14-3-3蛋白参与BR信号调控及其在棉花(Gossypium hirsutum)纤维发育中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是我国重要的经济作物,是关系国计民生的重要物资。随着工业发展和人民生活水平的提高,人们对高质量纺织品的需求量逐步增大,因而纺织工业对棉纤维品质的要求更高。棉花纤维是由胚珠表皮分化而来的不分枝的单细胞毛状突起,其突起细胞数目及纤维长度等指标直接与棉花产量和品质相关。研究棉纤维分化和发育的分子机制,克隆棉纤维发育相关基因,对于棉纤维品质改良具有重要意义。
     油菜素内酯(BR)是一种重要的植物激素,对棉纤维细胞起始分化和伸长生长都有重要作用。为探讨影响棉花纤维发育的BR信号通路,本文研究了Gh14-3-3与BZR1等靶蛋白的相互作用及BR信号在棉纤维发育中的调控作用,取得如下主要研究结果:
     1.Gh14-3-3h基因克隆鉴定及表达分析
     本实验室在先前的研究中分离鉴定了7个棉花14-3-3基因。在此基础上,利用酵母双杂交技术,从棉花纤维cDNA酵母双杂交文库中筛选到一个新的14-3-3蛋白,命名为Gh14-3-3h。利用PCR扩增技术,克隆了该蛋白基因的DNA全长序列和cDNA序列。序列分析表明,Gh14-3-3h基因含有6个外显子和5个内含子,属于£型。Gh14-3-3h蛋白与其它物种的14-3-3蛋白氨基酸同源性达到610%-92%,具有14-3-3蛋白典型的结构特征,具有九个保守的α螺旋结构,但其N端和C端都不保守。
     利用荧光定量PCR技术分析了Gh14-3-3h在棉花组织中的表达谱。结果表明,Gh14-3-3h基因在纤维中优势表达,而在其它组织中表达量较低。在棉纤维发育过程中,Gh14-3-3h基因在棉纤维发育早期(3-10DPA)表达量较高,而在纤维细胞次生壁发育时期表达量逐步下降。并且,在胚珠离体培养的条件下,用2,4-表油菜素内酯(BL)处理棉花10天纤维,发现Gh14-3-3h表达量显著上调。这说明Gh14-3-3h在棉纤维细胞起始和伸长过程中发挥一定的调控作用,而且可能涉及到棉纤维发育中的BR信号应答。
     2.Gh14-3-3互作蛋白筛选及蛋白质相互作用验证
     为了研究Gh14-3-3在棉花纤维发育中涉及的调控信号通路,利用酵母双杂交系统,以Gh14-3-3f/g/h为诱饵蛋白,筛选棉花纤维cDNA酵母双杂交文库,获得了32种蛋白。它们可分为6大类,分别是14-3-3蛋白、BR等激素相关蛋白、代谢相关蛋白、信号相关蛋白、生长发育相关蛋白及功能未知蛋白。将这些蛋白序列在棉花EST公共数据库中进行比对分析,发现这些互作蛋白都能在棉纤维EST库中找到其同源序列,说明Gh14-3-3蛋白可能与这些蛋白在棉花纤维细胞中发生相互作用,共同调节棉纤维生长发育。
     14-3-3蛋白是一类高度保守的小分子调节蛋白,通常以同源或异源二聚体形式存在。在筛选的棉花14-3-3互作蛋白中,有大约2.8%是14-3-3蛋白本身,这表明14-3-3蛋白确实能够形成同源或异源二聚体。因此,我们进一步验证了Gh14-3-3h蛋白与其它5个Gh14-3-3蛋白之间的相互作用。结果表明,Gh14-3-3h能够与其它Gh14-3-3蛋白特异性相互作用,形成异源二聚体。因此,我们推测这些14-3-3蛋白可能以二聚体的形式参与棉花纤维细胞发育的调节。
     3. GhBZR1与Gh14-3-3蛋白相互作用分析
     在上述所筛选鉴定的棉花14-3-3互作蛋白中,有一个与拟南芥BZR1具有较高同源性的蛋白,命名为GhBZR1。对棉花BZR1蛋白序列进行分析,发现有22个可能被BIN2磷酸化的位点,并且有PEST区域和可能与14-3-3相互作用的作用位点。而且,蛋白质亚细胞定位分析表明,GhBZR1分布在细胞质和细胞核中,但受BL诱导后,该蛋白能够在细胞核中大量积累。
     为研究磷酸化对BZRl与14-3-3相互作用的影响,我们克隆了棉花BIN2蛋白基因。该基因表达与GhBZR1表达有其时空的一致性,都在棉花纤维伸长期优势表达。酵母双杂交和pull down实验证明GhBIN2与GhBZR1能够发生相互作用。在体外磷酸化实验中,GhBIN2能够磷酸化GhBZR1。而且,被磷酸化的GhBZR1能够与Gh14-3-3相互作用。进一步实验证明,GhBZR1与Gh14-3-3蛋白相互作用是通过保守的ModeI基序来完成的,其中第163位磷酸化的丝氨酸(Ser)是二者相互作用的关键位点。这表明被GhBIN2磷酸化的GhBZR1与Gh14-3-3相互作用可能对棉纤维细胞伸长发育发挥重要调控作用。
     4. GhMYB73与14-3-3蛋白相互作用分析
     在上述所筛选鉴定的棉花14-3-3互作蛋白中,有一个与拟南芥MYB73具有较高同源性的蛋白,命名为GhMYB73。它在棉花纤维伸长期表达量最高,定位在细胞核中,表明该蛋白可能是一个MYB转录因子。实验表明,GhMYB73可以与拟南芥BR通路中关键转录因子AtBES1在酵母系统中相互作用,推测GhMYB73可能参与BR信号通路。而且,酵母双杂交和pull down实验表明,GhBIN2也能够与GhMYB73蛋白发生相互作用,并在体外磷酸化GhMYB73,而磷酸化的GhMYB73与Gh14-3-3蛋白发生相互作用。这表明GhMYB73可能参与了14-3-3调节的BR信号通路,在棉纤维发育过程中发挥作用。
     5.Gh14-3-3蛋白在棉纤维细胞发育中的功能分析
     为研究14-3-3蛋白在棉纤维细胞分化和发育中的调节作用,构建了Gh14-3-3L/e/h等3个基因的RNA干扰(RNAi)表达载体和Gh14-3-3L过量表达载体,转化棉花,获得转基因棉花植株(TO代)及其后代株系(T1-T4代)。对转基因棉花后代株系(T1一T4代)表型观察和遗传分析表明,在RNAi转基因棉花中,纤维细胞起始和伸长发育都受到抑制,导致纤维细胞数目减少,长度变短。Gh14-3-3L/e/h RNAi转基因棉花成熟纤维长度仍然短于野生型,而过量表达Gh14-3-3L棉纤维长度则较野生型长,这表明Gh14-3-3蛋白在棉纤维伸长发育中发挥重要作用。
     离体胚珠培养实验表明,与野生型相比,Gh14-3-3L RNAi转基因棉花纤维长度和TFU均减少,而过量表达Gh14-3-3L转基因棉花纤维长度和TFU均有所增加。当施加外源BL时,Gh14-3-3L RNAi转基因棉花纤维长度和TFU与未加BL相比虽有所增加,但仍没有恢复到野生型的相当水平。在不添加外源BL的情况下,与野生型相比,Gh14-3-3L RNAi棉花纤维中GhCPD和GhDWF4基因表达显著下降,而在过量表达Gh14-3-3L转基因棉花纤维中GhCPD表达量没有发生改变,GhDWF4表达量则上调。在添加BL后,Gh14-3-3L RNAi棉花纤维中只有GhDWF4表达水平轻微下调。当BL施加后,与野生型相比,两个BR合成相关基因在过量表达Gh14-3-3L棉花纤维中表达量迅速下调。以上结果表明,在棉花纤维伸长阶段,Gh14-3-3可能对BR信号中的反馈调节起着一定的调控作用,从而影响棉花纤维伸长生长和TFU产量。
     为研究Ghl4-3-3L/e/h RNAi和过量表达棉纤维发育与BR信号调控的关系,检测了一些BR信号通路及纤维发育相关基因在转基因棉花纤维中的表达变化情况。结果表明,GhBZR1、 GhXTH1、GhEXP, GhTUB1和GhCesA5在Gh14-3-3L/e/h RNAi转基因棉花纤维中和Gh14-3-3L过量表达棉花纤维中表达都有不同程度的变化。多代(T1-T4)遗传分析表明,这些基因在不同世代的转基因棉花中的表达都发生改变,具有遗传稳定性。以上结果表明Gh14-3-3蛋白参与调节BR信号通路,通过改变BR信号相关基因的表达水平来影响棉花纤维起始和伸长发育过程。
Cotton is an important crop in China and it is beneficial to the lives of people. With the development of industry and the improvement of human living standard, industry gradually need high quality textile. Cotton fiber is composed of ovule epidermal differentiation and unbranched single cell hair. The number of projections and cotton fiber length associate with the cotton quality and production efficiency. It is very important to provide the ways to know the molecular mechanism of cotton fiber development. It is significant for improving cotton fiber quality through cloning the gene in the development of cotton fiber.
     Brassinolide is an important plant hormone. It plays an important role in initiation and elongation of cotton. In order to study the molecular mechanism in brassinosteroid signaling pathway of cotton fiber, we analysised that the interaction between Gh14-3-3and its target protein BZR1. We also studied that the BR signaling pathway had function in regulating the development of cotton fiber. The main results are as follows:
     1. Identification of Gh14-3-3h gene and its expression profiling in cotton Seven cotton14-3-3cDNA in the lab had been isolated in previously study. We cloned a14-3-3gene which was named Gh14-3-3h from the yeast two-hybrid cDNA library of cotton fiber. We also cloned the gene from the cotton genome. The structure of Gh14-3-3h gene contained six exons and five introns, belonging to the epsilon type14-3-3proteins. Gh14-3-3h with other species of the14-3-3protein amino acid had homology of61%-92%. In addition, Gh14-3-3h had the14-3-3typical structure characteristics and nine conservative alpha helixes. But its N and C terminals were not conserved.
     Fluorescence quantitative PCR was used to analyze the expression of Gh14-3-3h in cotton organizations. We found the expression of Gh14-3-3h in the fiber was high. However, the expression level of the gene in other organizations was low. Gh14-3-3h gene had high expression level during the early stage of fiber (3-10DPA) and decreased during fiber cell secondary wall development. In addition, the expression level of Gh14-3-3h was up-regulated by addition of BL. These results indicated that Gh14-3-3h might play a role in regulating the initiation and elongation of cotton fiber cell. Moreover, Gh14-3-3might involve in the response to BR signaling pathway.
     2. Screening the interaction partners of Gh14-3-3proteins
     To study Gh14-3-3involved in regulating the signaling pathway during the growth and development of cotton fiber, we analyzed the interactions between Gh14-3-3f/g/h proteins and their partners by the yeast two-hybrid system. We achieved a total of32kinds of proteins. They were divided into six categories, containing cotton14-3-3proteins, hormones related proteins, metabolic related proteins, signaling related proteins, proteins involved in growth and development, and unknown proteins. We analyzed the sequence of these proteins in the cotton EST database and we found that most of these interaction proteins were presented in cotton fiber. These results indicated that Gh14-3-3proteins might interact with these proteins in the fiber cells to co-regulate the growth and development of cotton fiber.
     14-3-3is highly conserved protein in eukaryotes, and it usually interacts with other proteins through homogeneous or heterogeneous dimer. In the14-3-3target proteins, we found that2.8%proteins were the14-3-3proteins. It indicated that the14-3-3proteins could form the homogeneous or heterogeneous dimer. Moreover, we checked the interaction between the Ghl4-3-3h and five other Ghl4-3-3s. We found that it had specific interactions between them, and the six Ghl4-3-3s were in the form of heterologous dimers. We speculated that14-3-3played a role as heterodimer to participate in the regulation of cotton fiber elongation.
     3. Analysis of the interaction of GhBZRl and Gh14-3-3proteins We cloned a target protein of Ghl4-3-3s by yeast two-hybrid. It had high homology comparing with Arabidopsis BZR1and it was named GhBZRl. Analysis of cotton BZR1protein, we found that it had22probable BIN2phosphorylation sites and the PEST area. It also had a motif of interaction with the14-3-3. In addition, GhBZRl located in the cytoplasm and nucleus. When addition of BL, a large number of GhBZRl-GFP proteins accumulated in the nucleus.
     To study the influence of phosphorylation to the interaction between GhBZR1and Ghl4-3-3protein, we cloned the cotton BIN2gene. The gene expression pattern was the same as expression pattern of GhBZR1. It had the preferential expression in elongation stage of cotton fiber. We found GhBIN2could interact with GhBZRl protein by the experiments of yeast two-hybrid and pull down. GhBIN2phosphorylated GhBZR1in vitro and phosphorylation GhBZRl could interact with Gh14-3-3protein. In addition, GhBZRl interacted with Gh14-3-3protein by conservative Mode I motif and phosphorylation of S (163) was important to the interaction between them. It indicated that GhBIN2phosphorylated GhBZR1to promote the interaction between GhBZR1and Gh14-3-3proteins and the response played an important role in regulating elongation of cotton fiber.
     4. Analysis of the interaction of GhMYB73and Gh14-3-3proteins
     In the yeast two-hybrid system, it had an interaction partner of Ghl4-3-3.The amino acid of GhMYB73had homology with Arabidopsis thaliana AtMYB73and it was named GhMYB73. The expression of GhMYB73had the highest amount in elongation of cotton fiber and subcellular localization was in the nucleus. GhMYB73interacted with the transcription factor AtBES1in BR pathway of Arabidopsis thaliana. The results indicated that GhMYB73might interact with AtBESl to participate in BR signaling pathway.
     GhBIN2could interact with GhMYB73in yeast two-hybrid and pull down experiments. GhBIN2could phosphorylate GhMYB73in vitro. In addition, phosphorylated GhMYB73could interact with Gh14-3-3. It indicated that GhMYB73might involve in14-3-3regulating the BR signaling pathway of fiber development.
     5. Gh14-3-3proteins function in fiber cell development of cotton
     To study the regulation of Gh14-3-3proteins in the differentiation and development of cotton fiber cell, we constructed the vectors of Gh14-3-3L/e/h RNAi and Gh14-3-3L overexpression.When the vectors were introduced into cotton by Agrobacterium-mediated transformation, TO generation and their later generations T1-T4were obtained. Analysis of transgenic cotton (T1-T4generation), the number and length of cotton fiber initiation significantly suppressed in35S promoter driven Gh14-3-3L/e/h RNAi transgenic plants. The number of Gh14-3-3L RNAi fiber decreased and the length got shorter. The length of mature fiber in T1-T4generation Gh14-3-3L/e/h RNAi was shorter than wild type, while the length of cotton fiber in overexpression Gh14-3-3L was longer than wild type. It indicated that Gh14-3-3had the important function in the development of cotton fiber.
     In vitro culture of fiber, the length and TFU of Gh14-3-3L RNAi decreased comparing to wild type. But overexpression Gh14-3-3L increased. When applying with BL, Gh14-3-3L RNAi fiber length and TFU increased compared with in normal condition, but they had not recovered to wild type levels. Expression of GhCPD in Gh14-3-3L RNAi in cotton fiber and the expression level GhDWF4decreased significantly. But expression of GhCPD in overexpression plants was no significant difference and the expression of GhDWF4was up-regulated comparing with wild type. After BL treatment, only GhDWF4expression level was slightly down-regulated in Gh14-3-3L RNAi transgenic plants, compared with control (without BL). But the expression of two cotton BR synthesis genes in overexpression Gh14-3-3L comparing with wild type were rapidly down-regulated. Above results showed that Gh14-3-3might involve in BR signal feedback regulation in the cotton fiber elongation stage and it affect cotton fiber elongation and TFU production.
     To study the relationship between Gh14-3-3transgenic cotton fibers phenotype and brassinosteroid signal transduction, we studied the genes associated with BR signal transduction and cotton fiber initiation and elongation related gene expression in transgenic cotton fiber. The results showed that GhBZR1, GhXTH1, GhEXP, GhTUB1and GhCesA5in Gh14-3-3L/e/h RNAi transgenic cotton fiber and Gh14-3-3L overexpression of cotton fiber had different degree of changes in the expression. Analysis of T1-T4generation, the expression of these genes were changed in different generations and the hereditary was stable. The results indicated that Gh14-3-3proteins participated in regulating BR signaling pathways to influence the initiation and elongation of cotton fibers through regulating the expression levels of these genes.
引文
1.徐亚浓。棉纤维细胞分化和发育功能基因的研究。[硕士学位论文]。浙江:浙江大学图书馆,2002。
    2.张则婷。棉花14-3-3蛋白在纤维发育中的功能表达和相互作用研究。[博士学位论文]。武汉:华中师范大学图书馆,2010。
    3. Ambawat S., Sharma P., Yadav N. R., Yadav R.C. (2013) MYB transcription factor genes as regulators for plant responses:an overview. Physiol Mol Biol Plants 19:307-321.
    4. Andrews R.K., Harris S.J., McNally T., Berndt M.C.(1998). Binding of purified 14-3-3 zeta signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-Ⅸ -V complex. Biochemistry 37:638-647.
    5. Arkell A. (2010) The Arabidopsis 14-3-3 family-target protein specificity and expression of isoforms. LUND UNIVERSITY Department of Biochemistry and structural biology. Printed by Media-Tryck, Lund, Sweden.
    6. Basra A.S. and Malik C.P. (1984) Development of the cotton fiber.Int. Rev. Cytol.89:65-113.
    7. Bai M.Y., Zhang L.Y., Gampala S.S., Zhu S.W., Song W.Y., Chong K., Wang Z.Y. (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA 104:13839-13844.
    8. Beasley C.A., Ting I.P. (1974) The effects of Plant growth substances on in vitro fiber developmnet from unfertilized cotton ovules. American Journal of Botany 61:188-194.
    9. Bier D., Rose R., Bravo-Rodriguez K., Bartel M., Ramirez-Anguita J.M., Dutt S., Wilch C., Klarner F.G., Sanchez-Garcia E., Schrader T., Ottmann C. (2013) Molecular tweezers modulate 14-3-3 protein-protein interactions. Nat Chem.5:234-239.
    10. Bornke F. (2005) The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system. J. Plant Physiol.162: 161-168.
    11. Brunet A., Kanai F., Stehn J., Xu J., Sarbassova D., Frangioni J.V., Dalal S.N., DeCaprio J.A., Greenberg M.E., Yaffe M.B. (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol.156:817-828.
    12. Bunney T.D, van Walraven H.S, De Boer A.H. (2001) 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci U S A 98:4249-4254.
    13. Casaretto J., Ho T.H. (2003). The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15:271-284.
    14. Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF (2009). Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9,2967-2985.
    15. Chuan Y.H., Johnie N., Jenkins A., Sukumar S.H., Din P.M. (2005) Transcriptional regulation of the lipid transfer protein gene LTP3 in cotton fibers by a novel MYB protein. Plant Sci. 168:167-181.
    16. Chung H.J., Sehnke P.C., Ferl R.J.(1999) The 14-3-3 proteins:cellular regulators of plant metabolism. Trends Plant Sci.4:367-371.
    17. Coblitz B., Wu M., Shikano S., Li M. (2006). C-terminal binding:an expanded repertoire and function of 14-3-3 proteins. FEBS Lett 580,1531-1535.
    18. Cosgrove D.J. (2000) Loosening of plant cell walls by expansins. Nature 407:321-326.
    19. Clouse S.D. (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J.10:1-8.
    20. DeLille J.M., Sehnke P.C., Ferl R.J. (2001) The arabidopsis 14-3-3 family of signaling regulators. Plant Physiol.2001 126:35-38.
    21. Denison F.C., Paul A.L., Zupanska A.K., Ferl R. J. (2011) 14-3-3 proteins in plant pjysiology. Seminarrs in cell & Developmental Biology 22:720-727.
    22. de Vries S.C. (2007) 14-3-3 Proteins in Plant Brassinosteroid Signaling. Developmental Cell 13:162-163.
    23. del Viso F., Casaretto J.A., Quatrano R.S. (2007) 14-3-3 Proteins are components of the transcription complex of the ATEM1 promoter in Arabidopsis. Planta 227:167-175.
    24. Fields S., Song O-k. (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245-246.
    25. Folta K.M., Paul A.L., Mayfield J.D., Ferl R.J. (2008).14-3-3 Isoforms participate in red light signaling and photoperiodic flowering. Plant Signal Behav 3:304-306.
    26. Friedrichsen D.M., Joazeiro C.A.P., Li J.M., Hunter T., and Chory J. (2000). Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiology 123:1247-1255.
    27. Furihata T., Maruyama K., Fujita Y., Umezawa T., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K. (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103:1988-1993.
    28. Ganguly S., Weller J L., Ho A., Chemineau P., Malpaux B., Klein D.C. (2005) Melatonine synthesis:14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase by phosphoserine-205. Proc Natl Acad Sci U S A 102:1222-1227.
    29. Guo Z., Fujioka S., Blancaflor E.B., Miao S., Guo X. and Li J. (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22:1161-1173.
    30. Goda H., Sawa S., Asami T., Fujioka S., Shimada Y. and Yoshida S. (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 134:1-19.
    31. Goda H., Shimada Y., Asami T., Fujioka S. and Yoshida S. (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol.139:1319-1334.
    32. Haigler C.H., Ivanova-Datcheva M., Hogan P.S., Salnikov V.V., Hwang S., He J.X., Gendron J.M., Yang Y., Li J., and Wang Z.Y. (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl Acad. Sci. U S A.99:10185-10190.
    33. Hayashi M., Inoue S., Takahashi K., and Kinoshita T. (2011). Immunohistochemical Detection of Blue Light-induced Phosphorylation of the Plasma Membrane H+-ATPase in Stomatal Guard Cells. Plant Cell Physiol 52:1238-1248.
    34. He J.X., Gendron J.M., Sun Y., Gampala S.S., Gendron N., Sun C.Q., Wang Z.Y.(2005) BZR1 is a transcriptional repressor with dual rlies in brassinosteroid homeostasis and growth responses. Science 307:1634-1638.
    35. Himmelbach A., Yang Y., Grill E. (2003). Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470-479.
    36. Hothorn M., Belkhadir Y., Dreux M., Dabi T., Noel J.P., Wilson I.A., and Chory J. (2011). Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474,467-471.
    37. Inoue S, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K (2008). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105,5626-5631.
    38. Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98: 4569-4574.
    39. Ishida S., Fukazawa J., Yuasa T., Takahashi Y. (2004) Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell 16,2641-2651.
    40. Ishida S., Yuasa T., Nakata M., Takahashi Y. (2008). A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. Plant Cell 20,3273-3288.
    41. Ji S.J., Lu Y.C., Feng J.X., Wei G., Li J., Shi Y.H., Fu Q., Liu D., Luo J.C. and Zhu Y.X. (2003) Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res.31:2534-2543.
    42. Ji S.J., Lu Y.C., Feng J.X., Wei G., Li J., Shi Y.H., Fu Q., Liu D., Luo J.C. and Zhu Y.X. (2003) Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res.31:2534-2543.
    43. Jaillais Y., Belkhadir Y., Balsemao-Pires E., Dangl J.L., and Chory J. (2011a). Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc. Natl. Acad. Sci. USA 108,8503-8507.
    44. Kanczewska J, Marco S, Vandermeeren C, Maudoux O, Rigaud JL, Boutry M (2005). Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 protein converts a dimmer into a hexamer. Proc Natl Acad Sci USA 102,11675-11680.
    45. Kim H.J. and Triplett B.A. (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol.127:1361-1366.
    46. Kim T.W., Guan S., Sun Y., Deng Z., Tang W., Shang J.X., Sun Y., Burlingame A.L., and Wang Z.Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol.11:1254-1260.
    47. Konagaya K., Matsushita Y, Kasahara M., Nyunoya H. (2004) Members of 14-3-3 protein isoforms interacting with the resistance gene product N and the elicitor of Tobacco mosaic virus. J Gen Plant Pathol 70:221-231.
    48. Kuromori T. and Yamamoto M. (2000) Members of the Arabidopsis 14-3-3 gene family trans-complement two types of defects in fission yeast. Plant Science 158:155-161。
    49. Kumaran S., Yi H., Krishnan H.B., Jez J.M. (2009). Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions. J Biol Chem 284:10268-10275.
    50. Koch K. (2004) Sucrose metabolism:regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol.7:235-246.
    51. Krishna P. (2003) Brassinosteroid-mediated stress responses. J. Plant Groh Regul.22:289-297.
    52. Lee J.J., Woodward A.W. and Chen Z.J. (2007) Gene expression changewts and early events in cotton fibre development. Ann. Bot.100:1391-1401.
    53. Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB related protein in Arabidopsis, is a position dependent regulator of epidermal cell patterning. Cell 99:473-483.
    54. Li J.M. and Chory J. (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929-938.
    55. Li J. and Chory J. (1999) Brassinosteroid actions in plants. J. Exp. Bot.50:332-340.
    56. Li X.B., Cai L., Cheng N.H. and Liu J.W. (2002) Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol.130:666-674.
    57. Li L., Yu X., Thompson A., Guo M., Yoshida S., Asami T., Chory J. and Yin Y. (2009) Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J.58:275-286.
    58. Li J., and Nam K.H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science.295:1299-1301.
    59. Li L., Ye H., Guo H., and Yin Y. (2010). Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proc. Natl Acad. Sci. U S A.107:3918-3923.
    60. Li K.R., and Feng C.H. (2011). Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae PlantaruM 33:1293-1300.
    61. Luo XM1, Lin WH, Zhu S, Zhu JY, Sun Y, Fan XY, Cheng M, Hao Y, Oh E, Tian M, Liu L, Zhang M, Xie Q, Chong K, Wang ZY. (2010) Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev. Cell 19:872-883.
    62. Li J., Jin H. (2007) Regulation of brassinosteroid signaling. Trends Plants Sci 12:37-41.
    63. Lu G., DeLisle A.J., de Vetten N.C., Ferl R.J. (1992) Brain proteins in plants:an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc Natl Acad Sci USA 89:11490-11494.
    64. MacKintosh C. (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J.381:329-342.
    65. Martin K. and Delmer D.P. (2001) Carbon partitioning to cellulose synthesis. Plant Mol. Biol. 47:29-51.
    66. Mason M.S. and Cosgrove D.J. (1995) Expansin mode of action on cell walls:analysis of wall hydrolysis stress relaxation and binding. Plant Physiol.107:87-100.
    67. May T. and Soll J. (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12,53-63.
    68. Mayfield J.D., Folta K.M., Paul A.L., Ferl R.J. (2007). The 14-3-3 proteins μ and ν influence transition to flowering and early phytochrome response. Plant Physiol 145,1692-1702.
    69. McAlister-Henn L., Gibson N., Panisko E. (1999) Applications of the yeast two-hybrid system. Methods 19:330-337.
    70. Michailidisa G., Argirioua A., Darzentasa N., Tsaftarisa A. (2009) Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypiumhirsutum) cotton and its diploid progenitors expressed during fiber elongation. Journal of Plant Physiology 166: 403-416.
    71. Meinert M.C. and Delmer D.P. (1977) Changes in biochemical composition of the cell wall of the cotton fi ber during development. Plant Physiol.59:1088-1097.
    72. Muslin A.J. and Xing H. (2000) 14-3-3 proteins:regulation of subcellular localization by molecular interference. Cell. Signal.12:703-709.
    73. Noda K.I., Glover B.J., Linstead P., Martin C. (1994) Flower colour intensity depends on specialized cell shape controlled by a Mybrelated transcription factor. Nature 369:661-664.
    74. Petosa C., Masters S.C., Bankston L.A., Pohl J., Wang B., Fu H., Liddington R.C. (1998). 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J. Biol. Chem.273:16305-16310.
    75. Piette A.S., Derua R., Waelkens E., Boutry M., Duby G. (2011) A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins. J Biol Chem 286:18474-18482.
    76. Pignocchi C., Minns G.E., Nesi N., Koumproglou R., Kitsios G., Benning C., Lloyd C.W., Doonan J.H., Hills M.J. (2009). ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. Plant Cell 21,90-105.
    77. Pignocchi C., Doonan J.H. (2011). Interaction of a 14-3-3 protein with the plant microtubule-associated protein EDE1. Ann Bot 107,1103-1109.
    78. Rajan S., Preisig-Muller R., Wischmeyer E., Nehring R., Hanley P.J., Renigunta V., Musset B., Schlichthorl G., Derst C., Karschin A., Daut J. (2002) Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J. Physiol.545: 13-26.
    79. Roberts M.R. (2003) 14-3-3 proteins find new partners in plant cell signalling. Trends Plant Sci. 8:218-223.
    80. Rosenquist M., Alsterfjord M., Larsson C., Sommarin M. (2001) Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes:Expression is demonstrated for two out of five novel genes. Plant Physiol.127:142-149.
    81. Ryser U. (2000) Cotton fiber initiation and histodifferentiation. In Cotton Fibers:Developmental Biology, Quality Improvement, and Textile Processing (Basra, A.S., ed.). New York:Food Products Press, pp.1-34.
    82. Ryu H., Kim K., Cho H., Park J., Choe S., Hwang I. (2007). Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19,2749-2762.
    83. Ryu H., Cho H., Kim K., Hwang I. (2010). Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol Cells 29,283-290.
    84. Ruan Y.L., Llewellyn D.J. and Furbank R.T. (2001) The control of singlecelled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47-63.
    85. Ruan Y.L., Llewellyn D.J. and Furbank R.T. (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15: 952-964.
    86. Schultz T.F., Medina J., Hill A., Quatrano R.S. (1998).14-3-3 proteins are part of an abscisic acid-VIVIPAROUS1 (VP1) response complex in the Em promoter and interact with VP1 and EmBP1. Plant Cell 10:837-847.
    87. Schultz C. J., Johnson K.L., Currie G and Bacic A. (2000) The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell 12:1751-1761.
    88. Schoonheim P.J., Veiga H., Pereira Dda C., Friso G., van Wijk K.J., de Boer A.H. (2007) A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach. Plant Physiol.143:670-683.
    89. Schoonheim P.J., Sinnige M.P., Casaretto J.A., Veiga H., Bunney T.D., Quatrano R.S., de Boer A.H. (2007) 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J.49:289-301.
    90. Sehnke P.C., Henry R., Cline K. and Ferl R.J. (2000) Interaction of a plant 14-3-3 protein with the signal peptide of a thylakoid-targeted chloroplast precursor protein and the presence of 14-3-3 isoforms in the chloroplast stroma. Plant Physiol.122:235-242.
    91. Sehnke P.C., Chung H.J., Wu K., Ferl R.J. (2001). Regulation of starch accumulation by granule-associated plant 14-3-3 proteins. Proc Nat Acad Sci USA 98:765-770.
    92. She J., Han Z., Kim T.W., Wang J., Cheng W., Chang J., Shi S., Wang J., Yang M., Wang Z.Y., and Chai J. (2011). Structural insight into brassinosteroid perception by BRI1. Nature 474, 472-476.
    93. Shi H., Kim Y., Guo Y., Stevenson B. and Zhu J.K. (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19-32.
    94. Shi Y.H., Zhu S.W., Mao X.Z., Feng J.X., Qin Y.M., Zhang L., Cheng J., Wei L.P., Wang Z.Y. and Zhu Y.X. (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell,18,651-664.
    95. Shin R., Alvarez S., Burch A.Y., Jez J.M., Schachtman D.P. (2007). Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci U S A 104,6460-6465.
    96. Shin R., Jez J.M., Basra A., Zhang B., Schachtman D.P. (2011).14-3-3 Proteins fine-tune plant nutrient metabolism. FEBS Lett 585:143-147.
    97. Solano R, Ecker JR (1998). Ethylene gas:perception, signaling and response. Curr Opin Plant Biol 1,393-398.
    98. Song P. and Allen R.D. (1997) Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display. Biochim. Biophys. Acta 1351:305-312.
    99. Sun Y., Fokar M., Asami T., Yoshida S. and Allen R.D. (2004) Characterization of the Brassinosteroid insensitive 1 genes of cotton. Plant Mol. Biol.54:221-232.
    100. Sun Y., Veerabomma S., Abdel-Mageed H.A., Fokar M., Asami T., Yoshida S., Allen R.D. (2005). Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol. 46:1384-1391.
    101. Sun Y., Fan X.Y., Cao D.M., Tang W., He K., Zhu J.Y., He J.X., Bai M.Y., Zhu S., Oh E., Patil S., Kim T.W., Ji H., Wong W.H., Rhee S.Y., Wang Z.Y. (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell 19:765-777.
    102. Sullivan S., Thomson C.E., Kaiserli E., Christie J.M. (2009). Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases. FEBS Lett 583:2187-2193.
    103. Suo J., Liang X., Pu L., Zhang Y., Xue Y. (2003) Identification of GhMYB109 encoding a R2R3MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochem Biophys Acta 1630:25-34.
    104. Tzivion G., Shen Y.H., Zhu J. (2001) 14-3-3 proteins:bringing new definitions to scaffolding. Oncogene 20:6331-6338.
    105. Tang W., Yuan M., Wang R., Yang Y., Wang C., Oses-Prieto J.A., Kim T.W., Zhou H.W., Deng Z., Gampala S.S. (2011) PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat. Cell Biol.13:124-131.
    106. Oh E., Zhu, J.Y. and Wang Z.Y. (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol.14:802-809.
    107. Oecking C. and Jaspert N. (2009) Plant 14-3-3 proteins catch up with their mammalian orthologs. Curr Opin Plant Biol 12:760-765.
    108. Vert G, and Chory J. (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441:96-100.
    109. van den Wijngaard P.W., Sinnige M.P., Roobeek I., Reumer A., Schoonheim P.J., Mol J.N., Wang M., De Boer A.H. (2005). Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root. Plant J 41:43-55.
    110. Wang H., Zhu Y., Fujioka S., Asami T., Li J. and Li J. (2009) Regulation of Arabidopsis brassinosteroid signaling by atypical basic helix-loop-helix proteins. Plant Cell,21:3781-3791.
    111. Wang H., Yang C., Zhang C., Wang N., Lu D., Wang J., Zhang S., Wang Z.X., Ma H., Wang X. (2011) Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors. Dev Cell 21:825-834.
    112. Wang Z.Y., Nakano T., Gendron J. M., He J., Chen M., Vafeados D., Yang Y., Fujioka S., Yoshida S., Asami T., Chory J. (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced groh and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2:505-513.
    113. Wang X., Li X., Meisenhelder J.W.T., Hunter T., Yoshida S., Asami T., Chory J. (2005). Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev. Cell.8:855-865.
    114. Wilson Z.A., Song J., Taylor B., Yang C. (2011) The final split:the regulation of anther dehiscence. J. Exp Bot.62:1633-1649.
    115. Wilkins T.A. and Jernstedt J.A. (1999) Molecular genetics of developing cotton fi bers. In Cotton Fibers. Edited by Basra, A.S. pp.231-269.The Haworth Press, Inc., Binghamton, NY.
    116. Whittaker D.J. and Triplett B.A. (1999) Gene-specific changes in α-tubulin transcript accumulation in developing cotton fibers. Plant Physiol.121:181-188.
    117. Wu K., Rooney M.F., Ferl R.J.(1997) The Arabidopsis 14-3-3 multigene family. Plant Physiol. 114:1421-1431.
    118. Yaffe M.B. (2002) How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett.513:53-57.
    119. Yang C.J., Zhang C., Lu Y.N., Jin J.Q., Wang X.L. (2011) The mechanisms of brassinosteroids'action:from signal transduction to plant development. Mol. Plant 4:588-600.
    120. Yao Y., Du Y., Jiang L., Liu JY. (2007) Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza sativa. J. Biochem Mol. Biol.40:349-357.
    121. Ye H., Li L., Guo H., Yin Y. (2012) MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A.109:20142-20147.
    122. Yi H., Galant A., Ravilious GE., Preuss M.L., Jez J.M. (2010). Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. Mol Plant 3: 269-279.
    123. Yin Y., Wang Z.Y., Mora-Garcia S., Li J., Yoshida S., Asami T.,Chory J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181-191.
    124. Yin Y., Vafeados D., Tao Y., Yoshida S., Asami T., and Chory J. (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120: 249-259.
    125. Yoon GM., Kieber J.J.(2013)14-3-3 regulates 1-aminocyclopropane-l-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25:1016-1028.
    126. Yu X., Li L., Zola J., Aluru M., Ye E., Foudree A., Guo H., Anderson S., Aluru S., Liu P., Rodermel S., Yin Y. (2011) A brassinosteroid transcriptional network revealed by genomewide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634-646.
    127. Zhang L.Y., Bai, M.Y., Wu, J., Zhu, J.Y., Wang, H., Zhang, Z., Wang, W., Sun, Y., Zhao, J., Sun, X., Yang, H., Xu, Y, Kim, S.H., Fujioka, S., Lin, W.H., Chong, K., Lu, T. and Wang, Z.Y. (2009) Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21:3767-3780.
    128. Zhang S., Cai Z., and Wang X. (2009b) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl Acad. Sci. U S A 106:4543-4548.
    129. Zhang Z.T., Zhou Y, Li Y., Shao S.Q., Li B.Y., Shi H.Y. and Li X.B. (2010) Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation. J. Exp. Bot.61:3331-3344.
    130. Zhao J., Peng P., Schmitz R.J., Decker A.D., Tax F.E., and Li J. (2002) Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol.130:1221-1229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700