1BL/1RS易位系小麦谷蛋白和醇溶蛋白亚基组成、含量及其对加工品质性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用酸性聚丙烯酰胺凝胶电泳(A-PAGE)和SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)从106个小麦品种(系)中,共鉴定出了17个1BL/1RS易位系小麦品种,并初步分析了这些易位系小麦品种的醇溶蛋白(Glia)、高分子量谷蛋白(HMW)、低分子量谷蛋白(LMW)的组成特点,对1BL/1RS易位系小麦品种的粗蛋白含量、湿面筋含量、沉淀值、稳定时间、形成时间等主要品质性状与非易位系品种的品质性状做了比较,同时用SAS8.0e软件对醇溶蛋白含量、谷蛋白含量、GMP含量与品质指标的关系进行了统计分析,以期明确1BL/1RS易位系对加工品质性状影响的机理。主要研究结果如下:
     1 1BL/1RS易位系出现的比率
     通过A-PAGE,在106个小麦品种(系)中总共鉴定出17个1BL/1RS易位系小麦品种(系),所占比例为16%,与其他文献的研究结果相比,易位系品种出现频率较低。
     2高分子量谷蛋白亚基的组成
     通过SDS-PAGE对易位系和非易位系品种的高分子量谷蛋白亚基的构成进行了分析,发现易位系品种亚基的多样性较低,尤其Glu-B1位点编码的亚基中,主要表现为有7+8、7+9亚基组合,而14+15、17+18等亚基组合没有出现。在非易位系品种中,Glu-A1、Glu-B1、Glu-D1编码的高分子量谷蛋白的亚基类型多样性明显。
     3易位系与非易位系小麦品种的品质性状分析
     测定了17个1BL/1RS易位系品种的主要理化品质性状,包括粗蛋白质含量、湿面筋含量、沉淀值、稳定时间、面团形成时间等。并与12个非易位系的品质性状进行比较,结果表明,易位系与非易位系在蛋白含量和湿面筋含量上差异不显著,在沉淀值、稳定时间、面团形成时间上两者差异显著。
     对供试品种的谷蛋白含量、醇溶蛋白含量、GMP含量测定,发现易位系和非易位系品种GMP含量差异不显著,谷蛋白和醇溶蛋白含量存在显著差异,但两种蛋白的比例差异不显著。
     4易位系和非易位系蛋白含量、品质指标的统计分析
     对29个小麦品种进行典型相关分析,以醇溶蛋白含量、谷蛋白含量、GMP含量为第一变量组,粗蛋白含量,湿面筋含量,沉淀值、稳定时间、面团形成时间为第二变量组,分析发现,第一典型相关系数为0.7522,P=0.0299,达到0.05的显著水平,第一典型相关系数所包含的信息达到76.95%,能够说明大部分的相关信息。
     对于反映面筋强度的品质指标,谷蛋白含量和GMP含量所占权重最大,尤其与稳定时间和面团形成时间的关系最为密切。同时统计分析表明,醇溶蛋白含量对易位系品种的品质影响较小,而谷蛋白含量低尤其是LMW谷蛋白含量低是影响1BL/1RS易位系品种加工品质变差的重要因素。
1BL/1RS translocation lines play an important role in wheat cultivation, because the chromosome arm 1RS of rye(Secale cereale L.), which transferred to wheat (Triticum sp.) ,carries genes for resistance to disease and drought. Conversely, 1RS chromatin can also negatively impact the wheat end-product quality and efforts to breed for quality. So it is necessary to discuss the disadvantages of 1RS in wheat. Here, we used acid polyacrylamide gel electrophoresis (A-PAGE) and SDS- polyacrylamide gel electrophoresis (SDS-PAGE) to analyse the composition of gliadin and glutenin in 1BL/1RS translocation lines. And the content of the gliadin and gluten proteins were also analysed with the quality trait in 1BL/1RS translocations. The main results were as follows:
     1 The frequency of 1BL/1RS translocations
     We identified 17 cultivars of 1BL/1RS translocations form 106 wheat varieties.They accounted for 16% among all of the varieties. It’s a lower frequency as compared with the results of other reaearch literature.
     2 The components of HMW-GS were analysed by SDS-PAGE. There is smaller genetic diversity for HMW-GS in 1BL/1RS translocations. Lower diversity was found for Glu-B1 specially, and the glutenin subunits components were mostly performanced as 7+8 and 7+9.
     3 The quality parameters measured for this study were Sedimentation Volume, Wet Gluten Content, Protein Content, Stability and Dough Extensibility. Compared with the non-1BL/1RS translocations, the 1BL/1RS translocations mainly affected the Sedimentation Volume, Development time and Stability and it had little effect on protein content and wet gluten content.
     4 Canonical relation analysis were used here.The gliadin content ,glutenin content and the GMP content were in the fist group and crude protein content , wet gluten content, Sedimentation Volume, Development time and Stability were in the second. The results indicated that glutenin content and GMP content play an important role. And they closely connected with the Stability and development time especially. Gliadin content is not an important factor and there is no significant differences detected between translocations and non-1BL/1RS translocations for theGMP content. So Glutenin content is the most important factor here.
     Generally, 1BL/1RS translocations cannot affect the HMW-GS because the Glu-1 loci are located on the long arms of group 1 chromosomes A, B and D. It’s most likely that enhancing the amount of LMW-GS is necessary in improving the 1BL/1RS translocation lines .
引文
1.陈东升,刘丽,董建力等. HMW-GS和LM W-GS的组成及1BL/1RS易位对春小麦品质性状的影向.作物学报,2005,31(4):414-419
    2.耿惠敏,张怀琼,任正隆. 1BL/1RS易位系对小麦高分子量谷蛋白亚基遗传的影响初析.作物学报,2008,34(1):167-170
    3.韩彬,K W Shopherd,低分子量谷蛋白亚基与醇溶蛋白的关系及其对小麦烘烤品质的影响.中国农业科学,1991,24 (4): 1925
    4.朗明林,卢少源,赵家发等.适合我国小麦醇溶蛋白“指纹图谱”绘制的改良APAGE分子标记技术.河北农业大学学报,1998, 21(4):1-5
    5.李晴祺,冬小麦种质创新与评价利用,济南:山东科学技术出版社,1998.1-50
    6.李硕碧,高翔,单明珠等.小麦高分子量谷蛋白亚基与加工品质.北京,中国农业出版社.2001
    7.李硕碧等.1BL/1RS易位系对陕西小麦品质育种的影响.麦类作物学报.2005,25(6):40-43
    8.李雪莉,郑有良,魏育明等.小麦抗白粉病优质高产T1BL.1RS易位系的鉴定与分析.四川农业大学学报,1999,17(4):367-373
    9.梁荣奇,张义荣,尤明山等.小麦谷蛋白聚合体的MS-SDS-PAGE及其与面包烘烤品质的关系.作物学报,2000,28(5):609-614
    10.刘建军,何中虎, Pena R J等. 1BL/1RS易位对小麦加工品质的影响.作物学报,2004, 30(2):149-153
    11.马传喜等.在一对面包小麦杂交后代中Glu-B1控制的麦谷蛋白亚基17+18对烘烤品质的影响.作物学报,1995,21(1): 90-94
    12.马啸,任正隆,晏本菊等.小麦-黑麦远缘杂交后代高分子麦谷蛋白亚基变异分析.种子,2005,25(10):4-7
    13.毛沛,李宗智,卢少源.小麦遗传资源HMW麦谷蛋白亚基组成及其与面包烘烤品质关系的研究.中国农业科学,1995,28: 22-27
    14.任燕, R.A.Graybosch,王涛.小麦中的1BL/1RS染色体易位.麦类作物学报,2006,26(3):152-158
    15.司红起,马传喜. SDS-PAGE和PCR检测1B/1R易位系研究初报.中国农学通报,2006,22(7):95-97
    16.苏雅蕊,张大乐,高安礼等.小麦1BL/1RS易位系1RS分子标记位点的稳定性分析.麦类作物学报,2006,26(6):6-10
    17.苏亚蕊,李玉阁,李锁平.小麦-黑麦1BL/1RS易位系在小麦育种中的应用及改良.河南农业科学,2006,3:12-16
    18.王珊珊,李秀全,田纪春.利用SSR标记分析小麦骨干亲本“矮孟牛”及衍生品种(系)的遗传多样性.分子植物育种,2007,5(4):485-490
    19.魏良明,郑有良,周永红. T1BL.1RS易位染色体对小麦农艺性状间偏相关的影响.麦类作物学报. 2000,20(1):20-23
    20.吴崇明,徐智斌,王涛:小麦1BL/1RS易位系的生化和分子标记鉴定.西南农业学报2007, 20(1):15-20
    21.吴芳,潘志芬,余懋群等.小麦低分子量麦谷蛋白亚基研究进展.西北植物学报,2006, 26(4):0864-0870
    22.阎旭东等,普通小麦醇溶蛋白组份的分布及其与HMW麦谷蛋白亚基对品质的组合效应,作物学报,1997, 23 (1):70-75
    23.晏月明刘广田.中国小麦品种醇溶蛋白Gli—1和Gli—2编码位点等位基因组成分析.农业生物技术学报,2000,8(1):23-28
    24.晏月明,刘广田,小麦醇溶蛋自的遗传与品质改良,麦类作物,1998,18(1):1-5
    25.杨学举,卢少源,张荣芝.小麦籽粒蛋白质组分与面包烘焙品质性状关系的研究.中国粮油学报, 1999, 14(1):1-5
    26.杨足君.几个外源物种抗条锈病白粉病基因在小麦背景中的表达.雅安:四川农业大学博士论文,1999
    27.张立平,何中虎,陆美琴等.用Glu-B3、Gli-B1和SEC-1b复合引物PCR检测普通小麦1BL/1RS易位系.中国农业科学,2003,36(12):1566-1570
    28.张平平,陈东升,张勇等.春播小麦醇溶蛋白组成及其对品质性状的影响.作物学报,2006,32:1796-1801
    29.张学勇等.中国小麦人面积推广品种及骨干亲本的高分子量麦谷蛋白亚基组成分析.中国农业科学. 2001,34(4):355-362
    30.张延滨,辛文利,孙连发等.小麦2+12和5+10亚基近等基因系间面粉品质差异的研究.作物学报,2003,29(1):93-96
    31.周阳,何中虎,张改生等. 1BL/1RS易位系在我国小麦育种中的应用.作物学报. 2004,30(1):531-535
    32. Adam B, Lukaszewski. Manipulation of the 1RS/1BL translocation in wheat by induced homocologous recombination. Crop Science, 2004,40:216-225
    33. Aguiriano E, Ruiz M, Fite R, M.Carrillo J: Analysis of Genetic Variability in a Sample of the Durum Wheat (Triticum durum Desf.) Spanish Collection Based on Gliadin Markers Genetic Resources and Crop Evolution 2006, 1:1-10
    34. Amiour N, Dardevet M, Khelifi D, Bouguennec A, Branlard G. Allelic variation of HMW and LMW glutenin subunits, HMW secalin subunits and 75K gamma-secalins of hexaploid triticale. Euphytica 2002, 123:179-186
    35. Berzonsky W, Francki M G.. Biochemical, molecular, and cytogenetic technologies for characterizing 1RS in wheat: A review. Euphytica .1999 108:1-19.Appl Genet,1998,96:209-218
    36. Boggini G, Tusa P, Sivestro S di. Agronomical and quality characteristics of durum wheat lines containing the IBL/1RS translocation. Journal of Genetics and Breeding.1998. 52:2. 167-172
    37. Branlard G, Dardevet M. Diversity of grain proteins and bread wheat quality. I.Correlation between gliadin bands and flour quality characteristics. J.CereaLSci.,1985, 3(4):329-343
    38. Branlard Q, Dardevet R, Saccomano F, Lagoute and Gourdon. Genetics diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 19(1): 59-67
    39. Bruns S, Gill. Molecular cytogenetic analysis in wheat. Crop science,1993,33:902-908
    40. Carrillo J M, Rousset M, Qualset C O, et al. Use of recombinant inbred lines of wheat for studying the associations of high-molecular-weight glutenin subunits alleles to quantitative trait .1. Grain yield and quality prediction tests. Theor Appl Genet, 1990, 79: 321-330
    41. Cherdouh A, D Khelifi, J M.Carrillo, M T Nieto-Taladri. The high and low molecular weight glutenin subunit polymorphism of Algerian durum wheat landraces and old cultivars Plant Breeding 2005, 124:338-342
    42. Cornish G B, Burridge P M, Palmer G A, Wrigley C V. Mapping the origins of some HMW and LMW glutenin subunit alleles in Australian germplasm. Proc. 42nd Aust Cereal Chem Conf, Sydney. 1993, pp: 255-260
    43. F M DuPont, W Vensel, T Encarnacao, et al. Similarities of omega gliadins from Triticum urartu to those encoded on chromosome 1A of hexaploid wheat and evidence for their post-translational processing. Theor Appl Genet,2004,108:1299-1308
    44. Froidmont D. A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. Journal of Cereal Science 1998, 27:229-232
    45. Gianibelli M C, Larroque O R , MacRtichie F, Wrigley C W. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chemistry 2001, 78(635-646):1-20.
    46. Graybosch R A. Uneasy Unions Quality effects of rye chromatin transfer to wheat. J Cereal Sci, 2001,33: 3-16
    47. Gu Y.Q., Crossman C, Kong X. et al.: Genomic organization of the comple-gliadin gene loci in wheat. Theor Appl Genet 2004, 109:648-657
    48. Guo B H, Wang Z N, Fang R, et al. HMW glutenin variation in landraces of wheat in Northern China. In: Pros. 8th. Beijing, China, Wheat Genet. Symp.,1992,925-928
    49. Gupta R B, Shepherd K W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin,1.Variation and genetic control of the subunits in hexaploid wheat. Thero. Appl. Genet,1990,80:65-74
    50. Hasm S L, Zeller F J. Evidence of allelism between genes Pm8 and Pml7 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar Amigo. J Plant Breed,1997,116:119-122
    51. Hassani M E, Shariflou M.R., Gianibelli M.C, Sharp P J. Characterisation of aω-gliadin gene in Triticum tauschii. Journal of Cereal Science, 2007, 1:001-009
    52. Huang, S D. Chinese noodles.Aspects of proteins in Chinese and British common (hexaploid) wheats related to quality of white and yellow J. Cereal Sci.,1988, 8(1): 177-187
    53. Iqbal M J, Identification of the 1RS chromosomal segment in wheat by RAPD analysis.Thero. Appl. Genet, 1995, 91:1048-1053
    54. Javornik, T Sinkovi, L Vapa, A comparison of methods for identifying and surveying the presence of 1BL.1RS translocation in bread wheat. Euphytica,1991, 54:45-53
    55. Kolster P, Van Eeuwijk F A, Gelder W M. Additive and epistatic effects of allelic variation at the high molecular weight glutenin subunit loci in determining the bread-making-quality of breeding lines of wheat. Euphytica, 1991, 55:277-285
    56. Lagudah E S, Brien O, Halloran G M. Influence of gliadin composition and high molecular weight subunits of glutenin on dough properties in an F3 population of a bread wheat cross. J Cereal Science, 1988, 7: 33-42
    57. Lawrence G J, MacRitchie F, Wrigley C W. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-Bl and Glu-D1 loci. J Cereal Science, 1988, 7: 109-112
    58. Lelley T, Eder C, Grausgruber H: Influence of 1BL.1RS wheat-rye chromosome translocation on genotype by environment interaction. JCereal Science, 2004, 39(3):313-320
    59. Lill D, Howard N L, Niekerk H A et al. The dough handling properties of two South African wheats with the IB/1R chromosome translocation. South African Journal of Plant and Soil. 1990, 7(3):197-200
    60. Liu C Y, Shepherd K W. Inheritance of B subunits of glutenin andvandγ-gliadins in tetraploid wheats. Theoretical and Applied Genetics, 1995a, 90: 1149–1157
    61. Liu C, Y Identification of a new low-Mr glutenin subunit locus on chromosome 1B of durum wheat. Journal of Cereal Science, 1995b, 21: 209–213
    62. Luo C, Griffin W B, Branlard G., McNeil D L et al. Comparison of low and high molecular-weight wheat glutenin. Theor Appl Genet 2001, 102:1088-1098
    63. M.Ciaffi, L.Dominici, D.Lafiandra. High molecular weight glutenin subunit variation in wild and cultivated einkorn wheats (Triticum spp,Poaceae) PlSystEvol 1998, 209:123-137.
    64. Margiotta B, Latiandra D, Tomassini C, et al. Variation in high-molecular-weight glutenin subuniLs in a hexaploid wheat collection from Nepal. FPlant science Research., 1991, 998-1021.
    65. Masci S, Ovidio R D, Lafiandra D et al. A 1B-coded low molecular weight glutenin subunit associated with quality in durum wheats shows strong similarity to a subunit present in some bread wheat cultivars Theor Appl Genet 2000, 100:396-400
    66. Matsuo H, Kohno K, Morita E, Molecular cloning, recombinant expression and IgE-binding epitope ofω-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis. The Federation of European Biochemical Societies Journal. 2005 272, 4431–4438
    67. McKendry L, Tague N, Ross K. Comparative Effects of 1BL.1RS and 1AL.1RS on Soft Red Winter Wheat Milling. Crop Science 2001, 41:712-720
    68. Mecham D K, Sokol H A, Pence J W. Extractable protein and hydration characteristics of flours and Boughs in dilute acid. Cereal Chem. 2004, 39(1):81-83
    69. Metakovsky E V, Branlard G. Genetic diversity of French common wheat germplasm based on gliadin alleles. Thero Appl Genet, 1998, 96: 209-218
    70. Metakovsky E V, Felix I.Association between dough quality (W value) and certain gliadin alleles in French common wheat cultivars. Journal of Cereal Science. 1997, 26:3, 371-373
    71. Metakovsky E V, G. Branlard. Genetic diversity of French common wheat germplasm based on gliadin alleles. Theor Appl Genet 1998, 96:209-218.
    72. Metakovsky E V. Gliadin allele identification in common wheatⅡ. Catalogue of gliadin alleles in common wheat. J. Genet &Breed, 1991, 45:325-344
    73. Metakovsky E V. Gliadin allele identification in common wheatⅡ. Catalogue of common wheatalleles in common wheat. J.Genet & Breed,1991,45:325-344
    74. Payne P I, Holt L M, Jadson E A, et al. Wheat storage proteinsaheir genetics andtheir potential for manipulation by plant breeding. Philos.Trans.R.Soc. LondonSer.B,1984, 304:359-379
    75. Payne P I, Lawrence G J. Catalogue of alleles for the complex loci, Glu-A1, Glu-Bl and Glu-Dl, which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Comm, 1983, 11:29-35
    76. Payne P I, Seekings J A, Kaur H, et al. Contribution of allelic variation of glutenin subunits and gliadins to bread-making quality In Gluten Proteins. American Association of cereal chemists, St.Paul, MN, 1990: 504-511
    77. Payne P I. Genetics of wheat storage protein and the effectbread-making quality. Annual Review Plant Physiology,1987,38:141-153
    78. Pogna N E, AusUart J C, Latiandra D, et al. Chromosome 1B-encoded gliadin and glutenin subunits in durum wheat: genetics and relationship to gluten strength. J Cereal Sci.,1990,11(1):15-34
    79. Pogna N E, Metakovsky E V, Redalli R, Raineri F, Dachkevitch T. Recombination mapping of Gli-5, a new gliadin-coding locus on chromosomes 1A and 1B in common wheat. Theor Appl Genet, 1993, 87: 113-121
    80. Rogosky P M, Sorrels M E. Characterization of wheat-rye recombinants with RFLP and PDR. Theor Appl Genet, 1993, 85:1023-1028
    81. Ruiz M, Carrillo J M. Linkage relationships between prolamin genes on chromosomes 1A and 1B of durum wheat. Theoretical and Applied Genetics, 1993, 87: 353–360
    82. S V Rabinovich. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 1998, 100:323-340.
    83. Salina A, Leonova N, Efremova T, Roder S. Wheat genome structure: translocations during the course of polyploidization. Funct Integr Genomics 2006, 6:71-80
    84. Schlegel R, A.Meinel. A quantitative trait locus on chromosome arm 1RS of rye and itseffects on yield performance of hexaploid wheat. Creal Res.Commun.1994,22:7-13
    85. Schlenel R, Korzun Y. About the orinin of 1RS. 1BL wheat-rye chromosome translocations from Germany. Journa of Plant breeding, 1997, 116: 537-540
    86. Shewry P R, Thatam A S. Disulphide bonds in wheat gluten proteins. J cereal sci, 1997, 25: 207-227
    87. Singh,N K. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. Journal of Cereal Science,1991, 14:203-208
    88. Sozinov A, Novoselskaya A Y, Lushnikova A , et al. Cotological analysis of bread wheat variants with 1B/1R substitution and translocationin the karayotype.Tsitologiya I Genetika. 1987,21(4) :256 - 261
    89. Stachel M, Lelley T, Grausgruber H, Vollmann J. Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor ApplGenet 2000, 100:242-248
    90. Va`zquez J F, Ruiz M, Nieto-Taladriz M T, et al. Effects on gluten strength of low Mr glutenin subunits coded by alleles at the Glu-A3 and Glu-B3 loci in durum wheat. Journal of Cereal Science, 1996, 24: 125–130
    91. Vawser M J, Cornish G B. Over-expression of HMW glutenin subunit Glu-B1 7x in hexaploid wheat varieties (Triticum aestivum). Aust J Agri Res, 2004, 55: 577-588
    92. Verbruggen I M , Veraverbeke W S, Vandamme A, et al. Simultaneous Isolation of Wheat High Molecular Weight and Low Molecular Weight Glutenin Subunits. Journal of Cereal Science,1998, 28:25-32
    93. W Maruyama-Funatsuki, K Takata, Z Nishio, et al. Identification of low-molecular weight glutenin subunits of wheat associated with bread-making quality. Plant Breeding. 2004, 123:355-360
    94. W Seilmeier, I Valdez, E Mendez, H Wieser. Comparative investigations of gluten proteins from different wheat speciesⅡ-Characterization ofω-gliadins. Eur Food Res Technol 2001, 212:355-363
    95. Walerie M, Morel M-H, Autran J-C.Simple and rapid method for purifying low molecular weight subunits of glutenin from wheat. Cereal Chemistry,1994, 71(3):234-237
    96. Wang G, J W Snape H, Hu ,et al. The high-molecular-weigh glutenin subunit compostions of Chinese bread wheat varieties and their relationship with bread-making quality. Euphytica, 1993, 68(1): 205-Z 12.
    97. Warburton M L, Skovmand B, Mujeeb-Kazi A. The molecular genetic characterization of the Bobwhite bread wheat family using AFLPs and the effect of the T1BL.1RS translocation. Theor Appl Genet, 2002, 104:868-873
    98. Wieser H, Kieffer R, Lelley T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. Journal of the Science of Food and Agriculture. 2000, 80:11, 1640-1647
    99. Wieser H, Zimmermann G Importance of amounts and proportions of high molecularweight subunits of glutenin for wheat quality. Eur Food Res Tech, 2000b, 210:324-330
    100. Y K Lee, F Bekes, R Gupta, et al.The low-molecular-weight glutenin subunit proteins of primitive wehats-I-Variation in A-genome species. Theor Appl Genet 1999, 98:119-125
    101. Yan Y S, L K Hsam, Yu J, et al. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE)and capillary electrophoresis. Euphytica, 2003, 130:377-385
    102. Zhang W, Gianibelli M C, Rampling W, et al. Identification of SNPs and development of allele-specific PCR markers forγ-gliadin alleles in Triticum aestivum. Theor Appl Genet, 2003, 107: 130-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700