组蛋白甲基化转移酶SDG8对油菜素甾醇类化合物调节基因的表达调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜素甾醇类化合物BRs是调节植物生长发育的重要植物激素。BR信号由膜受体BRI1接受,BRI1与其它信号组分共同调节BES1/BZR1家族的转录因子,从而控制BR响应基因的表达。转录因子BES1/BZR1可以绑定参与各调控通路的转录因子或组蛋白修饰酶来共同调节下游基因,对各个生物进程精细调控。最新研究发现BES1与转录延长因子IWS1互作,参与BR靶基因的调节,而IWS1在酵母系统中与组蛋白H3K36甲基化转移酶SDG8结合调控基因转录。本论文针对拟南芥SDG8对BR响应基因的表达调控机理进行了初步研究,阐明了SDG8参与BR信号转导通路的作用机制。
     首先获得SDG8基因的T-DNA插入纯合突变体材料SALK_036941,命名为sdg8。表型观察显示,SDG8基因突变严重抑制植物的正常发育。突变体sdg8整个生育期株型矮小,并对BR处理不敏感。
     其次对SDG8蛋白功能进行分析并研究了SDG8与BR通路重要转录因子BES1及转录延长因子IWS1的相互作用关系,结果证实SDG8与BES1两蛋白在体内和体外均有相互作用,并且SDG8与IWS1也存在互作关系。
     本论文又通过转录组测序技术分析SDG8对BR响应基因表达的调控模式。全局基因表达结果显示SDG8对BR响应基因的表达起重要作用,并具有激活和抑制BR响应基因的双重作用。基因功能分析结果显示其所调节的BR响应基因的功能涉及到细胞代谢的多个方面,参与调节BR介导的细胞伸长相关基因的表达。
     最后用染色质免疫共沉淀技术分析了突变体sdg8中BR调节基因的H3K36三甲基化水平变化,发现所测定基因的H3K36三甲基化水平大大降低,说明组蛋白甲基化可能参与SDG8所介导的BR响应基因的表达。
     综上所示,本论文提出了拟南芥SDG8通过与BES1和IWSl互作参与BR信号转导并调控BR响应基因的作用模型,初步揭示了组蛋白修饰介导BR信号转导下游调控的机制,对深入阐述激素调控的作用机理有重要理论意义。
Brassinosteroids (BRs) is a group of polyhydroxylated plant steroid hormones, which is involved in many aspects of plant growth and developmental processes. BRs signal through the receptor BRI1localized to the plasma membrane and other signaling components to regulate the BES1/BZR1family of transcription factors, which modulates the expression of many genes. BES1/BZR1and their interacting proteins regulate the large number of genes. Recent study reported that transcription elongater IWS1interacts with BES1and invloves in BR signal transdcuction. In yeast system, IWS1and histone3lysine36methyltransferase SDG8inform a complax to regulate the transcription of genes. In this study, we investigate the function of Arabidopsis SDG8in BR signaling and the potential mechanisms of its action.
     First, SDG8T-DNA knockout mutant line was gained, named sdg8. The sdg8plants display reduced-growth dwarf phenotype with compromised BR responses.
     Then, based on the function analysis of SDG8, we detected the interaction of SDG8between BES1and IWS1. These studies show that SDG8interacts with the transcription factor BES1in vivo and in vitro. In the same way, we found that SDG8interacts with the transcription elongation regulator IWS1.
     And then, we performed the RNA-seq experiment to study the regulation pattern of SDG8on BR-response genes expression. Global gene expression studies demonstrated that SDG8plays a major role in BR-regulated gene expression. SDG8functions on inducing and repressing the BR-response genes. Gene function analysis results display that SDG8-regulated genes involve in many aspects of cell progresses including BR-involved cell elongation related genes expression.
     Last, Chromatin Immunoprecipitation (ChIP) experiment showed that H3K36me3is reduced in BR-regulated genes in the sdg8mutant. This study suggests histone lysine methylation can involve in the regulation of BR-responsed gene expression.
     Based on these results, we propose that SDG8involves BR signal pathway through the interacion with BES1and IWS1; SDG8plays an essential role in mediating BR-regulated gene expression. In this study, a major mechanism by which histone modifications dictate hormonal regulation of gene expression is revealed. It's important for the exploration of the hormone regulation mechanism.
引文
1. Acharya, B.R., and Assmann, S.M. (2009). Hormone interactions in stomatal function. Plant Molecular Biology 69,451-462.
    2. Ardehali, M.B., Yao, J., Adelman, K., Fuda, N.J., Petesch, S.J., Webb, W.W., and Lis, J.T. (2009). Spt6 enhances the elongation rate of RNA polymerase Ⅱ in vivo. The EMBO Journal 28, 1067-1077.
    3. Azpiroz, R., Wu, Y., LoCascio, J.C., and Feldmann, K.A. (1998). An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. The Plant Cell 10,219-230.
    4. Bai, M.-Y., Fan, M., Oh, E., and Wang, Z.-Y. (2012). A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. The Plant Cell 24,4917-4929.
    5. Bajguz, A. (2011). Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Archives of Environmental Contamination and Toxicology 60,406-416.
    6. Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate:a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society:Series B 57, 289-300.
    7. Bullard, J.H., Purdom, E., Hansen, K.D., and Dudoit, S. (2010). Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11, 94.
    8. Cheon, J., Park, S.-Y., Schulz, B., and Choe, S. (2010). Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction. BMC Plant Biology 10, 270.
    9. Chory, J., Nagpal, P., and Peto, C.A. (1991). Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. The Plant Cell 3,445-459.
    10. Choudhary, S.P., Kanwar, M., Bhardwaj, R., Gupta, B., and Gupta, R. (2011). Epibrassinolide ameliorates Cr (Ⅵ) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84,592-600.
    11. Clouse, S.D. (1996). Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. The Plant Journal 10,1-8.
    12. Clouse, S.D. (2011). Brassinosteroid signal transduction:from receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell 23,1219-1230.
    13. Darley, C.P., Forrester, A.M., and McQueen-Mason, S.J. (2001). The molecular basis of plant cell wall extension. In Plant Cell Walls (Springer), pp.179-195.
    14. De Rybel, B., Audenaert, D., Vert, G., Rozhon, W., Mayerhofer, J., Peelman, F., Coutuer, S., Denayer, T., Jansen, L., and Nguyen, L. (2009). Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chemistry & Biology 16,594-604.
    15. Devoto, A., Nieto - Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L. Coleman, M., and Turner, J.G. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. The Plant Journal 32,457-466.
    16. Diebold, M.L., Koch, M., Loeliger, E., Cura, V., Winston, F., Cavarelli, J., and Romier, C. (2010). The structure of an Iwsl/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26. The EMBO Journal 29,3979-3991.
    17. Divi, U.K., and Krishna, P. (2010). Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. Journal of Plant Growth Regulation 29,385-393.
    18. Domagalska, M.A., Schomburg, F.M., Amasino, R.M., Vierstra, R.D., Nagy, F., and Davis, S.J. (2007). Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134,2841-2850.
    19. Dong, G., Ma, D.-P., and Li, J. (2008). The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. Biochemical and Biophysical Research Communications 373,659-664.
    20. Ehsan, H., Ray, W.K., Phinney, B., Wang, X., Huber, S.C., and Clouse, S.D. (2005). Interaction of Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-β receptor interacting protein. The Plant Journal 43,251-261.
    21. Feng, C., Chen, M., Xu, C.-j., Bai, L., Yin, X.-r., Li, X., Allan, A.C., Ferguson, I.B., and Chen, K.-s. (2012). Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics 13,19.
    22. Friedrichsen, D.M., Joazeiro, C.A., Li, J., Hunter, T., and Chory, J. (2000). Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiology 123,1247-1256.
    23. Fujioka, S., Li, J., Choi, Y.-H., Seto, H., Takatsuto, S., Noguchi, T., Watanabe, T., Kuriyama, H., Yokota, T., and Chory, J. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. The Plant Cell 9,1951-1962.
    24. Gampala, S.S., Kim, T.-W., He, J.-X., Tang, W., Deng, Z., Bai, M.-Y., Guan, S., Lalonde, S., Sun, Y, and Gendron, J.M. (2007). An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Developmental Cell 13,177-189.
    25. Grabherr, M.G, Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., and Zeng, Q. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29,644-652.
    26. Grini, P.E., Thorstensen, T., Alm, V., Vizcay-Barrena, G., Windju, S.S., Jorstad, T.S., Wilson, Z.A., and Aalen, R.B. (2009). The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis. PLoS One 4, e7817.
    27. Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., Worley, J.F., Warthen, J.D., Steffens, G.L., Flippen-Anderson, J.L., and Cook, J.C. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281,216-217
    28. Gudesblat, G.E., Schneider-Pizon, J., Betti. C., Mayerhofer, J., Vanhoutte, I., van Dongen, W., Boeren, S., Zhiponova, M., de Vries, S., and Jonak, C. (2012). SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nature Cell Biology 14,548-554.
    29. Guo, H., Li, L., Aluru, M., Aluru, S., and Yin, Y. (2013). Mechanisms and networks for brassinosteroid regulated gene expression. Current Opinion in Plant Biology 16,545-553.
    30. He, F., Umehara, T., Saito, K., Harada, T., Watanabe, S., Yabuki, T., Kigawa, T., Takahashi, M., Kuwasako, K., and Tsuda, K. (2010). Structural insight into the zinc finger CW domain as a histone modification reader. Structure 18,1127-1139.
    31. He, J.-X., Gendron, J.M., Sun, Y., Gampala, S.S., Gendron, N., Sun, C.Q., and Wang, Z.-Y (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307,1634-1638.
    32. He, Z., Wang, Z.-Y, Li, J., Zhu, Q., Lamb, C., Ronald, P., and Chory, J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288,2360-2363.
    33. Hong, Z., Ueguchi - Tanaka, M., Shimizu-Sato, S., Inukai, Y, Fujioka, S., Shimada, Y, Takatsuto, S., Agetsuma, M., Yoshida, S., and Watanabe, Y (2002). Loss - of - function of a rice brassinosteroid biosynthetic enzyme, C - 6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal 32,495-508.
    34. Hoppmann, V., Thorstensen, T., Kristiansen, P.E., Veiseth, S.V., Rahman, M.A., Finne, K., Aalen, R.B., and Aasland, R. (2011). The CW domain, a new histone recognition module in chromatin proteins. The EMBO Journal 30,1939-1952.
    35. Hu, H., Xiong, L., and Yang, Y (2005). Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222, 107-117.
    36. Ikeda, M., Fujiwara, S., Mitsuda, N., and Ohme-Takagi, M. (2012). A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis. The Plant Cell 24,4483-4497.
    37. Jain, M. (2012). Next-generation sequencing technologies for gene expression profiling in plants. Briefings in Functional Genomics 11,63-70.
    38. Kang, J.-G, Yun, J., Kim, D.-H., Chung, K.-S., Fujioka, S., Kim, J.-I., Dae, H.-W., Yoshida, S., Takatsuto, S., and Song, P.-S. (2001). Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105,625-636.
    39. Kim, S.Y, Kim, B.H., Lim, C.J., Lim, C.O., and Nam, K.H. (2010). Constitutive activation of stress - inducible genes in a brassinosteroid-insensitive 1 (bril) mutant results in higher tolerance to cold. Physiologia Plantarum 138,191-204.
    40. Kim, T.-W., Guan, S., Burlingame, A.L., and Wang, Z.-Y. (2011). The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Molecular Cell 43,561-571.
    41. Kim, T.-W, Guan, S., Sun, Y, Deng, Z., Tang, W., Shang, J.-X., Sun, Y, Burlingame, A.L., and Wang, Z.-Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology 11,1254-1260.
    42. Kim, T.-W., Michniewicz, M., Bergmann, D.C., and Wang, Z.-Y. (2012). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482,419-422.
    43. Kinoshita, T., Cafio-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., and Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433,167-171.
    44. Koh, S., Lee, S.-C., Kim, M.-K., Koh, J.H., Lee, S., An, G, Choe, S., and Kim, S.-R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant mMolecular Biology 65,453-466.
    45. Lanza, M., Garcia-Ponce, B., Castrillo, G, Catarecha, P., Sauer, M., Rodriguez-Serrano, M., Paez-Garcia, A., Sanchez-Bermejo, E., TC, M., and Leo del Puerto, Y (2012). Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Developmental Cell 22,1275-1285.
    46. Li, B., Carey, M., and Workman, J.L. (2007a). The role of chromatin during transcription. Cell 128, 707-719.
    47. Li, B., Gogol, M., Carey, M., Lee, D., Seidel, C., and Workman, J.L. (2007b). Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316, 1050-1054.
    48. Li, J. (2010). Regulation of the nuclear activities of brassinosteroid signaling. Current Opinion in Plant Biology 13,540-547.
    49. Li, J., Nam, K.H., Vafeados, D., and Chory, J. (2001). BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiology 127,14-22.
    50. Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110,213-222.
    51. Li, L., Ye, H., Guo, H., and Yin, Y. (2010). Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proceedings of the National Academy of Sciences of the United States of America 107,3918-3923.
    52. Li, L., Yu, X., Thompson, A., Guo, M., Yoshida, S., Asami, T., Chory, J., and Yin, Y. (2009). Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. The Plant Journal 58,275-286.
    53. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. (2008). RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 18,1509-1517.
    54. Mayer, A., Lidschreiber, M., Siebert, M., Leike, K., Soding, J., and Cramer, P. (2010). Uniform transitions of the general RNA polymerase II transcription complex. Nature Structural & Molecular Biology 17,1272-1278.
    55. Mitchell, J., Mandava, N., Worley, J., Plimmer, J., and Smith, M. (1970). Brassins-a new family of plant hormones from rape pollen. Nature 225,1065-1066.
    56. Morinaka, Y., Sakamoto, T., Inukai, Y, Agetsuma, M., Kitano, H., Ashikari, M., and Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology 141,924-931.
    57. Mutasa-G6ttgens, E.S., Joshi, A., Holmes, H.F., Hedden, P., and Gottgens, B. (2012). A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genomics 13,99.
    58. Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y, Miura, K., Takatsuto, S., Yoshida, S., and Ueguchi-Tanaka, M. (2006). The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiology 140,580-590.
    59. Nakaya, M., Tsukaya, H., Murakami, N., and Kato, M. (2002). Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant and Cell Physiology 43,239-244.
    60. Nam, K.H., and Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110,203-212.
    61. Nettleton, D., Hwang, J.T.G, Caldo, R.A., and Wise, R.P. (2006). Estimating the number of true null hypotheses from a histogram of p-values. Journal of Agricultural, Biological, and Environmental Statistics 11,337-356.
    62. Noh, B., Lee, S.-H., Kim, H.-J., Yi, G, Shin, E.-A., Lee, M., Jung, K.-J., Doyle, M.R., Amasino, R.M., and Noh, Y.-S. (2004). Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. The Plant Cell 16, 2601-2613.
    63. Oh, E., Zhu, J.-Y, and Wang, Z.-Y. (2012a). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology 14,802-809.
    64. Oh, M.-H., Wang, X., Clouse, S.D., and Huber, S.C. (2012b). Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. Proceedings of the National Academy of Sciences of the United States of America 109,327-332.
    65. Park, C.H., Kim, T.-W., Son, S.-H., Hwang, J.-Y, Lee, S.C., Chang, S.C., Kim, S.-H., Kim, S.W., and Kim, S.-K. (2010). Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry 71,380-387.
    66. Roudier, F., Ahmed, I., Berard, C., Sarazin, A., Mary-Huard, T., Cortijo, S., Bouyer, D., Caillieux, E., Duvernois - Berthet, E., and Al-Shikhley, L. (2011). Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. The EMBO Journal 30,1928-1938.
    67. Ryu, H., Kim, K., Cho, H., and Hwang, I. (2010). Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling. Molecules and Cells 29,291-296.
    68. Sakamoto, T., Morinaka, Y., Inukai, Y, Kitano, H., and Fujioka, S. (2013). Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. The Plant Journal 73,676-688.
    69. Sakamoto, T., Morinaka, Y, Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., and Yoshida, S. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology 24,105-109.
    70. Salchert, K. (1998). Control of cell elongation and stress responses by steroid hormones and carbon catabolic repression in plants. Philosophical Transactions of the Royal Society of London Series B:Biological Sciences 353,1517-1520.
    71. Shafiq, S., Berr, A., and Shen, W.H. (2014). Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation. New Phytologist 201,312-322.
    72. She, J., Han, Z., Kim, T.-W., Wang, J., Cheng, W., Chang, J., Shi, S., Wang, J., Yang, M., and Wang, Z.-Y. (2011). Structural insight into brassinosteroid perception by BRI1. Nature 474,472-476.
    73. Shimada, Y, Goda, H., Nakamura, A., Takatsuto, S., Fujioka, S., and Yoshida, S. (2003). Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiology 131,287-297.
    74. Sui, P., Jin, J., Ye, S., Mu, C., Gao, J., Feng, H., Shen, W.H., Yu, Y, and Dong, A. (2012). H3K36 methylation is critical for brassinosteroid - regulated plant growth and development in rice. The Plant Journal 70,340-347.
    75. Sun, Y, Fan, X.-Y, Cao, D.-M., Tang, W., He, K., Zhu, J.-Y, He, J.-X., Bai, M.-Y, Zhu, S., and Oh, E. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19,165-111.
    76. Symons, G.M., Smith, J.J., Nomura, T., Davies, N.W., Yokota, T., and Reid, J.B. (2008). The hormonal regulation of de-etiolation. Planta 227,1115-1125.
    77. Tang, W., Kim, T.-W., Oses-Prieto, J.A., Sun, Y, Deng, Z., Zhu, S., Wang, R., Burlingame, A.L., and Wang, Z.-Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321,557-560.
    78. Tang, W, Yuan, M., Wang, R., Yang, Y, Wang, C., Oses-Prieto, J.A., Kim, T.-W, Zhou, H.-W, Deng, Z., and Gampala, S.S. (2011). PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology 13,124-131.
    79. Tang, X., Lim, M.-H., Pelletier, J., Tang, M., Nguyen, V., Keller, W.A., Tsang, E.W., Wang, A., Rothstein, S.J., and Harada, J.J. (2012). Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings. Journal of Experimental Botany 63,1391-1404.
    80. Turck, E, Roudier, F., Farrona, S., Martin-Magniette, M.-L., Guillaume, E., Buisine, N., Gagnot, S., Martienssen, R.A., Coupland, G., and Colot, V. (2007). Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genetics 3, e86.
    81. Van Aken, O., Pecenkova, T., Van De Cotte, B., De Rycke, R., Eeckhout, D., Fromm, H., De Jaeger, G., Witters, E., Beemster, G.T., and Inze D. (2007). Mitochondrial type - Ⅰ prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development. The Plant Journal 52,850-864.
    82. Vert, G., and Chory, J. (2006). Downstream nuclear events in brassinosteroid signalling. Nature 441, 96-100.
    83. Vert, G., Walcher, C.L., Chory, J., and Nemhauser, J.L. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences of the United States of America 105,9829-9834.
    84. Walcher, C.L., and Nemhauser, J.L. (2012). Bipartite promoter element required for auxin response. Plant Physiology 158,273-282.
    85. Wang, H., Yang, C., Zhang, C., Wang, N., Lu, D., Wang, J., Zhang, S., Wang, Z.-X., Ma, H., and Wang, X. (2011). Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors. Developmental Cell 21,825-834.
    86. Wang, X., and Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313,1118-1122.
    87. Wang, X., Li, X., Meisenhelder, J., Hunter, T., Yoshida, S., Asami, T., and Chory, J. (2005). Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Developmental Cell 8,855-865.
    88. Wang, X., Zhang, J., Yuan, M., Ehrhardt, D.W., Wang, Z., and Mao, T. (2012). Arabidopsis microtubule destabilizing protein40 is involved in brassinosteroid regulation of hypocotyl elongation. The Plant Cell 24,4012-4025.
    89. Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., and Asami, T. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell 2,505-513.
    90. Waters, M.T., Wang, P., Korkaric, M., Capper, R.G., Saunders, N.J., and Langdale, J.A. (2009). GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. The Plant Cell 21,1109-1128.
    91. Widiez, T., Girin, T., Berr, A., Ruffel, S., Krouk, G., Vayssieres, A., Shen, W.-H., Coruzzi, G.M., Gojon, A., and Lepetit, M. (2011). HIGH NITROGEN INSENSITIVE 9 (HNI9)-mediated systemic repression of root NO3 - uptake is associated with changes in histone methylation. Proceedings of the National Academy of Sciences of the United States of America 108, 13329-13334.
    92. Wu, C.-y., Trieu, A., Radhakrishnan, P., Kwok, S.F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., and Takatsuto, S. (2008). Brassinosteroids regulate grain filling in rice. The Plant Cell 20, 2130-2145.
    93. Wu, G., Wang, X., Li, X., Kamiya, Y., Otegui, M.S., and Chory, J. (2011). Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Science Signaling 4, ra29.
    94. Wu, T.D., and Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26,873-881.
    95. Xia, X.J., Zhou, Y.H., Ding, J., Shi, K., Asami, T., Chen, Z., and Yu, J.Q. (2011). Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytologist 191,706-720.
    96. Xie, L, Yang, C., and Wang, X. (2011). Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. Journal of Experimental Botany 62, 4495-4506.
    97. Xu, L., Zhao, Z., Dong, A., Soubigou-Taconnat, L., Renou, J.-P., Steinmetz, A., and Shen, W.-H. (2008). Di-and tri-but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Molecular and Cellular Biology 28,1348-1360.
    98. Xu, W., Purugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C., and Braam, J. (1995). Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. The Plant Cell 7,1555-1567.
    99. Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., and Matsuoka, M. (2000). Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint. The Plant Cell 12,1591-1605.
    100. Yan, Z., Zhao, J., Peng, P., Chihara, R.K., and Li, J. (2009). BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiology 150, 710-721.
    101. Yang, H., Gou, X., He, K., Xi, D., Du, J., Lin, H., and Li, J. (2010). BAK1 and BKK1 in Arabidopsis thaliana confer reduced susceptibility to turnip crinkle virus. European Journal of Plant Pathology 127,149-156.
    102. Ye, H., Li, L., Guo, H., and Yin, Y. (2012). MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109,20142-20147.
    103. Ye, H., Li, L., and Yin, Y. (2011). Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathwaysF. Journal of Integrative Plant Biology 53,455-468.
    104. Ye, Q., Zhu, W., Li, L., Zhang, S., Yin, Y, Ma, H., and Wang, X. (2010). Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proceedings of the National Academy of Sciences of the United States of America 107,6100-6105.
    105. Yin, Y, Vafeados, D., Tao, Y, Yoshida, S., Asami, T., and Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120, 249-259.
    106. Yin, Y, Wang, Z.-Y, Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109,181-191.
    107. Yoh, S.M., Lucas, J.S., and Jones, K.A. (2008). The Iwsl:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes & Development 22,3422-3434.
    108. Yokota, T. (1997). The structure, biosynthesis and function of brassinosteroids. Trends in Plant Science 2,137-143.
    109. Yu, X., Li, L., Li, L., Guo, M., Chory, J., and Yin, Y. (2008). Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 105,7618-7623.
    110. Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., Guo, H., Anderson, S., Aluru, S., and Liu, P. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal 65,634-646.
    111. Zhang, L.-Y, Bai, M.-Y, Wu, J., Zhu, J.-Y, Wang, H., Zhang, Z., Wang, W., Sun, Y, Zhao, J., and Sun, X. (2009). Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. The Plant Cell 21,3767-3780.
    112. Zhang, L., Fletcher, A.G., Cheung, V., Winston, F., and Stargell, L.A. (2008). Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. Molecular and Cellular Biology 28,1393-1403.
    113. Zhang, X., Germann, S., Blus, B.J., Khorasanizadeh, S., Gaudin, V., and Jacobsen, S.E. (2007). The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nature Structural & Molecular Biology 14,869-871.
    114. Zhao, Z., Yu, Y, Meyer, D., Wu, C., and Shen, W.-H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nature Cell Biology 7,1256-1260.
    115. Zhiponova, M.K., Vanhoutte, I., Boudolf, V., Betti, C., Dhondt, S., Coppens, F., Mylle, E., Maes, S., Gonzalez - Garcia, M.P., and Cano-Delgado, A.I. (2013). Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytologist 197, 490-502.
    116. Zhou, A., Wang, H., Walker, J.C., and Li, J. (2004). BRL1, a leucine - rich repeat receptor - like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. The Plant Journal 40,399-409.
    117. Zhou, C., Zhang, L., Duan, J., Miki, B., and Wu, K. (2005). HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. The Plant Cell 17,1196-1204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700