锂离子电池正极材料尖晶石锰酸锂的制备与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石型LiMn_2O_4具有工作电压高、安全性能好、生产成本低、对环境友好等特点,是21世纪最具有发展前景的锂离子电池正极材料之一。但尖晶石型LiMn_2O_4的理论比容量较低,电化学循环性能较差阻碍着其规模化应用。为寻找提高尖晶石型LiMn_2O_4的体积比能量和抑制容量衰减的有效方法,本文进行了高密度锰氧化物的制备、尖晶石型LiMn_2O_4的制备、掺杂对尖晶石型LiMn_2O_4的影响和Li~+离子脱/嵌过程探索等研究工作。
     以电解锰粉为原料,采取低温焙烧-机械活化-高温焙烧的工艺制备高密度锰氧化物。考查了焙烧温度、焙烧时间和升温速率对物化性能和微观形貌的影响。结果表明:低温过程是锰的氧化过程,高温过程是锰氧化物的晶化过程。优化的热处理制度为:低温焙烧温度为700℃,保温7h,高温焙烧温度为1050℃,保温时间为7h。高密度锰氧化物为Mn_3O_4和Mn_2O_3的混合物,D_(50)≈4.0μm时粉体的振实密度为2.70g·cm~(-3)。
     以高密度锰氧化物为前驱体,以Li_2CO_3为锂源,采用机械活化和固相烧结相结合的二段烧结法制备了尖晶石LiMn_2O_4。研究了烧结温度、烧结时间和配锂量对尖晶石结构、微观形貌和电化学性能的影响,结果表明:烧结温度对尖晶石结构、微观形貌和电化学性能有显著影响。烧结时间对尖晶石结构、微观形貌和电化学性能影响较小。配锂量对微观形貌影响小,对电化学性能影响大。缺锂型锂锰氧化物电化学循环性能差,富锂型锂锰氧化物电化学循环性能好,尖晶石锰酸锂的首次放电比容量的最大值出现在配锂量x(Li_xMn_2O_4)=1.0附近,其中Li_(1.015)Mn_2O_4的首次放电比容量最高,为111.25mAh·g~(-1)(0.1C,4.2V,vs.C、),循环30周期容量保持率为95.03%。
     分别以CO_3O_4、NiO、TiO_2和ZrO_2为掺杂体,制备了掺杂锂锰氧化物Li_(1.015)Mn_(2-x)M_xO_4(M=Co、Ni、Ti、Zr)。考查了掺杂离子、掺杂量对锂锰氧化物结构、微观形貌和电化学性能的影响,结果表明:掺杂改善了锂锰氧化物体系中阳离子混排程度,而未明显改变尖晶石结构。Ni掺杂改善了颗粒微观形貌,Co、Zr掺杂细化了微观颗粒。Ti掺杂提高了首次放电比容量。随着掺杂量的增大,首次放电比容量降低,电化学循环稳定性增强,掺杂有效抑制了电化学容量衰减。
     采用交流阻抗技术对尖晶石型LiMn_2O_4脱/嵌锂过程进行了探索,结果表明:掺杂提高了交换电流密度,稳定了尖晶石结构,也对锂离子扩散系数有影响。
Spinel LiMn_2O_4 is one of the most promising cathode materials of 21st century because of high working voltage, excellent security, low manufacture cost, and environment friendly. But large-scale application is restricted because of low theoretical specific capacity and poor electrochemical performance. This dissertation emphasized on searching for resultful methods to improve bulk specific energy density and to restrain capacity fading. And the article mainly included preparation of high density manganese oxide, preparation of spinel LiMn_2O_4, doping effects on spinel LiMn_2O_4 and discussion about Li deintercalation/intercalation process.
     High tap density manganese oxide was prepared through low temperature sintering-mechanical activation-high temperature sintering route with electrolytic manganese powder as raw material. The effects of sintering temperature, dwelling time and calefactive velocity on physical-chemistry property of manganese oxide were studied, and showed that the low temperature sintering process is the oxidation of Mn, and the high temperature sintering process actually the crystallization process of manganese oxide prepared in low temperature sintering. And heat treatment system is as follows: low sintering temperature is 700℃and dwelling time is 7h, high temperature sintering 1050℃, respectively, and dwelling time is 7h. X-ray-diffraction spectra indicated that the manganese oxides were the mixture of Mn_3O_4 and Mn_2O_3, and its tap density is 2.70g·cm~(-3)(D_(50)≈4.0μm).
     LiMn_2O_4 was prepared with high tap density manganese oxides we as precursor and Li_2CO_3 as Li sources through the mechanical activation-high temperature solid state route. Effect of sintering temperature, sintering time and x(Li_xMn_2O_4) on spinel structure, morphology and electrochemical property, and the result showed that Sintering temperature affected Spinel structure, morphology and electrochemical property evidently. Sintering time affected spinel structure, morphology and electrochemical property slightly. Electrochemical property was affected by X(Li_xMn_2O_4) remarkably, Li-rich spinel LiMn_2O_4 exhibited good capacity retention, and Li-poor spinel LiMn_2O_4 showed poor capacity retention. And the initial discharge specific capacity of Li_(1.015)Mn_2O_4 is 111.25mAh·g~(-1)(0.1C, 4.2V, vs.C) and is the maximum among the different Li/Mn molar ratio, and has a high capacity retention of 95.03% after 30 cycles.
     Lithium manganese oxides of Li_(1.015)Mn_(2-x)M_xO_4(M=Co、Ni、Ti、Zr) were prepared with Co_3O_4、NiO、TiO_2、ZrO_2 as dopant. Effects on structure, morphology and electrochemical property were investigated, and the results indicated that Li_(1.015)Mn_(2-x)M_xO_4(M=Co、Ni、Ti、Zr; x≤0.1) exhibited a cubic pure spinel structure, except Li_(1.015)Mn_(1.9)Zr_(0.1)O_4. Cations order was optimized. With the increasing of dopant content, initial specific capacity deceased and electrochemical performance was enhanced. Initial specific capacity deceased unnotably when x≤0.01 but notably when x>0.1. Particle sizes became smaller and tap density decreased in a way with the import of substituted ionic.
     Li deintercalation/intercalation process from spinel LiMn_2O_4 was studied by AC impedance measurement. It was found that the exchange current density and structure stability were enhanced through doping, and diffusion coefficient of Li~+ was also affected by doping.
引文
[1] 雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000.1~43
    [2] 郭炳煜,李新海,杨松青.化学电源.电池原理及制造技术[M].长沙:中南大学出版社,2003.15~18
    [3] D.E.Fenton,J.M.Parker, EV.Wright. Complexes of alkali metal ions with poly(ethylene oxide) [J].Polymer, 1973,14(11):589~589
    [4] Scrosati,Bruno. Lithium rocking chair batteries: an old concept[J].Journal of the Electrochemical Society, 1992,139(10):2776~2781
    [5] K.Mizushima, P.C.Jones,P.J.Wiseman,et al. Li_xCoO_2(0<x<1):A new cathode material for batteries of high energy density[J]. Materials Research Bulletin 1980,15(6):783~789
    [6] 吴宇平,万春荣,姜长印,等.锂电池非水电解质盐的制备LiPF_6[J].电源技术,1999,23(s1):99~101
    [7] 黄拥理,潘春跃,黄可龙.聚合物锂离子蓄电池技术与市场[J].电源技术,2001,25(5):371~374
    [8] 毛永志,潘成久,黄晓峰,等.电动车用镍氢电池[J].电池工业,2000,5(2):82~84
    [9] 戴永年,杨斌,姚耀春,等.锂离子电池的发展状况[J].电池,2005,35(3):193~195
    [10] 安平,王剑.锂离子电池在国防军事领域的应用[J].新材料产业,2006,(9):34~40
    [11] 何祚庥.我国能否领导一场以锂离子蓄电池为基础的电动车技术的革命?[J].科学新闻,2006,(15):4~5
    [12] J.Arai,T.Yamaki,S.Yamauchi,et al. Development of a high power lithium secondary battery for hybrid electric vehicles[J]. Journal of Power Sources,2005,146(1-2):788~792
    [13] 张友根.混合力电动车发展概况[J].上海节能,2006,(5):29~30
    [14] Heike Gabrisch,Yasunori Ozawa, Rachid Yazami.Crystal structure studies of thermally aged LiCoO_2 and LiMn_2O_4 cathodes[J].Electrochimica Acta,2006,52(4): 1499~1506
    [15] M.G.S.R.Thomas,P.G.Bruce,J.B.Goodenough. AC impedance of the Li_(1-x)CoO_2 electrode[J]. Solid State Ionics, 1986,18(2):794~798
    [16] D.Carlier, A.Van der Ven.C.Delmas,et al. First-principles investigation of phase stability in the O_2-LiCoO_2 system[J]. Chemistry of Materials,2003,15(13):2651~2660
    [17] 李普良,徐舜,习小明.锂离子电池正极材料LiCoO_2合成方法及其掺杂研究进展[J].矿业工程,2004,24(1):84~88
    [18] S.G.Kang,S.Y.Kang,K.S.Ryu,et,al. Electrochemical and structure properties of HT-LiCoO_2 and LT-LiCoO_2 prepared by the citrate sol-gel method[J]. Solid State Ionics, 1999,120(1-4): 155~161。
    [19] Ermete Antolini.LiCoO_2 :formation,strcture,lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties[J].Solid State Ionics,2004,170(3-4): 159~171
    [20] M.Ganesan, S.Sundararaj an,M.V.T.Dhananjeyan,et al.Synthesis and characterization of tetravalent titanium(Ti~(4+))substituted LiCoO_2 for lithium-ion batteries[J]. Materials Science and Engineering:B,2006,131 (1-3):203~209
    [21] Kyung Yoon Chung,Won-Sub Yoon, Hung Sui Lee,et al. In situ XRD studies of the structural changes of ZrO_2-coated LiCoO_2 during cycling and their effects on capacity retention in lithium batteries[J]. Journal of Power Sources,2006,163(1): 185~190
    [22] Wang Hong,Zhu Lunyu and Chen Mingcai. Effects of La_2O_3/Li_2O/TiO_2-coating on electrochemical performance of LiCoO_2 cathode[J]. Journal of Rare Earths, 2007,25(1),124~128
    [23] 唐致远,李建刚,薛建军,等.LiNiO_2的制备与改性的探讨[J].电池,2001,31(1):10~13
    [24] RKalyani,N.Kalaiselvi. Various aspects of LiNiO_2 chemistry:A review[J]. Science and Technology of Advanced Materials,2005,6(6):689~703
    [25] V.Bianchi,S.Bach,C.Belhomme,et al.Electrochemical investigation of the Li insertion-extraction reaction as a function of lithium deficiency in Li_(1-x)Ni_(1+x)O_2[J]. Electrochimica Acta,2001,46(7):999~1011
    [26] Won-Sub Yoon,Jonathan Hanson, James McBreen,et al. A study on the newly observed intermediate structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD [J].Electrochemistry Communications,2006,8(5): 859~862
    [27] 高原,顾大明,史鹏飞.锂离子电池正极材料LiNiO_2的研究进展[J].电池,2005,35(6):471~473
    [28] J.Kim,K.Amine. A comparative study on the substitution of divalent,trivalent and tetralent metal ions in LiNi_(1-x)M_xO_2(M=Cu~(2+),Al~(3+) and Ti~(4+))[J].Journal of Power Sourses,2002,104(1):33~39
    [29] C.Delmas,M.Ménétrier, L.Croguennec. An overview of the Li(Ni,M)O_2 systems:syntheses,structures and properties[J]. Electrochimica Acta, 1999,45(1~2): 243~253
    [30] 罗旭芳,廖力,王先友,等.锂离子蓄电池正极材料层状锰基化合物的研究进展[J].电源技术,2005,29(9):623~627
    [31] Jun Sugiyama, Tatsuo Noritake,Tatsumi Hioki.et al. A new variety of LiMnO_2:high-pressure synthesis and magnetic properties of tetragonal and cubic phases of Li_xMn_(1-x)O (x~0.5)[J]. Materials Science and Engineering: B, 2001,84(3):145-276
    [32] C.Storey, I.Kargina, Y.Grincourt,et al. Electrochemical characterization of a new high capacity cathode[J]. Journal of Power Sources,2001,98(1):541~544
    [33] Z.P.Guo, S.Zhong, G.X.Wang,et al. Structure and electrochemical characteristics of LiMn_(0.7)M_(0.3)O2(M=Ti, V, Zn, Mo, Co, Mg, Cr) [J] .Journal of Alloys and Compounds,2003,348(1-2):231~235
    [34] A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997,144(4): 1188~1194
    [35] Atsuo Yamada, Mamoru Hosoya, Sai-Cheong Chung,et al. Olivine-type cathodes: Achievements and problems [J].Journal of Power Sources,2003,119(1):232-238
    [36] S.Franger, C.Benoit, C.Bourbon,et al. Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries[J]. Journal of Physics and Chemistry of Solids,2006,67(5~6): 1338~1342
    [37] 魏琦峰,李宁,任秀莲,等.正极材料LiFePO_4的研究现状[J].电池,2006,36(3):240~242
    [38] N.Ravet,Y.Chouinard,J.EMagnan,et al. Electroactivity of natural and synthetic triphylite[J].Journal of Power Sources,2001,98(1):503~507
    [39] 张克从.近代晶体学基础[M].北京:科学出版社,1987.226~228
    [40] M.M.Thackeray. Structural considerations of layered and spinel lithiated oxides for lithium ion batteries[J]. Journal of the Electrochemical Society, 1995,142(8): 2558-2863
    [41] 夏君磊,赵世玺,刘韩星,等.F掺杂影响LiMn_2O_4性能的机理研究[J].功能材料,2004,35(1):74~76
    [42] M.M.Thackeray, P.J.Johnson,L.A.de Picciotto,et al. Electrochemical extraction of lithium from LiMn_2O_4[J]. Materials Research Bulletin, 1984,19(2): 179-187
    [43] A.Ott,P.Endres,V.Klein,et al. Electrochemical performance and chemical properties of oxidic cathode materials for 4 V rechargeable Li-ion batteries [J].Journal of Power Sources, 1998,72(1): 1~8
    [44] 周公度.结构化学基础[M].北京:北京大学出版社,1989.28~32
    [45] Yongyao Xia, Masaki Yoshio. Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part Ⅳ. High and low temperature performance of LiMn_2O_4 [J]. Journal of Power Sources, 1997,66(1): 129~133
    [46] Sung Bin Park, Sang Myung Lee,Ho Chul Shin, et al. An alternative method to improve the electrochemical performance of a lithium secondary battery with LiMn_2O_4[J]. Journal of Power Sources,2007,166(t):219~225
    [47] Doron Aurbach,Boris Markovsky, Gregory Salitra,et al. Review on electrode-electrolyte solution interactions,related to cathode materials for Li-ion batteries[J]. Journal of Power Sources,2007,165(2):491~499
    [48] 吕正中,周震涛.LiMn_2O_4在充放电过程中的相变[J].电池,2003,33(2):77~79
    [49] 陈立泉.锂离子电池正极材料的研究进展[J].电池,2002,32(1):6~8
    [50] J Morales,L Sanchez,J L Tirado. New doped Li-M-Mn-O(M=Al,Fe,Ni) spinels as cathodes for rechargeable 3V lithium batteries[J]. Journal of Solid State Electrochemica Acta, 1999,45 (1):255~271
    [51] Yongyao Xia,Tetsuo Sakai,Takuya Fujieda, et al. Correlating capacity fading and structural changes in Li_(1+y)Mn_(2-y)O_(4-δ) spinel cathode materials:A systematic study on the effects of Li/Mn ratio and oxygen deficiency[J]. Journal of the Electrochemical Society,2001,148(7):723~729
    [52] 卢世刚,李明勋,黄松涛,等.尖晶石LiMn_2O_4的改性及性能[J].电池,2002,32(1):34~35
    [53] 谭柱中,梅光贵,李维健,等.锰冶金学[M].长沙:中南大学出版社,2004.638~649
    [54] Yongjao Xia, Yasufumi Hideshima, Naoki Kumada, et al. Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries: Part Ⅴ. Enhancement of the elevated temperature performance of Li/LiMn_2O_4 cells[J]. Journal of Power Sources,1998,74(1):24~28
    [55] 彭虎,李俊.微波高温加热技术进展[J].材料导报,2005,19(10):100~103
    [56] Ben-Lin He,Wen-Jia Zhou, Shu-Juan Bao,et al. Preparation and electrochemical properties of LiMn_2O_4 by the microwave-assisted rheological phase method[J]. Electrochimica Acta,2007,52(9):3286~3293
    [57] Liu W, Farriagton G C. Synthesis and electrochemical studies of spinel phase LiMn_2O_4 cathode materials prepared by the pechini process[J].Journal of the Electrochemical Society, 1996,143(3):879~884
    [58] 何向明,王莉,张国昀.溶胶凝胶法合成锂离子电池正极材料LiMn_2O_4[J].电化学,2006,12(1):104~106
    [59] X.Qiu,X.Sun,W.Shen,et al. Spinel Li_(1+x)Mn2O4 synthesized by co-precipitation as cathodes for lithium ion batteries[J].Solid State Ionics,1997,93(3-4):335~339
    [60] 金超,吕东生,李伟善.尖晶石LiMn_2O_4的表面修饰改性[J].中国锰业,2003,21(3):21~25
    [61] N.Amdouni,F.Gendron,A.Mauger,et al. LiMn_(2-y)Co_yO_4 (0≤y≤1) intercalation compounds synthesized from wet-chemical route[J].Materials Science and Engineering:B,2006,129(1-3):64~75
    [62] C H Shen,R S Liu,R Gundakaram, et al. Effect of Co doping in LiMn_2O_4[J], Journal of Power Sources,2001,102(1-2) :21~28
    [63] Yen-Pei Fu,Cheng-Hsiung Lin, Yu-Hsiu Su,et al. Electrochemical characteristic of LiMn_(1.925)M_(0.075)O_4 (M=Cr, Co) cathode materials synthesized by the microwave-induced combustion method[J]. Journal of Power Sources,2006,159(1):215~218
    [64] Tingfeng Yi,Xingguo Hu,Kun Gao. Synthesis and physicochemical properties of LiAl_(0.05)Mn_(1.95)O_4 cathode material by the ultrasonic-assisted sol-gel method[J]. Journal of Power Sources,2006,162(1):636~643
    [65] Woosuk Cho,Wonkyung Ra, Junichi Shirakawa, et al. Synthesis and electrochemical properties of nonstoichiometric LiAl_xMn_(2-x)O_(4-δ) as cathode materials for rechargeable lithium ion battery[J]. Journal of Solid State Chemistry2006,179(11):3534~3540
    [66] Dae Hoon Park,Seung Tae Lim,Seong -Ju Hwang,et al. Influence of nickel content on the chemical bonding character of LiMn_(2-x)Ni_xO_4 spinel oxides[J].Journal of Power Sources,2006,159(2):1346~1352
    [67] Rahul Singhal,Suprem.R.Das, Osbert Oviedo,et al. Improved electrochemical properties of a coin cell using LiMn_(1.5)Ni_(0.5)O_4 as cathode in the 5V range[J]. Journal of Power Sources2006,160(1):651~656
    [68] 赵雪梅,周复,张祖德,等.Sc~(3+)掺杂的尖晶石型LiMn_2O_4正极材料制备及性质[J].化学物理学报,2005,18(2):233~236
    [69] 何向明,蒲薇华,蔡砚,等.球形尖晶石LiMn_2O_4掺杂钇的性能研究[J].化学学报,2005,63(19):1853~1856
    [70] C.Q.Xu,Y.W.Tian,Y.C.Zhai,et al. Influence of Y~(3+) doping on structure and electrochemical property of the LiMn_2O_4[J]. Materials Chemistry and Physics, 2006,98(2-3):532~538
    [71] 伊廷锋,胡信国,高昆.稀土掺杂在锂离子电池中的应用进展[J].稀有金属材料与工程,2006,35(s2):9~12
    [72] 宁连才,吴金平,周成刚,等.第一原理计算过渡金属掺杂尖晶石型LiMn_2O_4的电子结构[J].地球科学—中国地质大学学报,2006,31(3):317~320
    [73] Amatucci, G.G,Pereira, N, Zheng, T, et al.Failure mechanism and improvement of the elevated temperature cycling of LiMn_2O_4 compounds through the use of the LiAl_xMn_(2-x)O_(4-z)F_z solid solution[J].Journal of the Electrochemical Society, 2001,148(2), A171~A182
    [74] J.T.Son,H.G.Kim. New investigation of fluorine-substituted spinel LiMn_2O_(4-x)F_x by using sol-gel process[J]. Journal of Power Sources,2005,147(1-2): 220~226
    [75] 李智敏,仇卫华,赵海雷,等.Al~(3+)、F掺杂LiMn_2O_4的高温电化学性能[J].电池,2003,33(2):71~73
    [76] Shu-Juan Bao,Yan-Yu Liang,Wen-jia Zhou,et al. Enhancement of the electrochemical properties of LiMn_2O_4 through Al~(3+) and F co-substitution[J]. Journal of Colloid and Interface Science,2005,291 (2):433~437
    [77] Yang-Kook Sun, Yung-Sung Lee ,M.Yoshio. Cycling behavior of the oxysulfide LiAl_(0.18)Mn_(1.82)O_(3.97)S_(0.03) cathode materials at elevated temperature [J]. Materials Letters,2002,56(4):418~423
    [78] E.Zhecheva, R.Stoyanova. Effect of allied and alien ions on the EPR spectrum otMn~(4+)-containing lithium-manganese spinel oxides[J]. Solid State Communications,2005,135(7) :405~410
    [79] Hyung-Wook Ha,Nan Ji Yun,Keon Kim. Improvement of electrochemical stability of LiMn_2O_4 by CeO_2 coating for lithium-ion batteries[J]. Electrochimica Acta ,2007,52(9):3236~3241
    [80] Lihong Yu,Xingping Qiu,Jingyu Xi,et al. Enhanced high-potential and elevated-temperature cycling stability of LiMn_2O_4 cathode by TiO_2 modification for Li-ion battery[J]. Electrochimica Acta,2006,51 (28):6406~6411
    [81] J.Tu,X.B.Zhao,J.Xie,et al. Enhanced low voltage cycling stability of LiMn_2O_4 cathode by ZnO coating for lithium ion batteries[J].Journal of Alloys and Compounds,2007,432(1-2):313~317
    [82] G.G.Amatucci, A.Blyr, C.Sigala, et al. Surface treatments of Li+(1+x)Mn_(2-x)O_4 spinels for improved elevated temperature performance[J]. Solid State Ionics, 1997,104 (1):13~25
    [83] M.N.Obrovac,O.Mao,J.R.Dahn. Structure and electrochemistry of LiMO_2 (M=Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis[J]. Solid State Ionics, 1998,112(1-2):9~19
    [84] Oleg A.Brylev, Oleg A.Shlyakhtin,Alexander V.Egorov, et al. Phase formation and electrochemical properties of cryochemically processed Li_(1+x)V_3O_8 materials[J]. Journal of Power Sources, 2007,164,(2),868~873
    [85] 陈震,陈日耀,陈日煌,等.改性氧基氯化铁(FeOCl)的电信化学可逆性及其在锂电池中应用的研究[J].电源技术,1995,19(2):33~37
    [86] 林原,蔡润良,吴浩清.Li/α-Sn-(HPO_4)电池及其反应机理[J].电化学,1997,3(4):378~382
    [87] 苏继桃,苏玉长.机械活化在制备尖晶石LiMn_2O_4中的应用[J].电池工业,2006,11(3):159~162
    [88] Laura Pascual,M.Luz Perez-Revebga, Rosa M,Rojas,et al. Lithium-deficient Li_YMn_2O_4 spinels (0.9≤Y<1): Lithium content, synthesis temperature, thermal behaviour and electrochemical properties [J]. Electrochimica Acta,2005,51 (16): 3193~3201
    [89] Toshimi Takada, Hirotoshi Enoki, Hiroshi Hayakawa, et al. Novel Synthesis Process and Structural Characterization of Li-Mn-O Spinels[J].Joumal of Solid State Chemistry,1998,139(2):290~298
    [90] 周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85~90
    [91] Shuhua Ma, Hideyuki Noguchi,Masaki Yoshio. Synthesis and electrochemical studies on Li-Mn-O compounds prepared at high temperatures[J]. Journal of Power Sources,2004,126(1-2): 144~149
    [92] Tingfeng Yi,Xingguo Hu,Kun Gao. Synthesis and physicochemical properties of LiAl_(0.05)Mn_(1.95)O_4 cathode material by the ultrasonic-assisted sol-gel method[J]. Journal of Power Sources,2006,162(1): 636~643
    [93] Harold.P.Klug,Leroy.E.Alexander著,盛世雄等译.X射线衍射技术[M].北京:冶金工业出版社,1986.395~442
    [94] Piszora.P. Temperature dependence of the order and distribution of Mn~(3+) and Mn~(4+) cations in orthorhombic LiMn_2O_4[J]. Journel of Alloys and Compounds, 2004,382(1): 112~118
    [95] 谭柱中,梅光贵,李维健,等.锰冶金学[M].长沙:中南大学出版社,2004.632~634
    [96] S.B.Tang,M.O.Lai and L.Lu. Electrochemical studies of low-temperature processed nano-crystalline LiMn_2O_4 thin film cathode at 55℃[J]. Journal of Power Sources, 2007,164(1):372~378
    [97] Yonggao Xia, Hongyu Wang, Qing Zhang,et al. Oxygen deficiency, a key factor in controlling the cycle performance of Mn-spinel cathode for lithium-ion batteries[J].Journal of PowerSources,2007,166(2) :485~491
    [98] 李荣,陈昌国,梁国明,等.锂离子正极材料Li_xMn_2O_4电子结构的量子化学DV-研究[J].中国有色金属学报,2004,14(5):865~870
    [99] Scrosati Bruno.Recent advances in lithium ion battery materials [J].Electrochim Acta,2000,45 (15-16) :2461~2466
    [100] 刘东强,刘兴泉.锂离子电池正极材料LiMn_2O_4的高温性能研究进展[J].化工科技,2006,14(3):58~63
    [101] Yun-Sung Lee,Naoki Kumada,Masald Yoshio. Synthesis and characterization of lithium aluminum-doped spinel (LiAl_xMn_(2-x)O_4) for lithium secondary battery[J]. Journal of Power Sources,2001 (2):376~384
    [102] Tingfeng Yi,Xingguo Hu,Kun Gao. Synthesis and physicochemical properties of LiAl_(0.05)Mn_(1.95)O_4 cathode material by the ultrasonic-assisted sol-gelmethod[J]. Journal of Power Sources,2006,162(1):636~643
    [103] N.Amdouni,F.Gendron,A.Mauger,et al. LiMn_(2-y)Co_yO_4 (0≤y≤1) intercalation compounds synthesized from wet-chemical route[J].Materials Science and Engineering:B,2006,129(1~3):64~75
    [104] Dae Hoon Park, Seung Tae Lim, Seong-Ju Hwang,et al.Influence of nickel content on the chemical bonding character of LiMn_(2-x)Ni_xO_4 spinel oxides[J].Journal of Power Sources, 2006,159(2): 1346~1352
    [105] Dae Hoon Park, Seung Tae Lim, Seong-Ju Hwang,et al.Influence of nickel content on the chemical bonding character of LiMn_(2-x)Ni_xO_4 spinel oxides[J].Journal of Power Sources, 2006,159(2): 1346~1352
    [106] 李义兵,陈白珍,徐徽,等.Lj(Mn_(1/3)Ni_(1/3)Co_(1/3_)_(1-y)M_yO_2(M=Al,Mg,Ti)正极材料的制备及性能[J].中国有色金属学报,2006,16(8):1474~1479
    [107] M.M.Thackeray, C. S.Johnson,J. S.Kim,et al. ZrO_2-and Li_2ZrO_3-stabilized spinel and layered electrodes for lithium batteries[J] .Electrochemistry Communications, 2003,5(9):752~758
    [108] 吴晓梅,杨春生,奚峻,等.微米级锂离子电池正极材料尖晶石LiMn_2O_4的合成及性能[J].复旦学报(自然科学版)2004,43(4):524~529
    [109] 唐致远,薛建军,李建刚,等.锂离子固相扩散控制下的材料放电过程[J].物理化学学报,2001,17(6):526~530
    [110] 舒余德,陈白珍.冶金电化学研究方法[M].中南工业大学出版社,1990:95~125
    [111] Li Tao,Qiu Weihua,Zhao hailei,e al. Effect of cooling rate on the electrochemical properties of solid-state synthesized spinel LiMn_2O_4[J]. Materials Letters,2006, 60(9-10): 1251~1255
    [112] Wen-jia Zhou, Shu-juan Bao,Ben-lin He,et al. Synthesis and electrochemical properties of LiAl_(0.05)Mn_(1.95)O_4 by the ultrasonic assisted rheological phase method[J].Electrochimica Acta,2006,51(22): 4701~4708

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700