.18:1386-1394
    [98]Dighton J., E. D. Thomas and P. M. Latter. Interactions between tree roots, mycorrhiza, a saprophytic fungus and the decomposition of organic substrates in a micocosm. Biology and Fertility of Soils,1987.4:145-150
    [99]Bending G. D. and D. J. Read. The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. The foraging behaviour of ectomycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytologist,1995.130:401-409
    [101]Entry J. A., P. K. Donnelly and K. Jr. Cromack.. Influence of ectomycorrhizal mat soils on lignin and cellulose degradation. Biology and fertility of Soils,1991.11:75-78
    [102]Perez-Moreno J. and D. J. Read. Mobilization and transfer of nutrient from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plant. New Phytologist 2000.145:301-309
    [103]Griffiths R. P. and B. A. Caldwell. Mycorrhizal mat communities in forest soils. In: Mycorrhizas in Ecosystems. Read D. J., D.H. Lewis, A.H. Fitter and I.J. Alexander, eds.. CAB International, Wallingford, UK.1992.98-105
    [104]Bending and Read,1995b Bending G. D. and D. J. Read. The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytologist,1995.130:411-417
    [105]中国林业科学研究院林业研究所.中国森林土壤.北京:科学出版社,1986.23-30
    [106]沈其荣.土壤肥料通论.北京:高等教育出版社,2001,202
    [107]Cairney J. W. G. and S. E. Smith. Influence of intracellular phosphorus concetration on phosphate absorption by the ectomycorrhizal basidomycete Pisolithus tinctorius. Mycological Research,1992.96:673-676
    [108]Rousseau J. V. D., D. M. Sylvia and A. J. Fox. Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytologist,1994.128:639-644
    [109]Thomson B.D., T. S. Grove, N. Malajczuk, et al. The effectiveness of ectomycorrhizal fungi in increasing the growth of Eucalyptus globules Labill, in relation to root colonization and hyphal development in soil. New Phytologist,1994.126:517-524
    [110]Heinrich P. A. and J. W. Patrick. Phosphorus acquisition in the soil-root system of Eucalyptus pilularis Smith seedlings. II. The effect of ectomycorrhiza on seedling phosphorus and dry weight acquisition. Australian Journal of Botany,1986.34:445-454
    [111]Colpaert J. V. and K. Katiak. Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus syvestries seedlings. New Phytologist,1999.143: 589-597
    [112]Cress W. A., G. O. Thoneberry and D. L. Linsey. Kinetics of phosphorus absorption by mycorrhizal and nonmycorrhizal tomato roots. Plant phyiology,1979.64:484-487
    [113]Dinkelaker B. and H. Marschner. In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plant. Plant and Soil,1992.144:199-205
    [114]Hausling M. and H. Marschner. Organic and inorganic soil phosphates and soil phosphatase activity in the rhizosphere of 80-year-old norway spruce [Picea abies (L) Karst.] trees. Biology and Fertility of Soils,1989.8:128-133
    [115]Colpaert J. V. and K. Katiak. Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus syvestries seedlings. New Phytologist,1999.143: 589-597
    [116]Griffiths R. P. and B. A. Caldwell. Mycorrhizal mat communities in forest soils. In: Mycorrhizas in Ecosystems. Read D. J., D.H. Lewis, A.H. Fitter and I.J. Alexander, eds.. CAB International, Wallingford, UK.1992.98-105
    [117]Ho I. and J. M. Trappe. Enzymes and growth substances of Rhizopogon species in relation to mycorrhizal host and infrageneric taxonomy. Mycologia,1987.79:553-558
    [118]Antibus R.K., C. J. Kroehler and A.E. Linkins.The effects of external pH, temperature, and substrate concentration on acid phosphatase activity of ectomycorrhizal fungi. Canadian Journal of Botany,1986.64:2383-2387
    [119]Antibus R. K., R. L. Sinsabaugh and A.E. Linkins. Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Canadian Journal of Botany,1992.70:794-801
    [120]Kieliszeska-Rokicka,1992 Kieliszewska-Rokicha B.. Effect of nitrogen level on acid phosphatase activity of eight isolates of the ectomycorrhizal fungus Paxillus involutus cultured in vitro. Plant and Soil,1992.139:229-238
    [121]Cao and Crawford. Carbon nutrient and hydrolytic and cellulolytic activities in the ectomycorrhizal fungi Pisolithus tinctorius. Canadian Journal Microbiology,1993.39: 529-535
    [122]Jongmans A.G., N. Van Breemen, U. LundstrOm, R. D. Finlay, P. A. W. Van Hees, R. Giesler, P-A Melkerud, M. Olsson, M. Srinivasan, T. Unestam. Rock-eating fungi. Nature, 1997.389:682-683
    [123]Leyval C. and J. Berthelin. Comparison between the utilization of phosphorus from insoluble mineral phosphates by ectomycorrhizal fungi and rhizobacteria. In:Physiological and Genetical Aspects of Mycorrhizae. Gianinazzi-Pearson V. and Gianinazzi S., eds.. INRA.1986.339-343
    [124]Lapeyrie F., J. Ranger and D. Vairelles. Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Canadian Journal of Botany,1991.69:342-346
    [125]Cromack K., P. Sollins, W. C. Granstein, K. Speidel, A.W. Todd, G. Spycher, Y-Li. Ching and R. L. Todd.Calcium oxalate accumulation and soil weathering in mate of the hypogeous fungus Hysterangium crassum. Soil Biology and Biochemistry,1979.11: 463-468
    [126]Griffiths R. P., J. E. Baham and B. A. Caldwell. Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biology and Biochemistry,1994.26:331-337
    [127]Cumming J. R. and L. H. Weinstein. Aluminum-mycorrhizal interactions in the physiology of pitch pine seedlings. Plant and Soil,1990.125:7-18
    [128]朱永官,罗家贤.我国南方一些土壤的钾素状况及其含钾矿物.土壤学报.1994.31(4):43-438
    [129]金继运,黄绍文,何萍.土壤钾素和植物钾素营养研究进展.见:冯锋、张福锁主编.植物营养研究进展.北京:中国农业大学出版社,2000.138-157
    [130]王彦辉.2001.酸性森林生态系统对环境变化的响应.北京:华文出版社202-243,293-319
    [131]李淑仪,林书蓉,廖观荣,何小霞和黄东升.桉树营养状况与叶片营养诊断研究.林业科学.1996.32(6):481-490
    [132]王淑元,林升寿.我国森林生态系统定位研究的进展.世界林业研究.1995.4:44-49
    [133]Jungk A.. Dynamics of nutrient movement at the soil-root interface. In:Plant roots. Waisel J., A. Eshel and U. Kafkafi, eds. Marcel Dekker, New York.1991.455-481
    [134]Kuchenbuch R., N. Classenand, A. Jungk. Potassium availability in relation to soil moisture. I. Effect of soil moisture on potassium diffusion, root growth and potassium uptake of anion plants. Plant Soil,1986.95:221-231
    [135]李晓林,曹一平.菌根和非菌根三叶草根际土壤磷钾变化.土壤通报.1992.23:180-182
    [136]李晓林,冯固.丛枝菌根生态生理.北京:华文出版社,2001.104.106-121
    [137]Fogel R.. Interactions among soil biota in confiferous ecosystems. Agricultural Ecosystem Environment,1988.24:69-85
    [138]Linderman R.G..Mycorrhizal interactions with the rhizosphere microflora the mycorrhizosphere effect. Phytopathology,1988.78:366-370
    [139]Huang J. G. and F. Lapeyrie. Ability of ectomycorrhizal fungus Laccaria bicolor S238N to increase the growth of Douglas fir seedlings and their phosphorus and potassium uptake. Pedosphere,1996.6(3):217-223
    [140]Jongbloed R. H., J. M. A. M. Clement and G. W. F. H. Borst-Pauwels. Kinetics of NH_4~+ and K~+ uptake by ectomycorrhizal fungi. Effect of NH_4~+ on K~+ uptake. Physiologia Plantarum,1991.83:427-432
    [141]Harley J. L. and S. E. Smith. Mycorrhizal Symbiosis. Cambridge:Academic Press, 1983.124-135
    [142]Lindahl B., J. Stenlid, S. Olsson, R. och Finlay. Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytologist,1999.144:183-193
    [143]Ochs M.. Influence of hmified and non-humified natural organic compounds mineral dissolution. Chemistry of Geology,1996.132:119-124
    [144]Barker W.W., S. A. Welch, and J. F. Banfield. Experimental observations of the effects of bacteria on aluminum silicate weathering. American Mineral,1998.83:1551-1563
    [145]Welch S. A. and W. J. Ullman. The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochimistry and Cosmochimistry Acta.,1993.57:2725-2736
    [146]Drever J. I. and G. F. Vance. Role of soil organic acids in mineral weathering processes. In The Role of Organic Acids in Geological Processes. Lewan M. D. and E. D. Pittman. Eds.. Springer-Verlag.1994.138-161
    [147]Arocena J. M. and K. R. Glowa. Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition. Forest Ecological Management,2000.133:61-70
    [148]Banfield J. F., W. W. Barker, S. A. Welch and A. Taunton. Biological impact on mineral dissolution:Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceeding of the National Academy of Science,1999.96:3404-3411
    [149]Jones D.L.. Organic acids in the rhizosphere-a critical review. Plant Soil, 1998.205:25-44
    [150]Gadd G.M.. Fungal production of citric and oxalic acid:Importance in metal speciation, physiology and biogeochemical processes. Advanced Microbiological Physiology,1999.41:47-92
    [151]Dutton M.V. and C.S. Evans. Oxalate production by fungi:Its role in pathogenicity and ecology in the soil environment. Canadian Journal Microbiology,1996.42:881-895
    [152]Paris F., P. Bonnaud, J. Ranger and F. Lapeyrie. In vitro weathering of phlogopite by ectomycorrhizal fungi. I. Effect of K~+ and Mg~(2+) deficiency on phyllosilicate evolution. Plant and Soil,1995.177:191-201
    [153]Paris F., et al. Weathering of ammonium- or calcium-saturated 2:1 phyllosilicates by ectomycorrhizal fungi in vitro. Soil Biology & Biochemistry,1995.27:1237-1244
    [154]Paris F., B. Botton and F. Lapeyrie.In vitro weathering of phlogopite by ectomycorrhizal fungi. II. Effect of K~+ and Mg~(2+) deficiency and N sources on accumulation of oxalate and H~+. Plant and Soil,1996.179:141-150
    [155]Entry, J.A., C.L. Rose, K. Cromack. Microbial biomass and nutrient concentrations in hyphal mats of the ectomycorrhizal fungus Hysterangium setchellii in a coniferous forest soil. Soil Biology and Biochemistry,1992.24:447-453
    [156]Arocena J. M., K. R. Glowa, H. B. Massicotte and L. Lavkulich. Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the Ae Horizen of a Luvisol. Canadian Journal of Soil Science,1999.79: 25-35
    [157]Wallander H. Use of strontium isotopes and foliar K content to estimate weathering of biotiteinduced by pine seedlings colonised by ectomycorrhizal fungi from two different soils. Plant Soil,2000.222:215-229
    [158]Jentschke G., B. Brandes, A. J Kuhn, W. H. Schroder, J. S. Becker and D. L. Godbold. The mycorrhizal fungus Paxillus involutus transports magnesium to Norwayspruce seedlings. Evidence from stable isotope labeling. Plant Soil,2000.220:243-246
    [159]Van Breemen, N., R. Finlay, U, Lundstrom, A. G. Jongman, R. Giesler and M. Olsson. Mycorrhizal weathering:A true case of mineral plant nutrition? Biogeochemistry. 2000.49:53-67
    [160]Wilson M. J. Interactions between lichens and rocks:a review. Crypt. Botany, 1995.5:299-305
    [161]Wierzchos J. and C. Ascaso. Mineralogical transformation of bio weathered granitic biotite, studied by HRTEM:evidence for a new pathway in lichen activity. Clay Minerals, 1998.46:446-452
    [162]Lee M.R. and I. Parsons. Biomechanical and biochemical weathering of lichen-encrusted granite:Textural controls on organic-mineral interactions and deposition of silica-rich layers. Chemistry Geology,1999.161:385-397
    [163]Wallander H. and T. Wickman. Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza,1999.9: 25-32
    [164]Leyval C. and J. Berthelin. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal rungi. Biology and Fertility of Soils,1993.15:259-267
    [165]黄会一.木本植物对土壤镉的吸收、积累、耐性.中国环境科学.1989,9(5):323-330
    [166]Aggangan N S,Dell B and Malajczuk N.Effect of chromium and nickel on the growth of ectomycorrhizal on Eucalyptus urophylla S.T.Blake.Geoderma,1998.84:1~3
    [167]Blaudez D et al.Differential responses of ectomycorrhizal fungi to heavy metals in vitro.Mycol.res,2000.104(11):1366~1371
    [168]Colpaert A V et al.The effect of cadmium and the cadmium-zinc on the axenic growth of ectomycorrhizal fungi.Plant and soil,1992.145:237~243
    [169]Vodnik D,Byrne A.R and Gogala N. The uptake and transport of lead in some ectomycorrhizal fungi in culture.Mycol.Res.1998.102(8):953~958
    [170]张琴.汞、镉对外生菌根真菌生长、分泌作用和养分吸收的影响:[硕士研究生论文].重庆:西南农业大学,2003:37~38
    [171]Blaudez D et al.Effect of heavy metals on nitrogen uptake by Paxillus involutus and mycorrhizal birch seedings.Microbiology Ecology,2000.33:61~67
    [172]Hartley J,Cairney J.W.G and Meharg A.A.Do ectomycorrhizal fungi exhibt adaptive tolerance to potenrilaay toxic metals in environment?Plant and soil,1997.189:303~319
    [173]Jentschke G and Godbold D.L.Metal toxicity and ectomycorrhizas.Physiologia Plantarum,2000.109:107-116
    [174]Blaudez D et al.Cadmium uptake and subcellar compartmentation in the ectomycorrhizal fungus Paxillus involutus.Microbiology,2000.146:1109~1117
    [175]Ashford A E et al.Structure and permeability of the fungal sheath in pisonia mycorrhiza.Protoplasma,1998.147:149-161
    [176]周崇莲,齐玉臣.外生菌根与植物营养.生态学杂志.1993,12(1)1.37~44
    [177]Cromack K et al.Calcium oxalate accumulation and siol weathering in mats of the hypogenous fungus Hysterangium crsaaum.Soilogy and Biochenistry,1979.11:463~468
    [178]Cleggs S and Gobran Gr.Effect of aluminium on growth and root reaction of phosphorus stressed Betula pendula seedlings.Plant and soil,1995.169:173~178
    [179]Jentschke G et al.Ectomycorrhizal and cadmium toxicity in Norway spruce seekling.Tree Physiology,1999.19:23~30
    [180]Leyral C,Turnau K and Haselwandter K.Effect of heavy metal pollution in mycorrhizal colonization and function:physiological,ecological and applied aspects.Mycorrhiza,1997.3:139-153
    [181]Marx D.H.Mycorrhizae and establishment of trees on strip-mined land.Ohio J.Sci,1975.75:288~297
    [182]Bradley R,Burt A J and Read D J.Mycorrhizal infection and resistance and heavy metal toxicity in Calluna uulgaris.Nature London,1981.292:335~337
    [183]Bradley R,Burt A J and Read D J.The biology of mycorrhiza in the Ericaceae,Ⅷ.The role, of mycorrhizal infection in heavy metal resistance.New Phytol.,1982.91:197~201
    [184]黄建辉,韩兴国.森林生态系统的生物地球化学循环:理论和方法.植物学通报,1995.12:195-223
    [185]Walker T. W. and J. K. Syers. The fate of phosphorus during pedogenesis. Geoderma, 1976.15:1-19
    [186]Grime J. P. Plant Strategies and Vegetation Processes. John Wiley, New York, USA. 1979.157-169
    [187]Janos D.P.. Vesicular-arbuscular mycorrhizae affect lowland tropical rainforest plant growth. Ecology,1980.61:151-162
    [188]Allen E. B. and M. F. Allen. Facilitation of succession by the nonmycotrophic colonizer Salsola kali (Chenopodiaceae) on a harsh site:effects of mycorrhizal fungi. American Journal of Botany,1988.75:257-266
    [189]Jasper D. A., L. K. Abbott and A. D. Robson. Soil disturbance reduces the infectivity of external hyphae of Vesicular-arbuscular mycorrhizal fungi. New Phytologist,1989.112: 93-99
    [190]Jasper D. A., L. K. Abbott and A. D. Robson. Soil disturbance in native ecosystems the decline and recovery of infectivity of VA mycorrhizal fungi. In:Mycorrhizas in Ecosystems. Read D.J., D.H. Lewis, A.H. Fitter and I.J. Alexander, eds.. CAB International, Wallingford, UK.1992.151-155
    [191]Gorham E., P. M. Vitousek and W. A. Reiners. The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annual Review of Ecological Systems, 1979.10:53-84
    [192]Odum E. P. Organic production and turnover in old field succession. Ecology, 1960.41:34-49
    [193]Golley F.B. Structure and function of an old-field broomsedge community. Ecological Monographs,1965.35:113-137
    [194]Tilman D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecological Monographs 1987.57:187-214
    [195]Robertson G. P. and P. M. Vitousek. Nitrification potentials in primary and secondary succession. Ecology,1981.62:376-386
    [196]Read D. J. Mycorrhiza in plant communities. Advances in Plant Pathology.1993.9: 1-31
    [197]Smith S. E. and F. A. Smith. Structure and function of the interfaces in biotrophic symbioses as they relates to nutrient transport. New Phytologist,1990.114:1-38
    [198]Clements F.E.. Plant succession:an analysis of the development of vegetation. Carnegie Institute of Washington Publication 1916.No.242:1-512
    [199]Odum E. P.. Fundamentals of Ecology. W.B. Saunders, Philadelphia, USA. 1971.245-255
    [200]MacMahon J. A.. Successional processes:comparisons among biomes with special referee to probable roles of and influences on animals. In:Forest Succession:Concept and Application. West. D., H. Shugart and D. Botkin. Eds. Springer-Verlag, New York, USA. 1981.277-304.
    [201]Binkley D. and P. Hogberg. Does atmospheric deposition of nitrogen threaten Swedish forests?Forest Ecological Management,1997.92:119-152
    [202]中共中央宣传部教育局和国家林业局.生态危机与林业建设. 北京:学习出版社,2001,82-83
    [203]Bergkvist B. and L. Folkeson. Soil acidification and element fluxes of a Fagus sylvatica forest as influenced by simulated nitrogen deposition. Water Air Soil Pollution, 1992.65:111-133
    [204]Fernandez I. J. and L. E. Rustad. Soil response to S and N treatments in a northern New England low elevation coniferous forest. Water Air Soil Pollution,1990.52:23-39
    [205]Foster N. W., P. W. Hazlett, J. A. Nicolson, et al. Ion leaching from a sugar maple forest in response to acidic deposition and nitrification. Water Air Soil Pollution,1989.48: 251-261
    [206]Ulrich B. and J. Pankrath. Effects of accumulation of air pollutants in forest ecosystems. Dordrecht:D. Reidel Publishing company.1983.1-30,171-182
    [207]Van Breemen N., P. A. Burrough, E. J. Velthorst, et al. Soil acidification from atmospheric ammonium sulphate in forest canopy through fall. Nature,1982.299:548-550
    [208]Van Breemen N. and H. F. G. Van Dijk. Ecosystem effects of atmopheric deposition of nitrogen in the Netherlands. Environment Pollution,1988.54:249-274
    [209]Tomlinson G. H.. A possible mechanism relating increased soil temperature to forest decline. Water Air Soil Pollution,1993.66:365-380
    [210]Hutchinson T. C., S. A. Watmough, E. P. S. Sager, et al. The impact of simulated acid rain and fertilizer application on a mature sugar maple (Acer saccharum Marsh.) forest in central Ontario, Canada, Water Air Soil Pollution,1999.109:17-39
    [211]Watmough et al.,1999 Watmough S. A., T. C. Hutchinson and E. P. S. Sager. The impact of simulated acid rain on soil leachate and xylem chemistry in a Jackpine (Pinus banksiana Lamb) stand in northern Ontario, Canada. Water Air Soil Pollution,1999.111: 89-108
    [212]Ma J. F., S. J.Zhang, H. Matsumoto, and S. Hiradate. Detoxifying aluminium in buckwheat. Nature,1997.390:569-570
    [213]Landeweert R., E. Hoffland, R. D. Finlay, T. W. Kuyper and N. van Breemen. Linking plants to rocks:ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology & Evolution.,2001.16 (5):248-254
    [214]张小燕,黄建国.外生菌根真菌吸收氮素营养的特性及其对汞、镉污染的响应:[硕士研究生论文].重庆:西南农业大学,2005.
    [215]Andersson S. et al. Effects of liming on the uptake of organic and inorganic nitrogen by mycorrhizal (Paxillus involutus) and non-mycorrhizal Pinus sylvestris plants. New Phytol. 1997,135:763-771
    [216]Chalot M. et al. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews.1998,22:21-44
    [217]Marmeisse R. et al. Isolation and characterization of nitrate reductase defecient mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum. New Phytol.1998, 140:311—318.
    [218]Nehals U. et al. Excretion of two proteases by the ectomycorrhizal fungus Amanita muscaria. Plant, Cell and Environment.2001,24:741-747.
    [219]黄昌勇.土壤学.北京:中国农业出版社,2000.24.28,205.209
    [220]Bougher N. L. T. S. Grove and N. Malajczuk. Growth and phosphorus acquisition of karri(Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytologist,1990.114:77-85
    [221]Hausling M. and H. Marschner. Organic and inorganic soil phosphates and soil phosphatase activity in the rhizosphere of 80-year-old norway spruce [Picea abies (L) Karst.] trees. Biology and Fertility of Soils,1989.8:128-133
    [222]Eason W. R., E. I. Newman and P. N. Chuba. Specificity of interplant cycling of phosphorus:the role of mycorrhizas. Plant and Soil,1991.137:267-274
    [223]Bowen G. D. Mineral nutrition of ectomycorrhizae. In:Ectomycorrhizas. A Merks G. C. and Kozlowski, T. T. eds. Cademic Press, New York and London.1973.151-205;
    [224]Huang J. G and F. Lapeyrie. Ability of ectomycorrhizal fungus Laccaria bicolor S238N to increase the growth of Douglas fir seedlings and their phosphorus and potassium uptake. Pedosphere,1996.6(3):217-223
    [225]Hobbie E. A., Jan V. Colpaert J. V. et al. Nitrogen form, availability, and mycorrhizal colonization affect biomass and nitrogen isotope patterns in Pinus sylvestris. Plant Soil.2008.310:121-136
    [226]Martinez-Cortizas A., Pontevedra-Pombal X., Garcia-Rodeja E. et al. Mercury in a Spanish Peat Bog:Archive of Climate Change and Atmospheric Metal Deposition[J]. Science,1999:284,939-942
    [227]Pirrone & Mahaffey 2005 Pirrone N., Mahaffey K. Dynamics of Mercury Pollution on Regional and Global Scales [M]. Springer,2005:25-64.
    [228]Pirrone N., Mason R. Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models [M]. Springer,2009:3-80.
    [229]Driscoll C, Han Y, Chen C. et al. Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States [J]. BioScience,2007, 57(1):17-28
    [230]Grigal D. F. Mercury Sequestration in Forests and Peatlands:A Review[J]. Journal of Environmental Quality.2003,32:393-405.
    [231]Watras C., Huckabee J. Mercury Pollution[M]. CRC Press,1994:295-304
    [232]Nasholm T, Ekblad A, Nordin A, Boreal forest plants take up organic nitrogen. Nature,1998.392:914-916
    [233]Lal R, Encyclopedia of soil science.2nd edition. CRC Press, Boca Raton. 2006.1-958
    [234]Pinton R, Varanini Z, Nannipieri P. The rhizosphere:biochemistry and organic substances at the soil-plant interface.2nd edition. CRC Press, New York.2007.220-226
    [235]张志良,瞿伟菁.植物生理实验指导(第三版)[M].北京:高等教育出版社,2003.
    [236]韦平和,生物化学实验与指导[M].北京:中国医药科技出版社,2003.
    [237]江龙,李竹枚,黄建国,等.AM真菌对烟苗生长及某些生理指标的影响[J].植物营养与肥料学报.2008.14(1):156-161.
    [238]罗虹,应燕玲,刘鹏,等.铝、氟及其复合处理对茶树根际土壤酶活性的影响[J].水土保持学报.2008.22(5):153-157.
    [239]Entry A., Rose L., Cromack K. Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem[J]. Soil biology & biochemistry. 1991,23(3):285-290.
    [2409]Bending G., Read D. The Structure and Function of the Vegetative Mycelium of Ectomycorrhizal Plants. VI. Activities of Nutrient Mobilizing Enzymes in Birch Litter Colonized by Paxillus involutes (Fr.) Fr[J]. New Phytologist,1995,130(3):411-417.
    [241]Nehals U. Bock A., Einig W.& Hampp R. Excretion of two proteases by the ectomycorrhizal fungus Amanita muscaria[J]. Plant, Cell and Environment.2001,24: 741-747.
    [242]李志博,王起超,陈静.农业生态系统的氮素循环研究进展[J].土壤与环境,2002,11(4):417-422.
    [243]Cornell S., Jickells T., Thornton C. Urea in rainwater and atmospheric aerosol[J]. Atmospheric Environment.1998,32,11:1903-1910.
    [244]Mace K. Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere:An association with atmospheric dust[J]. Journal of Geophysical Research[J], 2003,108(D10):4320-4325, doi:10.1029/2002JD002997.
    [245]Marmeisse R., Jargeat P., Wagner F. et al. Isolation and characterization of nitrate reductase defecient mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum[J]. New Phytol,1998,140:311—318.
    [246]Gobert A., Plassard C. Differential NO_3~- dependent patterns of NO_3~- uptake in Pinus pinaster, Rhizopogon roseolus and their ectomycorrhizal association[J]. New Phytologist,2002,154:509-516.
    [247]Perry D. Forest ecosystems [M]. Baltimore, Maryland:JHU Press,1995.
    [248]Hobbie E., Hobbie J. Natural Abundance of 15N in Nitrogen-Limited Forests and Tundra Can Estimate Nitrogen Cycling Through Mycorrhizal Fungi:A Review[J]. Ecosystems,2008,11:815-830.
    [249]Pessarakli M. Handbook of Plant and Crop Stress 2nd ed[M]. CRC Press,1999: 365~398.
    [250]Pena L., Tomaro M., Gallgo S. Effect of different metals on protease activity in sunflower cotyledons [J]. Electronic Journal of Biotechnology,2006,9(3):258-262.
    [251]陈红跃,闫雪燕,陈明洁等.不同大气污染区林木根区土壤重金属和酶活性研究[J].生态环境,2006,15(3):513—518.
    [252]Guidot A. Verner M. Debaud J. et al. Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza[J].2005,15:167-177.
    [253]袁玲,方德华,汪智慧,等.钾对外生菌根真菌的分泌作用及氮、磷、钾含量的影响[J].生态学报,2001,21(2):254-258.
    [254]Ascaso C., J. Galvan and C. Rodriquez-Oascual. The weathering of cacaerous rocks by lichens, Pedobiologia,1982.24:219-229
    [255]Marschner H.. Mineral Nutrition of Higher Plants (2nd edn), Academic Press. London.1995.537-595
    [256]Balmforth A. J. and Thomson A. Isolation and characterization of glyoxylate dehydrogenase from the fungus Sclerotium rolfsii. Biochem. J.1984,218,113-118
    [257]Han Y., Joosten H., Niu W., et al. Oxaloacetate Hydrolase, the C-C Bond Lyase of Oxalate Secreting Fungi. THE JOURNAL OF BIOLOGICAL CHEMISTRY 2007,282 (13),9581-9590
    [258]Jones D.L.. Organic acids in the rhizosphere-a critical review. Plant Soil, 1998.205:25-44
    [259]Kraffczyk I., G. Trolldenier and H. Beringer. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biology and Biochemistry,1984.16:315-322
    [260]Ochs M... Influence of hmified and non-humified natural organic compounds mineral dissolution. Chemistry of Geology,1996.132:119-124
    [261]Barker W.W., S. A. Welch, and J. F. Banfield. Experimental observations of the effects of bacteria on aluminum silicate weathering. American Mineral.1998.83:1551-1563
    [262]Erman Munir, Jeong Jun Yoon, Toshiaki Tokimatsu, Takefumi Hattori, and Mikio Shimada. A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris. Biochemistry.2001.98(20):11126-11130.
    [263]Ulla A J. Patrick A W. Van Hees. Ulla S L. and Rogerd F.Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminum and heavy metal concentrations. New Phytologist.2007.155:539-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700