一些拓扑兴趣的分子笼、篮和瓶的结构和性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Structures and Properties of the Topologically Interesting Molecules Including Cage, Basket and Bottle
  • 作者:王银锋
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2010
  • 导师:孙家钟 ; 李志儒
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2010-06-01
摘要
本论文中对若干具有拓扑兴趣的的分子:分子笼、分子篮和分子瓶体系进行了理论研究。主要贡献在于以下六个方面:
     (1)首次预测了有趣的Mobius篮子分子的结构及其光学性质。展现了成篮效应和扭曲效应对结构和光学性质等的影响,特别是提出了改变分子结构来实现电荷迁移方向控制的可能性。
     (2)类Klein分子瓶是否存在对化学是一个挑战。首次设计并研究KB-C318、KB-C320和KB-C374三个类Klein分子瓶。发现类Klein分子瓶具有接近于C36和C74分子的稳定性,这些Klein瓶分子可作为一个新的碳瓶家族。
     (3)首次使用一个大分子笼子C60F60束缚一个额外电子得到单分子溶剂化单电子体系。它们是一种新的内接化合物--电子内接化合物。发现了稳定性与笼子形状的关系,提出了形成单分子溶剂化单电子的条件。
     (4)首次使用一个双笼子分子来束缚一个电子,首次实现了电子定域化的结构和轨道,并发现了电子定域化跃迁存在。找到了控制电子定域化跃迁的可能性。
     (5)首次报道了苯的环二聚体体系中的分子内环间σ/(π/π)共价相互作用及其与分子结构特性间的关系。提出了环间多中心多电子σ/(π/π)键,讨论了相互作用能及其决定性影响因素。本论文中出现的长的第四种C-C(1.561~1.628 (?))键引起了国际同行的关注(美国橡树岭国家实验室等)。(6)首次研究了新型金属-金属氧化物-非金属夹心超碱金属化合物Li3OMC5H5 (M=Be, Mg和Ca)的结构和性质。提出了面外σ-芳香性的存在条件,揭示了它们的碱金属化物和电子化物的特征。
The structures and properties of the topologically interesting molecules including cage, basket and bottle
     Topologically interesting molecules represent a permanent challenge for synthetic chemists and theoreticians。In this paper, the structures of some cage-like, basket-like, and bottle-like molecules are obtained for the first time. The stabilities and the special properties of these molecules are exhibited. This paper has enhanced the knowledge on novel physics and chemistry of the one-sided (nonorientable) surface, excess electron chemistry andπ/πinteraction. This paper also provides the new design approaches of the new optical and photoelectric materials and devices. Four aspects are included in this paper:
     (1) Study on the one-sided topologically interesting molecule
     Expanding the non-knot region of the famous Mobius strip with topological one-sided characteristics, an interesting structure of Mobius basket molecule with all real frequencies was obtained at the B3LYP/6-31G(d) level for the first time. The twisted handle joints the outer and inner surfaces of the bowl to form a one-sided container molecule. Comparing the Mobius basket with its isomers of Mobius strip and normal basket, the framework shape effects on the structure and properties are systematically exhibited. Especially, (1) the basket-making effect increases kinetic stability (the HOMO-LUMO gap increases from 1.116 eV for Mobius strip to 1.608 eV for Mobius basket); (2) from the normal basket to the Mobius basket, the twisting effect obviously increases the static first hyperpolarizability (from 2836 to 3773 au) and IP (from 6.622 to 6.857 eV). It is found that the aza atom, knot, the bowl, and the combination of the knot and bowl units are important regulating factors for the charge transfer direction in the crucial transitions. This provides a possibility on the control of charge transfer direction in crucial transitions by the variation of the structures.
     How to construct the fantastic bottle molecule and reveal its stability is a theoretical challenge. The Klein bottle is a closed non-orientable (one-sided) surface in 4 dimension space and its immersion in 3 dimension space contains a one-sided closed, continuous curve of self-intersection between the bottleneck and bottle body. Here, by quantum mechanics method, we report a novel carbon-bottle family of Klein bottle molecules:KB-C318、KB-C320 and KB-C374. The stabilities of them are close to the stable C36 and C74 fullerenes, which indicates the existence of the family of Klein bottle molecules. A synthetic possibility of Klein bottle molecule is suggested in single-molecule level. This work may excite the experimental researches on chemistry and physics of the non-orientable surface.
     (2) Study on the cage-like single molecular solvated electron systems
     Using the one-cage-like molecule and double-cage-like molecules to trap the excess electrons, the new kind, of single molecular solvated electron systems, one-cage-like e-@C60F60(In and D6h) and double-cage-like e-@C24F22(NH)2C20F18 and e-@C20F18(NH)2C20F18 with all the frequencies are obtained at the B3LYP/6-31G(d)+4s4p level. They are new endohedral complexes, the electron endohedral fluorinated fullerene complexes. What kind of single molecular cages can encapsulate the excess electron? (1) The cage has polar bonds and the dipoles of those polar bonds are directed to the center of the cage to generate sufficiently interior attractive potential. (2) The cage is a saturated molecule and can provide an internal s-type LUMO for the occupancy of one additional electron. Owing to such excess electron localizations, the inter-cage excess electron transfer transition takes places. It corresponds to SOMO→LUMO transition between two s-type orbitals. This indicates that the inter-cage excess electron transfer transition may be controlled by regulating the molecular structure. This allows the design of materials with controlled intramolecular charge transfer for the photoelectric and nanoelectronic devices.
     (3) Study on the intra-molecular inter-ringπ/πinteraction.
     To study the inter-ringσ/(π/π) covalent interactions between non-radicalπ-systems, five structures of cyclodimers of benzene (C6H6)2 with all the real frequencies, i.e. o-p'-dibenzene (A), the pentacyclic dimer (B), p-p'-dibenzene (C), syn-o,o-dibenzene (D), and hexaprismane (E), are obtained at the MP2/6-311G (d, p) level. Five inter-ring bonding mode types forming the inter-ring multicenter multielectronσ/(π/π) covalent bonds are represented:A, ring-edge type between a butterfly-shaped ring and a planar ring (4-center 4-electron bond); B, edge-edge and ring-ring types between two identical butterfly-shaped rings (8-center 8-electron bond); C, ring-ring type between two identical butterfly-shaped rings (4-center 4-electron bond); D, edge-edge type between two identical planar rings (4-center 4-electron bond); and E, face-face type between two identical planar rings (12-center 12-electron bond). The order of the large inter-ring interaction energies at the MP2/6-311+G (3d, 2p)+BF level is-99.15 (A with two inter-ring C-C bonds)>-98.57 (B with four C-C bonds)>-85.76 (C with two C-C bonds)>-61.35 (D with two C-C bonds)>-60.40 kcal/mol (E with six C-C bonds). However, this does not show an obvious relationship between the interaction energy and the number of the inter-ring C-C bonds. The reason is that the number of decisive influencing factors of the inter-ring interaction energy is not one but five:the number of the favorable inter-ring C-C single bonds, the number of the unfavorable four-membered rings themselves, the participating number of the four-membered rings in unfavorable interaction among those rings, the number of the favorable non-planar melted six-membered ring, and the weak inter-ringπ/πinteraction (between twoπbonds in different rings).
     (4) Study on the novel sandwich-like superalkali compound.
     The structures of novel metal-[metal oxide]-nonmetal sandwich-like superalkali compounds, i.e., H- and T-shaped Li3OMC5H5 (M=Be, Mg and Ca), with all the real frequencies are obtained for the first time at the MP2/6-311+G(2d, p) level. Four factors to increase the NICS of Li3+ ring in Li3OMC5H5 systems are found. (1) Replacing the T-shaped structure with parallel Li3+ and C5H5 ring by the corresponding H-shaped structure with perpendicular Li3+ and C5H5 ring, the NICS value considerably increases from-7.8~-8.2 to-22.2~-43.4 ppm. (2) The existence of the neighboring alkaline earth metal oxide subunit evidently increases the NICS in H-shaped structures from about -11.1 to -16.1~-37.0 ppm. (3) Basing on the finding that the alkaline earth atomic number dependence of the aromaticity of Li3+ ring, the larger atomic number increases the NICS value. (4) The end C5H5" subunit increases the NICS value. For example, the increase is -6.4 ppm for H-shaped Li3OCaC5H5. In addition, the expected out-of-planeσ-aromaticity of Li3+ ring is not exhibited, in contrast to that in the sandwich-like structure of Li3OLi3 (J Chem Phys 2005,123,164306), but the in-planeσ-aromaticity of it is increased. Why? This is because (1) the size of the OM subunit near the Li3+ ring is small, and (2) the large-sized C5H5- subunit is far from the Li3+ ring. For these Li3OMC5H5, the H-shaped structure exhibits electride characteristics and the T-shaped structure with lithium anion exhibits alkalide characteristics.
引文
(1)MOBIUS A F, Uber die Bestimmung des Inhaltes eines Polyeders. Berichte uber die Verhandlungen der Koniglich Sachsischen Gesellschaft der Wissenschaften [M]. zu Leipzig; Sitzung 27 November 1865;Vol.17, pp 31
    (2)KLEIN F, Uber Riemann's Theorie der algebraischen Functionen undihrer Integrale [M] Teubner, Leipzig,1882; p 80.
    (3)SAUVAGE J-P, DIETRICH-BUCHECKER, C. Eds., Molecular Catenanes, Rotaxanes, and Knots [M]. (Wiley-VCh, Weinheim, Germany, 1999). pp 80-174.
    (4)AJAMI D, OECKLER O, SIMON A, HERGES R, Synthesis of a Mobius aromatic hydrocarbon [J]. Nature,2003,426:819
    (5)STEPIEN M, LATOS-GRAZYNSKI L, SPRUTTA N, CHWALISZ P, SZTERENBERG L, Expanded porphyrin with a split personality:a Huckel-Mobius aromaticity switch [J]. Angew Chem Int Ed,2007,46: 7869.
    (6)RZEPA H S, A Double-Twist Molbius-Aromatic Conformation of [14]Annulene. [J] Org Lett,2005,7:4637.
    (7)HERGES R, Topology in chemistry:designing Mobius molecules. Chem Rev,2006,106:4820.
    (8)LEMAL D M, Aromatics do the twist [J]. Nature,2003,426:776.
    (9)RZEPA H S, Mobius aromaticity and delocalization [J]. Chem Rev,2005. 106:3697.
    (10)ZIMMERMAN H E, On Molecular Orbital Correlation Diagrams, the Occurrence of Mobius Systems in Cyclization Reactions, and Factors Controlling Ground-and Excited-State Reactions [J]. J Am Chem Soc, 1966,88:1564.
    (11)CASTRO C, ISBORN C M, KARNEY W L, et al. Aromaticity with a Twist:Mobius [4n]Annulenes [J.] Org Lett,2002,4:3431.
    (12)CASTRO C, CHEN Z F, WANNERE C S, et al. Investigation of a Putative Mobius Aromatic Hydrocarbon. The Effect of Benzannelation on Mobius [4n]Annulene Aromaticity [J]. J Am Chem Soc,2005,127:2425.
    (13)KIRBY E C, PISANSKI T, Aspects of topology, genus and isomerism in closed 3-valent networks. [J] J. Math. Chem.1998,23:151-167.
    (14)HASHIMOTO A, SUENAGA K, GLOTER A, URITA K, LIJIMA S. Direct evidence for atomic defects in graphene layers [J]. Nature,2004, 430:870-873.
    (15)DESFRANCOIS C, CARLES S, SCHERMANN J P, Weakly Bound Clusters of Biological Interest [J]. Chem Rev,2000,100:3943-3962.
    (16)PAGE C C, MOSTER C C, CHEN X, DUTTON L, [J] Nature (London), 1999,402:47-52.
    (17)LEE H M, LEE S, KIM K S, Structures, energetics, and spectra of electron-water clusters, e-(H2O)2-6 and e-HOD(D2O)1-5 [J]. J Chem Phys,2003,119:187-195.
    (18)LI Y, LI Z.-R, WU D, LI R.-Y, HAO X Y, SUN C.-C. An ab Initio Prediction of the Extraordinary Static First Hyperpolarizability for the Electron-Solvated Cluster (FH)2{e}(HF) [J]. J Phys Chem B,2004,108: 3145-3148.
    (19)CHEN, W, LI, Z.-R, WU, D, LI, R.-Y, SUN, C.-C. Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom [J]. J Phys Chem B,2005,109:601-608.
    (20)(a) MATSUISHI S, TODA Y, MIYAKAWA M, et al. High-Density Electron Anions in a Nanoporous Single Crystal:[Ca24Al28O64]4 (4e) [J]. Science.2003,301:626-629. (b) CHIESA M, PAGANINI M C, GIAMELLO E, et al. Excess Electrons Stabilized on Ionic Oxide Surfaces [J]. Acc. Chem. Res.2006,39:861-867. (c) EDWARDS P P, ANDERSON P A, THOMAS J M. Dissolved Alkali Metals in Zeolites [J]. Acc. Chem. Res.1996,29:23-29. (d) SRDANOV, V. I, STUCKY, G. D, LIPPMAA, E, ENGELHARDT, G Evidence for an Antiferromagnetic Transition in a Zeolite-Supported Cubic Lattice of F Centers [J]. Phys Rev Lett,1998,80:2449-2452.
    (21)SOMMERFELD T, Excess Electrons Bound to Small Ammonia Clusters [J]. J. Phys. Chem. A.2008,112:11817-11823.
    (22)SOMMERFELD T, JORDAN K D, Electron Binding Motifs of (H2O)n-Clusters [J]. J. Am. Chem. Soc.2006,128:5828-5833.
    (23)HART E J, BOAG J W, Absorption Spectrum of the Hydrated Electron in Water and in Aqueous Solutions [J]. J Am Chem Soc 1962.84: 4090-4095.
    (24)ILYA A, SHKROB, Ammoniated Electron as a Solvent Stabilized Multimer Radical Anion [J]. J Phys Chem A,2006,110:3967-3976.
    (25)RIENSTRA-KIRACOFE J C, TSCHUMPER G S, SCHAEFER H F III, SREELA N, ELLISON G B, Atomic and Molecular Electron Affinities: Photoelectron Experiments,and Theoretical Computations [J]. Chem Rev, 2002,102:231-282.
    (26)KHAN, A. Solvated electron in (H2O)20 dodecahedral cavity:calculated stretch frequencies and vertical dissociation energy [J]. Chem Phys Lett, 2005,401:85-88. (b) KIM, A. Solvated electron in (H2O)20- and (H2O)21-clusters:A theoretical study [J]. J Chem Phys 2003,118:1684-1867. (c) KHAN. A. Extra electron in (H2O)24-cluster isomers:A theoretical study [J]. J Chem Phys 2004,121:280-284.
    (27)COE J V, WILLIAMS S M, BOWEN K H. Photoelectron spectra of hydrated electron clusters vs. cluster size:connecting to bulk [J]. Int Rev Phys Chem 2008,27:27-51.
    (28)SARKAS, H. W, ARNOLD, S. T, EATON, J. G, LEE, G. H, BOWEN, K. H. Ammonia cluster anions and their relationship to ammoniated (solvated) electrons:The photoelectron spectra of (NH3)n= 41-1100-[J]. J Chem Phys 2002,116:5731-5738.
    (29)TSUZUKI S, HONDA T, UCHIMARU T, MIKAMI M, TANABE K, Origin of Attraction and Directionality of the π/π Interaction:Model Chemistry Calculations of Benzene Dimer Interaction. [J] J Am Chem Soc 2002,124:104-112.
    (30)SINNOKROT M O, VALEEV E F, SHERRILL C D, Estimates of the Ab Initio Limit for π-π Interactions:The Benzene Dimer [J]. J Am Chem Soc,2002,124:10887-10983.
    (31)(a) MILLER J S, NOVOA J J, Four-Center Carbon-Carbon Bonding [J]. Acc Chem Res,2007,40:189-196. (B) NOVOA J J, LAFUENTE P, DEL SESTO R E, MILLER J S, Exceptionally Long (> 2.9 A) C-C Bonds between [TCNE]- Ions:Two-Electron, Four-Center π-π* C-C Bonding in π-[TCNE]22- [J]. Angew Chem Int Ed,2001,40:2540-2545. (c) MILLER J S, GLATZHOFER D T, VAZQUEZ C, et al. Electron-Transfer Salts of 1,2,3,4,5-Pentamethylferrocene, FeⅡ(C5Me5)(C5H5). Structure and Magnetic Properties of Two 1:1 and Two 2:3 Fe(C5Me5)(C5H5) Electron-Transfer Salts of Tetracyanoethylene [J]. Inorg Chem,2001,40: 2058-2064.
    (32)(a) ZHAO H, HEINTZ R A, DUNBAR K R, ROGERS R D, Unprecedented Two-Dimensional Polymers of Mn(Ⅱ) with TCNQ-(TCNQ=7,7,8,8-Tetracyanoquinodimethane) [J]. J Am Chem Soc,1996, 118:12844-12845. (b) Kaupp G, Boy J, Overlong C-C Single Bonds [J]. Angew Chem Int Ed Engl,1997,36:48-49.
    (33)MIKAMI S, SUGIURA K-I, MILLER J S, SAKATA Y, Two-Dimensional Honeycomb Network Formed by Porphyrinatomanganese(Ⅲ) and μ4-σ-Dimerized 7,7,8,8-Tetracyano-p-quinodimethane Dianion [J]. Chem Lett,1999.413-414.
    (34)HUANG J, KINGSBURY S, KERTESZ M, Crystal packing of TCNQ anion π-radicals governed by intermolecular covalent π-π bonding:DFT calculations and statistical analysis of crystal structures [J]. Phys Chem Chem Phys,2008,10:2625-2635.
    (35)FRANKEN P A, HILL A E, et al..Generation of Optical Harmonics [J]. Phys Rev Lett,1961,7:118-119.
    (36)BUCKINGHAM A D, Permanent and induced molecular moments and long-range intermolecular forces. [J]. Adv Chem Phys,1967,12: 107-142.
    (37)CONNERADE J-P, Quasi-atom and Super-atom [J], Physica Scripta.2003, 68:25-27.
    (38)BERGERON D E, CASTLEMAN JR A W, MORISATO T, KHANNA S N, Formation of Al13I-:Evidence for the Superhalogen Character of AI13 [J], Science 2004,304,:84-87.
    (39)MORAN D, STAHL F, JEMMIS E D, SCHAEFER H F, SCHLEYER P.v R, Structures, stabilities, and ionization potentials of dodecahedrane endohedral complexes [J], J Phys Chem A,2002,106:5144-5154.
    (40)KEALY T J, PAUSON P L,A New Type of Organo-Iron Compound [J]. Nature.1951,168:1039-1040.
    (41)(a) MERCERO J M, UGALDE J M, Sandwich-Like Complexes Based on "All-Metal" (Al42-) Aromatic Compounds [J].J Am Chem Soc 2004,126: 3380-3381. (b) MERCERO J M, FORMOSO E, MATXAIN J M, ERIKSSON L A, UGALDE J M, Sandwich Complexes Based on the "All-Metal" Al42- Aromatic Ring [J]. Chem Eur J 2006,12:4495-4502. (c) MERCERO J M, MATXAIN J M, UGALDE J M, Mono- and Multidecker Sandwich-Like Complexes of the Tetraazacyclobutadiene Aromatic Ring [J]. Angew Chem Int Ed,2004,43:5485-5488.
    (42)(a) LEIN M, FRUNZKE J, FRENKING G, A Novel Class of Aromatic Compounds:Metal-Centered Planar Cations [Fe(Sb5)]+ and [Fe(Bi5)]+ [J]. Angew Chem Int Ed 2003,42:1303-1306. (b) ROY D R, CHATTARAJ P K, Reactivity, Selectivity, and Aromaticity of Be32" and Its Complexes [J]. J Phys Chem A,2008 112:1612-1621.
    (43)(a) YANG L-M, DING Y-H, SUN C-C, Design of the Sandwich-like Compounds Based on the All-Metal Aromatic Unit Al3- [J]. ChemPhysChem 2006,7:2478-2482. (b) YANG L-M, DING Y-H, SUN C-C, Sandwich-like Compounds Based on the All-Metal Aromatic Unit A142-and the Main-Group Metals M (M=Li, Na, K, Be, Mg, Ca) [J]. Chem Eur J,2007 13:2546-2555. (c) YANG L-M, DING Y-H, SUN C-C. Design of Sandwichlike Complexes Based on the Planar Tetracoordinate Carbon Unit CA142- [J]. J Am Chem Soc,2007,129:658-665. (d) YANG L-M, DING Y-H, SUN C-C, Assembly and Stabilization of a Planar Tetracoordinated Carbon Radical CAl3Si:A Way To Design Spin-Based Molecular Materials [J]. J Am Chem Soc,2007,129:1900-1901.
    (44)(a) SUN X-Y, LI Z-R, WU D, SUN C-C, Extraordinary superatom containing double shell nucleus:Li(HF)3Li connected mainly by intermolecular interactions [J]. Int J Quantum Chem 2007,107: 1215-1222.(b) CHEN W, LI Z-R, WU D, LI Y, SUN C-C, Li3-O-Li3 molecule:A metal-nonmetal-metal sandwichlike compound with a distending electron cloud [J]. J Chem Phys 2005,123:164306.
    (45)(a) LI Z-R, WANG F-F, WU D, LI Y, CHEN W, SUN X-Y, GU F L, AOKI Y. Royal crown-shaped electride Li3-N3-Be containing two superatoms: New knowledge on aromaticity [J]. J Comput Chem,2006,27:986-994. (b) LI, Y, LI, Z.-R, WU, D, CHEN, W, SUN, C.-C. The Trigonal Bipyramidal MN3M Species:A New Kind of Aromatic Complex Containing aMultiple-fold Aromatic N3 Subunit [J]. ChemPhysChem 2005,6:1-9.
    (46)(a) LI Q S, CHENG L P, Aromaticity of Square Planar N42-in the M2N4 (M) Li, Na, K, Rb, or Cs) Species [J]. J Phys Chem A,2003,107: 2882-2889. (b) LI Q S, GUAN J, Theoretical Study of Ni(N4)2, Ni(C4H4)2, and Ni(C2O2)2 Complexes [J]. J Phys Chem A,2003,107:8584-8593.
    (47)(a) GAGLIARDI L, PYYKKO P, η5-N5- -Metal-η7-N73-:A New Class of Compounds [J]. J Phys Chem A,2002,106:4690-4694. (b) YANG, L.-M, WANG, J, DING, Y.-H, SUN, C.-C. Investigation of the Typical Triangular Structure B3 in Boron Chemistry:Insight into Bare All-Boron Clusters Used as Ligands or Building Blocks [J]. J Phys Chem A,2007, 111:9122-9129.
    (48)(a) TSIPIS A C, CHAVIARA A T, Structure, Energetics, and Bonding of First Row Transition Metal Pentazolato Complexes:A DFT Study [J]. Inorg Chem 2004,43:1273-1286.
    (49)(a) KUZNETSOV A E, BOLDYREV A I, LI X, WANG L-S. On the Aromaticity of Square Planar Ga42- and In42- in Gaseous NaGa4- and NaIn4- Clusters [J]. J Am Chem Soc 2001,123:8825-8831. (b) BOLDYREV A I, KUZNETSOV A E, On the Resonance Energy in New All-Metal Aromatic Molecules [J]. Inorg Chem 2002,41:532-537.
    (50)ZHAN C.G, ZHENG F, DIXON D A, Electron Affinities of Aln. Clusters and Multiple-Fold Aromaticity of the Square Al42- Structure [J]. J Am Chem Soc 2002,124:14795-14803.
    (51)(a) SCHLEYER P v R, MAERKER C, DRANSFELD A, JIAO H, HOMMES N J V E, Nucleus-Independent Chemical Shifts:A Simple and Efficient Aromaticity Probe [J], J Am Chem Soc,1996,118:6317-6318. (b) SCHLEYER P v.R, JIAO H, HOMMES N J V E, MALKIN V G, MALKINA O L, An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties [J], J Am Chem Soc,1997,
    119:12669-12670. (c) GOLDFUSS B, SCHLEYER P v R, HAMPEL F, Aromaticity in Silole Dianions:Structural, Energetic, and Magnetic Aspects [J], Organometallics 1996,15:1755-1757.
    (1)BOR M, OPPENHEIMER R, Zur Quantentheorie der Molekeln Ann. Phsik. [M] (Quantum Theory of the Molecules Ann. Phys.) 1927,84,457.
    (2)(a) HEHRE W J, RADOM L, SCHLEYER P v R, et al. Ab Initio Molecular Orbital Theory [M], John Wiley &Sons, Inc.,1986. (b) MCQUARRIE D A [M], Quantum Chemistry University Science Books: Mill Vally.CA.1983.
    (3)(a)唐敖庆,杨忠志,李前树,量子化学[M],北京,科学出版社,1982.(b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法[M],北京,科学出版社,1985.
    (4)LOWDIN P O, Correlation Problem in Many-Electron Quantum Mechanics [J], Adv Chem Phys 1959,2:207-212.
    (5)POPLE J A, SEEGER R, KRISHNAN R, Variational Configuration Interaction Methods and Comparison with Perturbation Theory [J], Int J Quant Chem,1977,11:149-161.
    (6)FORESMAN J B, HEAD-GORDON M, POPLE J A, FRISCH M J, Toward a Systematic Molecular Orbital Theory for Excited States [J], J Phys Chem,1992,96:135-149.
    (7)KRISHNAN R, SCHLEGEL H B, POPLE J A, Derivate Studies in Configuration Interaction Theory [J], J Chem Phys,1980,72:4654-4655.
    (8)BROOKS B R, LAIDIG W D, SAXE P, GODDARD J D, YAMAGUCHI Y, SCHAEFER H F, Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach [J], J Chem Phys,1980,72:4652-4653.
    (9)SALTER E A, TRUCKS G W, BARTLETT R J, Analytic Energy Derivatives in Many-Body Methods Ⅰ. First Derivatives [J], J Chem Phys, 1989,90:1752-1766.
    (10)RAGHAVACHARI K, POPLE J A, Calculation of one-electron properties using limited configuration interaction techniques [J], Int J Quant Chem,1981,20:1067-1071.
    (11)POPLE J A, HEAD-GORDON M, RAGHAVACHARI K, Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies [J], J Chem Phys,1987,87:5968-5975.
    (12)CIOSLOWSKI J A, New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues [J], Chem Phys Lett,1994,219:151-154.
    (13)SCHLEGEL H B, ROBB M A, MCSCF Gradient Optimization of the H2CO→H2+CO Transition Structure [J], Chem Phys Lett,1982,93: 43-46.
    (14)EADE R H E, ROBB M A, Direct Minimization in MCSCF Theory. The Quasi-Newton Method [J], Chem Phys Lett,1981,83:362-368.
    (15)HEGARTY D, ROBB M A, Application of Unitary Group Methods to Configuration Interaction Calculations [J], Mol Phys,1979,38: 1795-1812.
    (16)HOHENBERG P, KOHN W, Inhomogeneous Electron Gas [J], Phys Rev B,1964,136:864.
    (17)KOHN W, SHAM L J, Self-Consistent Equations Including Exchange and Correlation Effects [J], Phys Rev A,1965,140:1133-1138.
    (18)SLATER J C, Quantum Theory of Molecular and Solids. Vol.4:The Self-Consistent Field for Molecular and Solids McGraw-Hill [M]:New York,1.974.
    (19)SALAHUB D R, ZERNER M C EDS, The Challenge of d and f Electrons [M]. ACS:Washington, D.C.,1989.
    (20)PARR R G, YANG W, Density-functional theory of atoms and molecules [M]. Oxford Univ. Press:Oxford,1989.
    (21)POPLE J A, GILL P M W, JOHNSON B G, Kohn-Sham density-functional theory within a finite basis set [J], Chem Phys Lett 1992,199:557-560.
    (22)JOHNSON B G, FRISCH M J, An implementation of analytic second derivatives of the gradient-corrected density functional energy [J], J Chem Phys 1994 100:7429-7442.
    (23)LABANOWSKI J K, ANDZELM J W EDS, Density Functional Methods in Chemistry [M], Springer-Verlag:New York,1991.
    (24)FUKUI K, Variational Principles in a Chemical Reaction [J], Int J Quantum Chem 1981,15:633-642
    (25)FUKUI K, Tachibana A, Yamashita K, Toward Chemodynamics [J], Int J Quantum Chem 1981,15:621-632.
    (26)WANG B, HOU H, GU Y, Ab Initio/Density Functional Theory and Multichannel RRKM Calculations for the CH3O+CO Reaction [J], J Phys Chem A,1999,103:8021-8029.
    (27)FORESMAN J B, HEAD-GORDON M, A.POPLE J, Toward a systematic molecular-orbital theory for excited states [J], J Phys Chem, 1992,96:135-139.
    (28)RAGHAVACHARI K, POPLE J A, Calculation of one-electron properties using limited configuration interaction techniques [J], Int J Quant Chem,1981,20:1067-1071.
    (29)(a) ZHANG H-X, CHE C-M, Aurophilic Attraction and Luminescence of Binuclear Gold(I) Complexes with Bridging Phosphine Ligands:ab initio Study [J]. Chem Eur J,2001,7:4887-4893. (b) PAN Q-J, ZHANG H-X, Organometallics 2004,23:5198-5209. (c) PAN Q-J, ZHANG H-X, J Phys Chem A,2004,108:3650.
    (30)(a) WANG J-F, FENG J-K, REN A-M, LIU X-D, MA Y-G, LU P, ZHANG H-X, Macromolecules 2004,37:3451. (b) LIAO Y, FENG J-K, YANG L, REN A-M, ZHANG H-X, Ab Initio Study on Luminescent Properties and Aurophilic Attraction of [Au2(dpm)(i-mnt)] and Its Related Au(I) Complexes (dpm=bis(diphosphino)methane and i-mnt=i-malononitriledithiolate) [J]. Organometallics 2005,24:385-394.
    (31)GISBERGEN S J A VAN, GROENEVELD J A, ROSA A, SNIJDERS J G, BAERENDS E J, Excitation Energies for Transition Metal Compounds from Time-Dependent Density Functional Theory. Applications to MnO4-,Ni(CO)4, and Mn2(CO)10 [J], J Phys Chem A, 1999,103:6835-6844.
    (32)HALLS M D, SCHLEGEL H B, Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(Ⅲ) [J], Chem Mater,2001,13: 2632-2640.
    (33)FORESMAN J B, FRISCH A, Exploring Chemistry with Electronic Structure Methods [M],2nd edition, Gaussian, Inc., Pittsburgh, PA,1996.
    (34)FRANK I, Excited State Molecular Dynamics, Invited Review [P], SIMU Newsletter,2001,3,63-77.
    (35)王一波,氢键的精确从头计算方法及其用于NH3,H2O和HF分子间氢键的研究[J],中国科学B辑1995,25,1016-1025.
    (36)BOYS S F, BERNARDI F, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. Mol Phys,1970,19:553-566.
    (37)WOON D E, Benchmark calculations with correlated molecular wave functions. V. The determination of accurate ab initio intermolecular potentials for He2, Ne2, and Ar2 [J], J Chem Phys,1994,100:2838-2852.
    (38)TAO F M, PAN Y K, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J], J Chem Phys,1985,82:270-284.
    (39)TAO F M, PAN Y K, M(?)ller-Plesset perturbation investigation of the He2 potential and the role of midbond basis functions [J], J Chem Phys, 1992,97:4989-4996.
    (40)PANICH M J, NMR study of the F-Hcdots, three dots, centeredF hydrogen bond. Relation between hydrogen atom position and F-Hcdots, three dots, centeredF bond length [J], Chem Phys,1995,196:511-519.
    (41)TAO F M, Bond functions, basis set superposition errors and other practical issues with ab initio calculations of intermolecular potentials [J], Int Rev in Phys Chem,2001,20:617-643.
    (42)孙延波,吴迪,李志儒,孙家钟,键函数对ArCl-相互作用势理论计算结果的影响[J], Chem J Chin Univ(高等学校化学学报),2002,23,121-122.
    (43)LI Z R, TAO F M, PAN Y K, Study of locally dense and locally saturated basis sets in localized molecular orbital calculations of nuclear shielding:Ab initio LORG calculations for 13C and 170 in norbornenone [J], Int J Quant Chem,1996,57:199-205.
    (44)TAO F M, LI Z R, PAN Y K, An accurate ab initio potential energy surface of He-H2O [J], Chem Phys Lett,1996,255:179-186.
    (1)DAVID L M, Aromatics do the twist [J]. Nature,2003,426:776-777.
    (2)(a) RAINER H, Aromatics with a twist [J]. Nature,2007,450:36-37. (b) RAINER H, Topology in Chemistry:Designing Mobius Molecules [J]. Chem. Rev,2006,106:4820-4282.
    (3)AJAMI D, OECKLER O, SIMON A, HERGES R, Synthesis of a Mobius aromatichydrocarbon [J]. Nature,2003,426:819-821.
    (4)TANDA S, TSUNETA T, OKAJIMA Y, INAGAKI K, YAMAYA K, HATAKENAKA N, A Mobius strip of single crystals [J]. Nature,2002, 417:397-398.
    (5)(a) RZEPA H S, Mobius Aromaticity and Delocalization [J]. Chem Rev, 2005,105:3697-3715. (b) RZEPA H S, Wormholes in chemical space connecting torus knot and torus link π-electron density topologies [J]. Phys Chem Chem Phys,2009,11:1340-1345.
    (6)(a) HEILBRONNER E, Huckel molecular orbitals of Mobius-type conformations of annulenes [J]. Tetrahedron Lett,1964,5:1923-1928. (b) ZIMMERMAN H E, On Molecular Orbital Correlation Diagrams, the Occurrence of Mobius Systems in Cyclization Reactions, and Factors Controlling Ground- and Excited-State Reactions [J]. J Am Chem Soc, 1966,88:1564-1565.
    (7)FOWLER P W, RZEPA H S, Aromaticity rules for cycles with arbitrary numbers of half-twists [J]. Phys Chem Chem Phys,2006,8:1775-1777.
    (8)STAROSTIN E L, VAN DER HEIJDEN G H M, The shape of a Mobius strip [J]. Nature Materials,2007,6:563-567.
    (9)STEPIEN M, LATOS-GRAZYNSKI L, SPRUTTA N, CHWALISZ P, SZTERENBERG L, Expanded Porphyrin with a Split Personality:A Hucke-Mobius Aromaticity Switch [J]. Angew Chem Int Ed,2007,46: 7869-7873.
    (10)TAUBERT S, SUNDHOLM D, PICHIERRI F, Magnetically Induced Currents in Bianthraquinodimethane-Stabilized Moobius and H€uckel [16]Annulenes [J]. J Org Chem,2009,74:6495-6502.
    (11)(a) XU H-L, LI Z-R, WANG F-F, WU D, HARIGAYA K, GU F-L, What is the shape effect on the (hyper)polarizabilities? A comparison study on the Mobius, normal cyclacene,and linear nitrogen-substituted strip polyacenes [J]. Chem Phys Letter,2008,454:323-326. (b) XU H-L, LI Z-H, SU ZM, MUHAMMAD S, GU F L, HARIGAYA K, Knot-Isomers of Mobius Cyclacene:How Does the Number of Knots Influence the Structure and First Hyperpolarizability? [J]. J Phys Chem C,2009,113: 15380-15383. (c) WANG Y-F, WANG Y, LI Z-R, LI Z, XU H-L, SUN C-C, The Lithium-orientation Effect on the Hyperpolarizability in the Short Zigzag-edged Mono-lithiated Aza-Mobius Graphene Ribbon [2,7] Isomers [J]. Int J Quantum Chem,2010, in press.
    (12)(a) CAETANO E W S, FREIRE V N, SANTOS S G, GALVAO DOS D S, SATO F, Mobius and twisted graphene nanoribbons:Stability, geometry, and electronic properties [J]. J Chem Phys,2008,128:164719. (b) SANTOS M C, ALVAREZ F DOS, Spin current in the Mobius cyclacene belts [J]. Chem Phys Letter,2009,471:276-279.
    (13)D. J. CRAM. Molecular container compounds [J]. Nature,1992,356, 29-36.
    (14)MASLAK V, YAN Z, XIA S, GALLUCCI J, BADJIC HADAD C M, Nanoscale Patterning of Two Metals on Silicon Surfaces Using an ABC Triblock Copolymer Template [J]. J Am Chem Soc,2006,128: 5887-5894.
    (15)(a) GIBB C L D, STEVENS E D, GIBB B C, C-H…X-R (X=Cl, Br, and I) Hydrogen Bonds Drive the Complexation Properties of a Nanoscale Molecular Basket [J]. J Am Chem Soc,2001,123:5849-5850; (b) RYU E-H, ZHANG Y, Environmentally Responsive Molecular Baskets:Unimolecular Mimics of Both Micelles and Reversed Micelles [J]. Org Lett,2004,6:3187-3189.
    (16)(a) EATON D F, Nonlinear Optical Materials [J]. Science,1991,253: 281-287. (b) LONG N J, WILLIAMS C K, Metal Alkynyl aComplexes: Synthesis and Materials [J]. Angew Chem Int Ed,2003,42:2586-2617. (c) MARDER S R, TORRUELLAS W E, BLANCHARD-DESCE M, et al. Large Molecular Third-Order Optical Nonlinearities in Polarized Carotenoids [J]. Science,1997,276:1233-1236.
    (17)(a) AVRAMOPOULOS A, REIS H, LI J, PAPADOPOULOS M G, The Dipole Moment, Polarizabilities, and First Hyperpolarizabilities of HArF. A Computational and Comparative Study [J]. J Am Chem Soc,2004,126: 6179-6184. (b) NAKANO M, FUJITA H, TAKAHATA M, YAMAGUCHI K, Theoretical Study on Second Hyperpolarizabilities of Phenylacetylene Dendrimer:Toward an Understanding of Structure-Property Relation in NLO Responses of Fractal Antenna Dendrimers [J]. J Am Chem Soc,2002,124:9648-9655. (c) CHEN W, LI Z-R, WU D, LI Y, SUN C C, GU F L, AOKI Y, Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M- (M=Li, Na, and K): Alkali Anion Atomic Number Dependence [J]. J Am Chem Soc,2006, 128:1072-1073.
    (18)(a) JENSEN L, DUIJNEN P TH VAN, SNIJDERS J G, CHONG D P, Time-dependent density functional study of the static second hyperpolarizability of BB-, NN- and BN-substituted C60 [J]. Chem Phys Lett,2002,359:524-529. (b) XU H-L, WANG F-F, LI Z-R, WANG B-Q, WU D, CHEN W, YU G-T, GU F L, Y. AOKI. The Nitrogen Edge-Doped Effect on the Static First Hyperpolarizability of the Supershort Single-Walled Carbon Nanotube [J]. J Comput Chem,2009, 30:1128-1134.
    (19)SEO K, KONCHENKO A V, LEE J, BANG G S, LEE H, Molecular Conductance Switch-On of Single Ruthenium Complex Molecules [J]. J Am Chem Soc,2008,130:2553-2559.
    (20)WANG P, ZAKEETUDDIN S M, MOSER J E, NAZEERUDDIN M K, SEKIGUCHI T, GRATZEL M, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [J]. Nature Material,2003,2:402-407.
    (21)SENECHAL-DAVID K, HEMERYCK A, TANCREZ N, TOUPET L, et al. Synthesis, Structural Studies, Theoretical Calculations, and Linear and Nonlinear Optical Properties of Terpyridyl Lanthanide Complexes:New Evidence for the Contribution of f Electrons to the NLO Activity [J]. J Am Chem Soc,2006,128:12243-12255.
    (22)AKASAKA T, OTSUKI J, ARAKI K, Redox-Responsive Molecular Switches Based on Azoterpyridine-Bridged Ru/Os Complexes [J]. Chem Eur J,2002,8:130-136.
    (23)DE COLA L, BELSER P, Photoinduced energy and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes [J]. Coord Chem Rev,1998,177:301-346.
    (24)WAND Y, HERRON N, GRUSHIN V V, LECLOUX D D, PETROV V A, Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds [J]. Appl Phys Lett,2001,79: 449-451.
    (25)TSUBOYAMA A, IWAWAKI H, FURUGORI M, et al. J Am Chem Soc, 2003,125:12971-12979.
    (26)(a) CHEN W, LI Z-R, LI Y, SUN C-C, GU F L, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole [J]. J Am Chem Soc,2005,127:10977-10981. (b) MUHANNAD S, XU H, LIAO Y, KAN Y, SU Z, Quantum Mechanical Design and Structure of the Li@B10H14 Basket with a Remarkably Enhanced Electro-Optical Response [J]. J Am Chem Soc,2009,131:11833-11840.
    (27)(a) RIENSTRA-KIRACOFE J C, TSCHUMPER G S, SCHAEFER III H F, SREELA N, ELLISON G B, Atomic and Molecular Electron Affinities:Photoelectron Experiments and Theoretical Computations [J]. Chem Rev,2002,102:231-282. (b) SHKROB I A, The Structure of the Hydrated Electron. Part 1. Magnetic Resonance of Internally Trapping Water Anions:A Density Functional Theory Study [J]. J Phys Chem A, 2007,111:5223-5231.
    (28)(a) PAUL A, WANNERE C S, KASALOVA V, SCHLEYER P V R, SCHAEFER III H F, The Peculiar Trend of Cyclic Perfluoroalkane Electron Affinities with Increasing Ring Size [J]. J Am Chem Soc,2005, 127:15457-15459. (b) KHAN A, Solvated electron in (H2O)20-dodecahedral cavity:calculated stretch frequencies and vertical dissociation energy [J]. Chem Phys Lett,2005,401:85-88.
    (29)WANG Y-F, LI Z-R, WU D, SUN C-C, GU F-L, Excess Electron is Trapped in a Large Single Molecular Cage C60F60 [J]. J Comput Chem, 2010,31:195-203.
    (30)ZIMMERMAN J A, EYLER J R, BACH S B H, MCELVANY S W, "Magic number" carbon clusters:Ionization potentials and selective reactivity [J]. J Chem Phys,1991,94:3556-3562.
    (31)CHAMPAGNE B, PERPETE E A, JACQUEMIN D, VAN GISBERGEN S J A, BAERENDS E J, SOUBRA-GHAOUI C, ROBINS K A, KIRTMAN B, Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push-Pull π-Conjugated Systems [J]. J Phys Chem A,2000,104: 4755-4763.
    (32)XIAO D, BULAT F A, YANG W, BERATAN D N, A Donor-Nanotube Paradigm for Nonlinear Optical Materials [J]. Nano Lett,2008,8: 2814-2718.
    (33)(a) BULAT F A, TORO-LABBE A, CHAMPAGNE B, KIRTMAN B, YANG W, Accurate intermolecular ground-state potential-energy surfaces of the HCCH-He, Ne, and Ar van der Waals complexes [J]. J Chem Phys,2005,123:014309. (b) CHAMPAGNE B, PERPETE E A, VAN GISBERGEN S J A, BAERENDS E-J, SNIJDERS J G, SOUBRA-GHAOUI C, ROBINS K A, KIRTMAN B, Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers:An ab initio investigation of polyacetylene chains [J]. J Chem Phys 1988,109: 10489.
    (34)NAKANO M, KISHI R, NITTA T, KUBO T, et al. Second Hyperpolarizability (γ) of Singlet Diradical System:Dependence of γ on the Diradical Character [J]. J Phys Chem A,2005,109:885-891.
    (35)FRISCH M J, TRUCKS G W, SCHLEGEL H B, GAUSSIAN 03, revision E.01, Gaussian, Inc., Pittsburgh PA,2004.
    (36)(a) MANOLOPOULOS D E, MAY J C, DOWN S E, Theoretical studies of the fullerenes:C34 to C70 [J]. Chem Phys Lett,1991,181:105-111. (b) ZHOU Z, PARR R G, GARST J F, New measures of aromaticity: absolute hardness and relative hardness [J]. J Am Chem Soc,1989,111: 7371-7379.
    (37)ZHOU Z, PARR R G, Activation hardness:new index for describing the orientation of electrophilic aromatic substitution [J]. J Am Chem Soc, 1990,112:5720.
    (38)LIDE D R, CRC Handbook of Chemistry and Physics [M], CRC Press, Boca Raton,2000.
    (39)HENNING Z, MANUEL A, FERNANDO M, First-and second-electron affinities of C60 and C70 isomers [J]. Phys Rev A,2007,76:043205 (1-7).
    (40)IRMI E, ELGAFI B S, FIELD L D, HAMBLEY T W, MESSERLE B A, Formation of a Novel Dipyrrolopyrrole Mediated by a 1,4-Diaza-1,3-diene Complex of Iron [J]. Inorg Chem,1994,33: 1539-1542.
    (41)SCHMALZ T G, SEITZ W A, KLEIN D J, HITE G E, Elemental carbon cages [J]. J Am Chem Soc,1988,110:1113-1127.
    (42)J. JIA, H.-S. WU, X.-H. XU, X.-M. ZHANG, H. JIAO, Fused Five-Membered Rings Determine the Stability of C60F60 [J]. J Am Chem Soc,2008,130,3985-3988.
    (43)(a) MORRELL J A, ALBRECHT A C, LEVIN K H, TANG C L, The electro-optic coefficients of urea [J]. J Chem Phys,1979,71:5063-5068. (c) DATTA A, PATI S K, Dipolar interactions and hydrogen bonding in supramolecular aggregates:understanding cooperative phenomena for 1st hyperpolarizability [J]. Chem Soc Rev,2006,35:1305-1323.
    (1)SAUVAGE J-P, DIETRICH-BUCHECKER C Eds, Molecular Catenanes, Rotaxanes, and Knots [M], (Wiley-VCh, Weinheim, Germany,1999). pp 80-174.
    (2)KAWASE T, ODA M, Mobius Aromatic Hydrocarbons:Challenges for Theory and Synthesis [J]. Angew. Chem. Int. Ed.2004,43,4396-4398.
    (3)MOBIUS A F, Uber die Bestimmung des Inhaltes eines Polyeders. Berichte Uber die Verhandlungen der Koniglich Sa'chsischen Gesellschaft der Wissenschaften zu Leipzig [M], Sitzung 27 November 1865;Vol.17, pp 31-68.
    (4)KLEIN F Eds, Uber Riemann's Theorie der algebraischen Functionen und ihrer Integrale[M], (Teubner, Leipzig,1882), pp 80-174.
    (5)HERGES R, Mobius, Escher, Bach-the endless tape in art and science. Naturwiss [M]. Rundsch.2005,58:301-310.
    (6)AJAMI D, OECKLER O, SIMON A, HERGES R, Synthesis of a Mobius aromatic hydrocarbon [J] Nature 2003,426:819-821.
    (7)STEPIEN M, LATOS-GRAZYNSKI L, SPRUTTA N, CHWALISZ P, SZTERENBERG L, Expanded porphyrin with a split personality:a Huckel-Mobius aromaticity switch [J]. Angew Chem Int Ed,2007,46: 7869-7873.
    (8)RZEPA H S, A Double-Twist Molbius-Aromatic Conformation of [14]Annulene [J]. Org Lett,2005,7:4637-4639.
    (9)HERGES R, Topology in chemistry:designing Mobius molecules [J]. Chem Rev,2006,106:4820-4842.
    (10)LEMAL D M, Aromatics do the twist [J]. Nature,2003,426:776-777.
    (11)RZEPA H S, Mobius aromaticity and delocalization [J]. Chem Rev,2005, 105:3697-3715.
    (12)KIRBY E C, PISANSKI T, Aspects of topology, genus and isomerism in closed 3-valent networks [J]. J Math Chem,1998,23:151-167.
    (13)HASHIMOTO A, SUENAGA K, GLOTER A, URITA K, LIJIMA S, Direct evidence for atomic defects in graphene layers [J]. Nature,430: 870-873.
    (14)BERBER S, KWON Y-K, TOMANEK D, Bonding and energy dissipation in a nanohook assembly [J]. Phys Rev Lett,2003,91:165503.
    (15)CIOFFI C, et al, Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns [J]. J Am Chem Soc,2007,129:3938-3945.
    (16)QU, C. Q. et al., Electronic and field emission properties of carbon nanocones:A density functional theory investigation. IEEE. T. Nano. Tech.8:153-158(2009).
    (17)KAWAI T, OKADA S, MIYAMOTO Y, OSHIYAMA A, Carbon three-dimensional architecture formed by intersectional collision of graphene patches [J]. Phys Rev B,2005,72:035428.
    (18)ZETTERGREN H, ALCAMI M, MARTIN F, First-and second-electron affinities of C60 and C70 isomers [J]. Phys Rev A,2007,76:043205.
    (19)MANOLOPOULOS D E, MAY J C, DOWN S E, Theoretical studies of the fullerenes:C34 to C70. Chem Phys Lett,1991,181:105-111.
    (20)NAGASE S, KOBAYASHI K, Structural study of endohedral dimetallofullerenes Sc2@C84 and Sc2@C74 [J]. Chem Phys Lett,1997, 276:55-61.
    (21)DIENER M D, ALFORD J M, Isolation and properties of small-bandgap fullerenes [J]. Nature,1998,393:668-371.
    (22)ZIMMERMAN J A, EYLER J R, BACH S B H, MCELVANY S W, "Magic number" carbon clusters:ionization potentials and selective reactivity [J]. J Chem Phys,1991,94:3556-3562.
    (23)LU X, CHEN Z, Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (< C6o) and Single-Walled Carbon Nanotubes [J]. Chem Rev,2005,105:3643-3696.
    (24)KANEDA K, OKABE Y, Finite-size scaling for the ising model on the Mobius strip and the Klein bottle [J]. Phys Rev Lett,2001,86: 2134-2137.
    (25)SATO O, Switchable materials:An electric effect [J]. Nature Chem,2010, 2:10-11.
    (26)CHEN W, LI Z-R, LI Y, SUN C-C, GU F L, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole [J]. J Am Chem Soc, 2005,127:10977-10981.
    (27)HUMMELEN J C, PRATO M, WUDL F, There is a hole in my bucky [J]. J Am Chem Soc,1995,117:7003-7004.
    (28)MURATA K, et al., Molecular potential structures of heat-treated single-wall carbon nanohorn assemblies [J]. J Phys Chem B,2001,105: 10210-10216.
    (29)LEE H J, HO W, Single-bond formation and characterization with a scanning tunneling microscope [J]. Science,1999,286:1719-1722.
    (30)FRISCH M J, TRUCKS G W, SCHLEGEL H B, Gaussian 03, Revision B03, Gaussian, Inc., Wallingford CT,2004.
    (1)PAIK D H, LEE I-R, YANG D-S, BASKIN S ZEWAIL A H, Electrons in Finite-Sized Water Cavities:Hydration Dynamics Observed in Real Time [J]. Science 2004,306:672-675.
    (2)HAMMER N I, SHIN J-W, HEADRICK J, DIKEN E G, ROSCIOLI J R, WEDDLE G H, JOHNSON M A, How Do Small Water Clusters Bind an Excess Electron? [J]. Science,2004,306:675-679.
    (3)(a) TURI L, SHEU W-S, ROSSKY P J, Characterization of Excess Electrons in Water-Cluster Anions by Quantum Simulations [J]. Science, 2005,309:914-917. (b) VERLET J R R, BRAGG A E, KAMMRATH A, CHESHNOVSKY O, NEUMARK D M, Observation of Large Water-Cluster Anions with Surface-Bound Excess Electrons [J]. Science, 2005,307:93-96.
    (4)(a) SOMMERFELD T, JORDAN K D, Electron Binding Motifs of (H2O)n- Clusters [J]. J. Am. Chem. Soc,2006,128:5828-5833. (b) TAUBER M J, MATHIES R A, Structure of the Aqueous Solvated Electron from Resonance Raman Spectroscopy:Lessons from Isotopic Mixtures [J]. J Am Chem Soc,2003,125:1394-1402.
    (5)SIMONS J, Molecular Anions [J]. J Phys Chem A,2008,112:6401-6511.
    (6)SHKROB I A, SHKROB I A, The Structure of the Hydrated Electron. Part 1. Magnetic Resonance of Internally Trapping Water Anions:A Density Functional Theory Study [J]. J Phys Chem A,2007,111:5223-5231.
    (7)(a) COE J V, WILLIAMS S M, BOWEN K H. Photoelectron spectra of hydrated electron clusters vs. cluster size:connecting to bulk [J]. Int Rev Phys Chem 2008,27:27-51. (c) COE, J. V, LEE, G. H, EATON, J. G, et al. Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)- [J]. J Chem Phys,1990,92:3980.
    (8)(a) KHAN, A. Solvated electron in (H20)20 dodecahedral cavity: calculated stretch frequencies and vertical dissociation energy [J]. Chem- Phys Lett,2005,401:85-88. (b) KIM, A. Solvated electron in (H2O)20-and (H2O)21- clusters:A theoretical study [J]. J Chem Phys 2003,118: 1684-1867. (c) KHAN. A. Extra electron in (H2O)24- cluster isomers:A theoretical study [J]. J Chem Phys 2004,121:280-284.
    (9)(a) KAMMRATH A, VERLET J R R, GRIFFIN G B, NEUMARK D M, Photoelectron spectroscopy of large (water)n- (n=50-200) clusters at 4.7 eV [J]. J Chem Phys 2006,125:076101. (b) TAUBER M J, MATHIES R A, Resonance Raman spectra and vibronic analysis of the aqueous solvated electron [J]. Chem Phys Lett,2002,354:518-526.
    (10)(a) SHKROB H A, Ammoniated Electron as a Solvent Stabilized Multimer Radical Anion [J]. J Phys Chem A,2006,110:3967-3976 and references therein, (b) SARKAS H W, ARNOLD S T, EATON J G, LEE G H, BOWEN K H, Ammonia cluster anions and their relationship to ammoniated (solvated) electrons:The photoelectron spectra of (NH3)n= 41-1100- [J].J Chem Phys,2002,116:5731-5738.
    (11)SHKROB I A, SCHLUETER J A, Can a single molecule trap the electron? [J]. Chem Phys Lett 2006,431:364-369.
    (12)(a) DYE J L, Electrons as Anions [J]. Science,2003,301:607-608. (b) Ichimura A S, DYE J L, CAMBLOR M A, VILLAECUSA L A, J Am Chem Soc,2002,124:1170-1171. (c) Ichimura A S, DYE J L, CAMBLOR M A, VILLAECUSA L A, Toward Inorganic Electrides [J]. J Am Chem Soc,2002,124:1170-1171.
    (13)MATSUISHI S, TODA Y, MIYAKAWA M, et al. High-Density Electron Anions in a Nanoporous Single Crystal:[Ca24Al28O64]4 (4e) [J]. Science. 2003,301:626-629.
    (14)(a) MIYAKAWA M, KIM S W, HIRANO M, et al. Superconductivity in an Inorganic Electride 12CaO·7Al2O3:e-[J]. J Am Chem Soc 2007,129: 7270-7271. (b) SUSHKO P V, SHLUGER A L, HAYASHI K, HIRANO M, HOSONO H, Electron Localization and a Confined Electron Gas in Nanoporous Inorganic Electrides [J]. Phys Rev Lett,2003,91:126401.
    (15)(a) TRIBUTSCH H, POHLMANN L. Electron Transfer:Classical Approaches and New Frontiers [J]. Science,1998,279:1891-1895. (b) DESFRANCOIS C, CARLES S, SCHERMANN J P, Weakly Bound Clusters of Biological Interest [J]. Chem Rev 2000,100; 3943-962.
    (16)(a) LI Y, LI Z.-R, WU D, LI R.-Y, HAO X Y, SUN C.-C. An ab Initio Prediction of the Extraordinary Static First Hyperpolarizability for the Electron-Solvated Cluster (FH)2{e}(HF) [J]. J Phys Chem B,2004,108: 3145-3148. (b) WU D, LI Y, LI Z, CHEN W, LI Z-R, SUN C-C, Characterization of solvated electrons in hydrogen cyanide clusters: (HCN)n-(n=3,4) [J]. J Chem Phys,2006,124:054310.
    (17)(a) CIOSLOWSKI J, LIN Q, Guest Discrimination in Complexes of Alkali Metal Cations with the C36H36 Spheriphane:An ab Initio Electronic Structure Study [J]. J Am Chem Soc,1995,117:2553-2556. (b) CIOSLOWSKI J, FLEISCHMANN E D, Endohedral complexes:Atoms and ions inside the C60 cage. [J]. J Chem Phys,1991,94:3730-3734.
    (18)(a) CIOSLOWSKI J, Endohedral chemistry:electronic structures of molecules trapped inside the C60 cage [J]. J Am Chem Soc,1991,113: 4139-4141. (b) HU Y H, RUCKENSTEIN E, Endohedral Chemistry of C60-Based Fullerene Cages [J]. J Am Chem Soc,2005,127:11277-11282.
    (19)(a) ECHEGOYEN L, ECHEGOYEN L E, Electrochemistry of Fullerenes and Their Derivatives [J]. Acc Chem Res,1998,31:593. (b) REED C A, BOLSKAR R D, Discrete Fulleride Anions and Fullerenium Cations [J]. Chem Rev,2000,100:1075-1120.
    (20)(a) PAUL A, WANNERE C S, KASALOVA V, SCHLEYER P V R, SCHAEFER III H F, The Peculiar Trend of Cyclic Perfluoroalkane Electron Affinities with Increasing Ring Size [J]. J Am Chem Soc,2005, 127:15457-15459. (b) PAUL A, WANNERE C S, SCHAEFER III H F, Do Linear-Chain Perfluoroalkanes Bind an Electron? [J]. J Phys Chem A 2004,108:9428-9434.
    (21)(a) ZHANG C-Y, WU H-S, JIAO H, Aromatic C20F20 cage and its endohedral complexes X@C20F20 (X=H-,F-,Cl-,Br-, H, He) [J]. J Mol Model,2007,13:499-503. (b) IRIKURA K K, Sigma Stellation:A Design Strategy for Electron Boxes [J]. J Phys Chem A,2008,112: 983-988.
    (22)HOLLO WAY J H,HOPE E G, TAYLOR R, et al. Fluorination of buckminsterfullerene [J]. J Chem Soc Chem Commun,1991,966.
    (23)SCUSERIA G E, Ab initio theoretical predictions of the equilibrium geometries of C60, C60H60 and C60F60 [J]. Chem Phys Lett,1991,176: 423-427.
    (24), BETTINGER H F, KUDIN K N, SCUSERIA G E, Thermochemistry of Fluorinated Single Wall Carbon Nanotubes [J]. J Am Chem Soc,2001, 123:12849-12856.
    (25)JIA J, WU H-S, XU X-H, ZHANG X-M, JIAO H. Fused Five-Membered Rings Determine the Stability of C60F60 [J]. J Am Chem Soc,2008,130: 3985-3988.
    (26)BECKE A D, Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A,1988,38:3098-3100.
    (27)JORDAN K D, LUKEN W, Theoretical study of the binding of an electron to a molecular dipole:LiCl- [J]. J Chem Phys,1976,64: 2760-2766.
    (28)SKURSKI P, GUTOWSKI M, SIMONS J. How to choose a one-electron basis set to reliably describe a dipole-bound anion [J]. Int J Quantum Chem,2000,80:1024-1038.
    (29)REED A E, WEINSTOCK R B, WEINHOLD F, Natural population
    (30)RIENSTRA-KIRACOFE J C, TSCHUMPER G S, SCHAEFER H F III, SREELA N, ELLISON G B, Atomic and Molecular Electron Affinities: Photoelectron Experiments and Theoretical Computations [J]. Chem Rev, 2002,102:231-282.
    (31)WANG F-F, LI Z-R, WU D, WANG B-Q, LI Y, LI Z-J, CHEN W, YU G-T, GU F G, AOKI Y, Structures and Considerable Static First Hyperpolarizabilities:New Organic Alkalides (M+@n6adz)M- (M, M'= Li, Na, K; n=2,3) with Cation Inside and Anion Outside of the Cage Complexants [J]. J Phys Chem B,2008,112:1090-1094.
    (32)PATHAK A K, MUKHERJEE T, MAITY D K, Theoretical studies on photoelectron and IR spectral properties of Br2-(H2O)n clusters [J]. J Chem Phys 2007,127:044304.
    (33)FRISCH M J, TRUCKS G W, SCHLEGEL H B, Gaussian 03, Revision B03, Gaussian, Inc., Wallingford CT,2004.
    (34)SCUDERI, D, PALADINI, A, SATTA, M, CATONE, D, PICCIRILLO, S, SPERANZA, M, GIARDINI GUIDONI, A. Chiral aggregates of indan-1-o1 with secondary alcohols and water:Laser spectroscopy in supersonic beams [J]. Phys Chem Chem Phys 2002,4,4999-5003.
    (35)GAKH, A. A, TUINMAN, A. A, ADCOCK, J. L, SACHLEBEN, R. A, COMPTON, R. N. Selective Synthesis and Structure Determination of C60F48 [J]. J Am Chem Soc,1994,116,819.
    (36)AHN T K, AVENSON T J, BALLOTTARI M, CHENG Y-C, NIYOGI K K, BASSI R, FLEMING G R, Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein [J].. Science, 2008,320:794-797.
    (37)SEO K, KONCHENKO A V, LEE J, BANG G S, LEE H, Molecular Conductance Switch-On of Single Ruthenium Complex Molecules [J]. J Am Chem Soc,2008,130:2553-2559.
    (38)MA D L, CHE C M, YAN S C, Platinum(II) Complexes with Dipyridophenazine Ligands as Human Telomerase Inhibitors and Luminescent Probes for G-Quadruplex DNA [J]. J Am Chem Soc,2009, 131:1835-1846.
    (39)ITO S, MIURA H, UCHIDA S, et al. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye [J]. Chem Commun. 2008,5194-5196.
    (40)WANG P, ZAKEETUDDIN S M, MOSER J E, NAZEERUDDIN M K, SEKIGUCHI T, GRATZEL M, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [J]. Nature Material,2003,2:402-407.
    (41)SENECHAL-DAVID K, HEMERYCK A, TANCREZ N, TOUPET L, et al. Synthesis, Structural Studies, Theoretical Calculations, and Linear and Nonlinear Optical Properties of Terpyridyl Lanthanide Complexes:New Evidence for the Contribution of f Electrons to the NLO Activity [J]. J Am Chem Soc,2006,128:12243-12255.
    (42)AKASAKA T, OTSUKI J, ARAKI K, Redox-Responsive Molecular Switches Based on Azoterpyridine-Bridged Ru/Os Complexes [J]. Chem Eur J,2002,8:130-136.
    (43)DE COLA L, BELSER P, Photoinduced energy and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes [J]. Coord Chem Rev,1998,177:301-346.
    (44)WAND Y, HERRON N, GRUSHIN V V, LECLOUX D D, PETROV V A, Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds [J]. Appl Phys Lett,2001,79: 449-451.
    (45)TSUBOYAMA A, IWAWAKI H, FURUGORI M, et al. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode [J]. J Am Chem Soc,2003,125:12971-12979.
    (46)CHEN W, LI Z-R, LI Y, SUN C-C, GU F L, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole [J]. J Am Chem Soc, 2005,127:10977-10981.
    (47)MUHANNAD S, XU H, LIAO Y, KAN Y, SU Z, Quantum Mechanical Design and Structure of the Li@B10H14 Basket with a Remarkably Enhanced Electro-Optical Response [J]. J Am Chem Soc,2009,131: 11833-11840.
    (48)XU H-L, LI Z-H, SU ZM, MUHAMMAD S, GU F L, HARIGAYA K, Knot-Isomers of Mobius Cyclacene:How Does the Number of Knots Influence the Structure and First Hyperpolarizability? [J]. J Phys Chem C, 2009,113:15380-15383.
    (49)DESFRANCOIS C, CARLES S, SCHERMANN J P, Weakly Bound Clusters of Biological Interest [J]. Chem Rev,2000,100:3943-3962.
    (50)PAGE C C, MOSTER C C, CHEN X, DUTTON L. Natural engineering principles of electron tunnelling in biological oxidation-reduction [J]. Nature (London),1999,402:47-52.
    (51)LEE H M, LEE S, KIM K S, Structures, energetics, and spectra of electron-water clusters, e--(H2O)2-6 and e--HOD(D2O)1-5 [J]. J Chem Phys,2003,119:187-195.
    (52)CHEN, W, LI, Z.-R, WU, D, LI, R.-Y, SUN, C.-C. Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom [J]. J Phys Chem B,2005,109:601-608.
    (53)CHIESA M, PAGANINI M C, GIAMELLO E, et al. Excess Electrons Stabilized on Ionic Oxide Surfaces [J]. Acc. Chem. Res.2006,39: 861-867.
    (54)WANG Y-F, LI Z-R, WU D, SUN C-C, GU F-L, Excess Electron is Trapped in a Large Single Molecular Cage C60F60 [J]. J Comput Chem, 2010,31:195-203.
    (55)WAHL F, WEILER A, LANDENBERGER P, et al. Towards Perfunctionalized Dodecahedranes-En Route to C20 Fullerene [J]. Chem. Eur J.2006,12:6255-6267.
    (56)MANOLOPOULOS D E, MAY J C, DOWN S E. Theoretical studies of the fullerenes:C34 to C70 [J]. Chem Phys Lett,1991,181:105-111.
    (57)DURAND G, SPIEGELMANN F, PONCHARAL P H, LABASTIE P, EHERMITE J-M, SENCE M, One-electron pseudopotential study of NanFn-1 clusters (2< n< 29). Ⅱ. Absorption spectra, spectral signature, and classification [J]. J Chem Phys,1999,110:7884-7892.
    (1)(a) MILLER J S, NOVOA J J, Four-Center Carbon-Carbon Bonding [J]. Ace Chem Res,2007,40:189-196. (b) NOVOA J J, LAFUENTE P, DEL SESTO R E, MILLER J S, Exceptionally Long (≥2.9 A) C-C Bonds between [TCNE]- Ions:Two-Electron, Four-Center π*-π* C-C Bonding in π-[TCNE]22-[J]. Angew Chem Int Ed,2001,40:2540-2545. (c) MILLER J S, GLATZHOFER D T, VAZQUEZ C, MCLLEAN R S, CALABRESE J C, MARSHALL W J, RAEBIGER J W, Electron-Transfer Salts of 1,2,3,4,5-Pentamethylferrocene, FeⅡ(C5Me5)(C5H5). Structure and Magnetic Properties of Two 1:1 and Two 2:3 Fe(C5Me5)(C5H5) Electron-Transfer Salts of Tetracyanoethylene [J]. Inorg Chem,2001,40: 2058-2064.
    (2)(a) ZHAO H, HEINTZ R A, DUNBAR K R, ROGERS R D, Unprecedented Two-Dimensional Polymers of Mn(II) with TCNQ-# (TCNQ=7,7,8,8-Tetracyanoquinodimethane) [J]. J Am Chem Soc,1996, 118:12844-12845. (b) KAUPP G, BOY J, Overlong C-C Single Bonds [J]. Angew Chem Int Ed Engl,1997,36:48-49.
    (3)MIKAMI S, SUGIURA K-I, MILLER J S, SAKATA Y, Two-Dimensional Honeycomb Network Formed by Porphyrinatomanganese(Ⅲ) and μ4-σ-Dimerized 7,7,8,8-Tetracyano-p-quinodimethane Dianion [J]. Chem Lett,1999.413-414.
    (4)HUANG J, KINGSBURY S, KERTESZ M, Crystal packing of TCNQ anion π-radicals governed by intermolecular covalent π-π bonding:DFT calculations and statistical analysis of crystal structures [J]. Phys Chem Chem Phys,2008,10:2625-2635.
    (5)LU J-M, ROSOKHA S V, KOCHI J K, Stable (Long-Bonded) Dimers via the Quantitative Self-Association of Different Cationic, Anionic, and Uncharged π-Radicals:Structures, Energetics, and Optical Transitions [J].J Am Chem Soc,2003,125:12161-12171.
    (6)(a) SMALL D, ZAITSEV V, JUNG Y, ROSOKHA S V, HEAD-GORDON M, KOCHI J K, Intermolecular π-to-π Bonding between Stacked Aromatic Dyads. Experimental and Theoretical Binding Energies and Near-IR Optical Transitions for Phenalenyl Radical/Radical versus Radical/Cation Dimerizations [J]. J Am Chem Soc,2004,126: 13850-13858.
    (7)TAKANO Y, TANIGUCHI T, ISOBE H, et al. Hybrid Density Functional Theory Studies on the Magnetic Interactions and the Weak Covalent Bonding for the Phenalenyl Radical Dimeric Pair [J]. J Am Chem Soc, 2002,124:11122-11130.
    (8)JAKOWSKI J, SIMONS J, Theoretical Analysis of the Electronic Structure and Bonding Stability of the TCNE Dimer Dianion (TCNE)22' [J]. J Am Chem Soc,2003,125:16089-16096.
    (9)SCHERLIS D A, MARZARI N,π-Stacking in Charged Thiophene Oligomers [J]. J Phys Chem B,2004,108:17791-17795.
    (10)MILLER J S, DIXON D A, CALABRESE J C, VAZQUEZ C, KRUSIC P J, WARD M D, WASSERMAN E, HARLOW R L, J Am Chem Soc,1990, 112:381.
    (11)(a) Sinnokrot M O, Valeev E F, Sherrill C D, Hexaazaoctadecahydrocoronene (HOC). Structural and physical properties of [HOC]n (n=0,1+,2+,3+,4+) [J]. J Am Chem Soc,2002, 124:10887. (b) TSUZUKI S, UCHIMARU T, MATSUMURA K, MIKAMI M, TANABE K, Effects of the higher electron correlation correction on the calculated intermolecular interaction energies of benzene and naphthalene dimers:comparison between MP2 and CCSD(T) calculations [J]. Chem Phys Lett,2000:319,547-554.
    (12)PODESZWA R, BUKOWSKI R, SZALEWICZ K, Potential Energy Surface for the Benzene Dimer and Perturbational Analysis of π-π Interactions [J]. J Phys Chem A,2006,110:10345-10354 and references therein.
    (13)(a) HOBZA P, SELZLE H L, SCHLAG E W, Potential Energy Surface of the Benzene Dimer:Ab Initio Theoretical Study [J]. J Am Chem Soc, 1994,116:3500-3506. (b) SPIRKO V, ENGKVIST O, SOLDAN P, SELZLE H L, SCHLAG E W, HOBZA P, J Chem Phys,1999,111: 572-576.
    (14)(a) TSUZUKI S, HONDA T, UCHIMARU T, MIKAMI M, TANABE K, J Am Chem Soc,2002,124:104-112. (b) TSUZUKI S, UCHIMARU T, SUGAWARA K, MIKAMI M, Structure and vibrational dynamics of the benzene dimer [J]. J Chem Phys,2002,117:11216-11222.
    (15)(a) SINNOKROT M O, SHERRILL C D, Substituent Effects in π-π Interactions:Sandwich and T-Shaped Configurations [J]. J Am Chem Soc, 2004,126:7690-7697. (b) SINNOKROT M O, SHERRILL C D, Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer:Sandwich, T-Shaped, and Parallel-Displaced Configurations [J]. J Phys Chem A,2004,108:10200-10207.
    (16)CACELLI I, CINACCHI G, PRAMPOLINI G, TANI A, Computer Simulation of Solid and Liquid Benzene with an Atomistic Interaction Potential Derived from ab Initio Calculations [J]. J Am Chem Soc,2004, 126:14278-14286.
    (17)(a) ZHAO Y, TRUHLAR D G, Multicoefficient Extrapolated Density Functional Theory Studies of π…π Interactions:The Benzene Dimer [J]. J Phys Chem A,2005,109:4209-4212. (b) SATO T, TSUNEDA T, HIRAO K, A density-functional study on π-aromatic interaction:Benzene dimer and naphthalene dimmer [J]. J Chem Phys,2005,123:104307.
    (18)(a) HILL J G, PLATTS J A, WERNER H-J, Calculation of intermolecular interactions in the benzene dimer using coupled-cluster and local electron correlation methods [J]. Phys Chem Chem Phys,2006,8:4072-4078. (b) PARK Y C, LEE J S, Accurate ab Initio Binding Energies of the Benzene Dimer [J]. J Phys Chem A,2006,110,5091 and references therein.
    (19)SCOTT L T, JONES, Jr., M, Rearrangements and interconversions of compounds of the formula (CH)n [J]. Chem Rev,1972,72:181-202.
    (20)GAN H, HORNER M G, HRNJEZ B J, et al. Chemistry of syn-o,o'-Dibenzene [J]. J Am Chem Soc,2000,122:12098-12111.
    (21)REDDY G D, WIEST O, HURDLICKY T, SCHAPIRO V, GONZALES D, Electron Transfer Catalyzed [2+2] Cycloreversion of Benzene Dimers [J]. J Org Chem,1999,64:2860-2863 and references therein.
    (22)YANG N C, HORNER M G, The synthesis of pentacyclo[6.4.0.02,7.03,12.06,9]dodeca-4,10-diene a pentacyclic dimer of benzene [J]. Tetrahedron Lett,1986,27:543-546.
    (23)ENGELKE R, HAY P J, KLEIER D A, WADT W R, A theoretical study of possible benzene dimerizations under high-pressure conditions [J]. J Chem Phys,1983,79:4367-4376.
    (24)GLEITER R, GUBERNATOR K, GRIMME W, Evidence for a strong through-bond interaction in antitricyclo[6.4.0.02,7] dodecatetraene [J]. J Org Chem,1981,46:1247-1250.
    (25)SCHRIVER G W, GERSON D J, Energies and isomerizations of (CH)12 hydrocarbons [J]. J Am Chem Soc,1990,112:4723-4728.
    (26)BALDRIDGE K K, BATTERSBY T R, VERNONCLARK R, SIEGEL J S, Does π-σ-π Through-Bond Coupling Significantly Increase C-C Bond Lengths? [J]. J Am Chem Soc,1997,119:7048-7054.
    (27)(a) M(?)LLER C, PLESSET M S, Note on an Approximation Treatment for Many-Electron Systems [J]. Phys Rev,1934,46:618-622. (b) HEAD-GORDON M, POPLE J A, FRISCH M J, MP2 energy evaluation by direct methods [J]. Chem Phys Lett,1988,153:503-506.
    (28)(a) REED A E, WEINSTOCK R B, WEINHOLD F, Natural population analysis@(?)@f) [J]. J Chem Phys,1985,83:735-747. (b) Carpenter J E, Weinhold F, Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure [J]. J Mol Struct (Theochem),1988,169:41-62.
    (29)TAO F-M, KLEMPERER W, J Chem Phys,1994,101:1129.
    (30)Szalewicz K, Jeziorski B, J Chem Phys,1999,109:1198.
    (31)(a) Boys S F, Bernardi F, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. Mol Phys,1970,19:553-566. (b) HOBZA P, HAVLAS Z, Counterpoise-corrected potential energy surfaces of simple H-bonded systems [J]. Theor Chem Acc,1998,99:372-377.
    (32)POPLE J A, HEAD-GORDON M, RAGHAVACHARI K, Phenol-benzene complexation dynamics:Quantum chemistry calculation, molecular dynamics simulations, and two dimensional IR spectroscopy [J]. J Chem Phys,2006,125:244508.
    (33)KWAC K, LEE C, JUNG Y, HAN J, Comment on "On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy [J Chem Phys 104,8821 (1996)] " [J]. J Chem Phys,1999,109:1198-1201.
    (34)FRISCH, M J et al., GAUSSIAN 03, revision B03, Gaussian, Inc., Wallingford, CT,2004.
    (35)NOGITA R, MATOHARA K, YAMAJI M, et al. Photochemical Study of [33](1,3,5)Cyclophane and Emission Spectral Properties of [3n]Cyclophanes (n=2-6) [J]. J Am Chem Soc,2004,126:13732-13741.
    (1)GUTSEV G L, BOLDYREV A I, DVM-Xa calculations on the ionization potentials of MXk+1- complex anions and the electron affinities of MXk+1 "superhalogens" [J]. Chem Phys,1981,56:277-283.
    (2)BERGERON D E, CASTLEMAN A W, MORISATO T, KHANNA S N, Formation of Al13I-:Evidence for the Superhalogen Character of Al13 [J]. Science,2004,304:84-87.
    (3)(a) BERGERON D E, ROACH P J, CASTLEMAN A W, JONES N O, KHANNA S N, Al Cluster Superatoms as Halogens in Polyhalides and as Alkaline Earths in Iodide Salts [J]. Science,2005,307:231-235. (b) BERGERON D E, CASTLEMAN A W, MORISATO T, KHANNA S N, J Chem Phys,2004,121:10456.
    (4)LI X, KUZNETSOV A E, ZHANG H F, BOLDYREV A I, Wang L-S, Formation and properties of halogenated aluminum clusters [J]. Science, 2001,291:859-861.
    (5)KUZNETSOV A E, BOLDYREV A I, LI X, WANG L-S. On the Aromaticity of Square Planar Ga42- and In42- in Gaseous NaGa4- and NaIn4- Clusters [J]. J Am Chem Soc 2001,123:8825-8831. (b) (b) BOLDYREV A I, KUZNETSOV A E, On the Resonance Energy in New All-Metal Aromatic Molecules [J]. Inorg Chem 2002,41:532-537.
    (6)ZHAN C-G, ZHENG F, Dixon D A, J Am Chem Soc,2002,124:14795.
    (7)KUZNETSOV A E, BOLDYREV A I, ZHAI H-J, LI X, WANG L-S, Al62--Fusion of Two Aromatic Al3- Units. A Combined Photoelectron Spectroscopy and ab Initio Study of M+[Al62-] (M=Li, Na, K, Cu, and Au) [J]. J Am Chem Soc,2002,124:11791-11801.
    (8)BYUN Y-C, SAEBO S, PITTMAN C U, An ab initio study of potentially aromatic and antiaromatic three-membered rings [J]. J Am Chem Soc, 1991,113:3689-3696.
    (9)LI Q S, CHENG L P, Aromaticity of Square Planar N42- in the M2N4 (M) Li, Na, K, Rb, or Cs) Species [J]. J Phys Chem A,2003,107:2882-2889.
    (10)KEALY T J, PAUSON P L, A New Type of Organo-Iron Compound [J]. Nature.1951,168:1039-1040.
    (11)MERCERO J M, UGALDE J M, Sandwich-Like Complexes Based on "All-Metal" (Al42-) Aromatic Compounds [J]. J Am Chem Soc 2004,126: 3380-3381. (b) MERCERO J M, FORMOSO E, MATXAIN J M, ERIKSSON L A, UGALDE J M, Sandwich Complexes Based on the "All-Metal" Al42- Aromatic Ring [J]. Chem Eur J 2006,12:4495-4502. (c) MERCERO J M, MATXAIN J M, UGALDE J M, Mono-and Multidecker Sandwich-Like Complexes of the Tetraazacyclobutadiene Aromatic Ring [J]. Angew Chem Int Ed,2004,43:5485-5488.
    (12)LEIN M, FRUNZKE J, FRENKING G, A Novel Class of Aromatic Compounds:Metal-Centered Planar Cations [Fe(Sb5)]+ and [Fe(Bi5)]+ [J]. Angew Chem Int Ed 2003,42:1303-1306.
    (13)(a) YANG L-M, DING Y-H, SUN C-C, Design of the Sandwich-like Compounds Based on the All-Metal Aromatic Unit Al3- [J]. ChemPhysChem 2006,7:2478-2482. (b) YANG L-M, DING Y-H, SUN C-C, Sandwich-like Compounds Based on the All-Metal Aromatic Unit A142-and the Main-Group Metals M (M=Li, Na, K, Be, Mg, Ca) [J]. Chem Eur J,200713:2546-2555. (c) YANG L-M, DING Y-H, SUN C-C. Design of Sandwichlike Complexes Based on the Planar Tetracoordinate Carbon Unit CAl42- [J]. J Am Chem Soc,2007,129:658-665. (d) YANG L-M, DING Y-H, SUN C-C, Assembly and Stabilization of a Planar Tetracoordinated Carbon Radical CAl3Si:A Way To Design Spin-Based Molecular Materials [J]. J Am Chem Soc,2007,129:1900-1901.
    (14)SUN X-Y, LI Z-R, WU D, SUN C-C, Extraordinary superatom containing double shell nucleus:Li(HF)3Li connected mainly by intermolecular interactions [J]. Int J Quantum Chem 2007,107:1215-1222. (b) CHEN W, LI Z-R, WU D, LI Y, SUN C-C, Li3-O-Li3 molecule:A metal-nonmetal-metal sandwichlike compound with a distending electron cloud [J]. J Chem Phys 2005,123:164306.
    (15)(a) LI Z-R, WANG F-F, WU D, LI Y, CHEN W, SUN X-Y, GU F L, AOKI Y. Royal crown-shaped electride Li3-N3-Be containing two superatoms: New knowledge on aromaticity [J]. J Comput Chem,2006,27:986-994. (b) LI, Y, LI, Z.-R, WU, D, CHEN, W, SUN, C.-C. The Trigonal Bipyramidal MN3M Species:A New Kind of Aromatic Complex Containing aMultiple-fold Aromatic N3 Subunit [J]. ChemPhysChem 2005,6:1-9. (c) WANG F-F, LI Z-R, WU D, SUN X-Y, CHEN W, LI Y, SUN C-C, Novel Superalkali Superhalogen Compounds (Li3)+(SH)" (SH=LiF2, BeF3, and BF4) with Aromaticity:New Electrides and Alkalides [J]. ChemPhysChem,2006,7:1136-1141.
    (16)(a) GAGLIARDI L, PYYKKO P, η5-N5--Metal-η7-N73-:A New Class of Compounds [J]. J Phys Chem A,2002,106:4690-4694. (b) YANG, L.-M, WANG, J, DING, Y.-H, SUN, C.-C. Investigation of the Typical Triangular Structure B3 in Boron Chemistry:Insight into Bare All-Boron Clusters Used as Ligands or Building Blocks [J]. J Phys Chem A,2007, 111:9122-9129.
    (17)TSIPIS A C, CHAVIARA A T, Structure, Energetics, and Bonding of First Row Transition Metal Pentazolato Complexes:A DFT Study [J]. Inorg Chem 2004,43:1273-1286.
    (18)LI Q S, GUAN J, Theoretical Study of Ni(N4)2, Ni(C4H4)2, and Ni(C2O2)2 Complexes [J]. J Phys Chem A,2003,107:8584-8593.
    (19)(a) DYE J L, Electrons as Anions [J]. Science,2003,301:607-608. (b) Ichimura A S, DYE J L, CAMBLOR M A, VILLAECUSA L A, J Am Chem Soc,2002,124:1170-1171. (c) Ichimura A S, DYE J L, CAMBLOR M A, VILLAECUSA L A, Toward Inorganic Electrides [J]. J Am Chem Soc,2002,124:1170-1171.
    (20)(a) DYE J L, CERASO J M, LOK M T, BARNETT B L, TEHAN F J, Crystalline salt of the sodium anion (Na-) [J]. J Am Chem Soc,1974,96: 608-609. (b) TEHAN F J, BARNETT B L, DYE J L, Alkali anions. Preparation and crystal structure of a compound which contains the cryptated sodium cation and the sodium anion [J]. J Am Chem Soc,1974, 96:7203-7208.
    (21)(a) M(?)LLER C, PLESSET M S, Note on an Approximation Treatment for Many-Electron Systems [J]. Phys Rev,1934,46:618-622. (b) HEAD-GORDON M, POPLE J A, FRISCH M J, MP2 energy evaluation by direct methods [J]. Chem Phys Lett,1988,153:503-506.
    (22)KRISHNAN R, BINKLEY J S, SEEGER R, POPLE J A, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions [J]. J Chem Phys,1980,72:650-654.
    (23)(a) REED A E, WEINSTOCK R B, WEINHOLD F, Natural population analysis@(?)@f) [J]. J Chem Phys,1985,83:735-747. (b) Carpenter J E, Weinhold F, Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure [J]. J Mol Struct (Theochem),1988,169:41-62.
    (24)SCHLEYER P v R, MAERKER C, DRANSFELD A, JIAO H, HOMMES N J V E, Nucleus-Independent Chemical Shifts:A Simple and Efficient Aromaticity Probe [J], J Am Chem Soc,1996,118:6317-6318.
    (25)GOLDFUSS B, SCHLEYER P v R, HAMPEL F, Aromaticity in Silole Dianions:Structural, Energetic, and Magnetic Aspects [J], Organometallics 1996,15:1755-1757.
    (26)FRISCH ET. Al., GAUSSIAN 03, revision B.03, Gaussian, Inc., Pittsburgh PA,2003.
    (27)CRC Handbook of Chemistry and Physics [M], CRC Press, Boca Raton, 2000.
    (28)CORMINBOEUF C, HEINE T, SEIFERT G, SCHLEYER P V R, Induced magnetic fields in aromatic [n]-annulenes-interpretation of NICS tensor components [J]. Phys Chem Chem Phys 2004,6:273-276. (b) SCHLEYER P V R, MANOHARAN WANG Z, KIRAN X B, JIAO H, PUCHTA R, HOMMES N J R V E, Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity [J]. Org Lett 2001,3:2465-2468.
    (29)ZUBAREV DY, BOLDYREV A I, Developing paradigms of chemical bonding:adaptive natural density partitioning [J]. Phys Chem Chem Phys, 2008,10:5207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700