甘蓝型油菜黄化和光叶突变体的基因定位及克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物中叶片的突变体多种多样,包括有叶色,叶形态等突变体类型。他们为研究作物的光合作用、呼吸作用、光能利用、生长发育,基因功能及某些组分(蜡质、色素等)的合成代谢调控等提供良好的实验材料。一些突变体的表型明显稳定(如棉花牙黄,水稻紫叶,油菜黄叶等)被应用于杂种优势的利用中。本研究对甘蓝型油菜黄化突变体BnaC.ygl和光叶突变体B. napus Nilla glossy进行了初步的表型解析,遗传分析和基因定位,并成功克隆到了叶色基因BnaC.YGL,这为探究表型机理及其在育种中的应用奠定了基础。主要研究结果如下:
     1甘蓝型油菜隐性叶色突变体BnaC.ygl基因的精细定位及克隆
     1)与野生型相比,突变体BnaC.ygl叶片颜色在苗期叶片黄化,现蕾期和抽薹期叶色接近于野生型。对其叶绿素含量的测定结果表明,苗期突变体和野生型的叶绿素a,叶绿素b,总叶绿素含量和叶绿素a/b值均差异显著,开花期突变体叶绿素含量与野生型差异不显著。
     2)经透射电镜分析结果表明苗期突变体叶绿体类囊体膜和基粒片层垛叠数有所减少,基粒片层间稀疏,无规则,叶绿体发育不良。在开花期时,突变体叶绿体类囊体膜和基粒片层垛叠数量明显增加,与野生型无明显差异。
     3)利用了两个群体对BnaC.YGL基因精细定位,将BnaC.YGL基因定在甘蓝型油菜N17的0.35cM的区间,同时获得18对与BnaC.YGL共分离的标记。并推测标记SC25附近的与甘蓝中Bo1027145(HO1)同源的基因为BnaC.YGL的候选基因。比较测序分析结果表明该基因在突变体中缺失了C基因组上的同源拷贝(BnaC.HO1)。遗传转化的结果证明BnaC.HO1是BnaC.ygl叶色突变体的突变基因。
     4)甘蓝型油菜BnaC.HO1与甘蓝HO1的相似度最高,与BnaA.HO1的同源性也在90%以上,与拟南芥和白菜达80%以上,表明BnaC.HO1在进化进程中比较保守。5) RT-PCR结果表明BnaC.YGL基因在苗期展开叶和角果中表达较强,而发芽的种子和根中表达较弱。亚细胞定位的结果表明,BnaC.YGL基因定位于原生质的叶绿体中。
     6)与BnaC.YGL基因共分离的16个标记在突变体和野生型中均检测到多态性,这些标记覆盖了甘蓝C07染色体至少1.2Mb的区段。另外检测到在突变体中有3个基因均丢失了N17染色体定位区段的同源拷贝,因此我们认为经EMS诱变获得的突变体BnaC.ygl可能在N17染色体上有基因组的大片段的缺失。
     2甘蓝型油菜隐性光叶突变体的遗传分析和BnaCNgll基因定位
     1)光叶突变体Nilla glossy的茎杆,叶片,花蕾及角果皮均不被蜡粉,表面油亮,整个生育期此表型都明显可见。扫描电镜扫描也显示光叶突变体的茎干表面被少量的片状和颗粒状蜡质晶体覆盖而叶表面被少量颗粒状晶体覆盖。
     2)遗传分析结果表明该光叶表型受到两对隐性基因控制。
     3)利用F2群体筛选到5个可能的多态性标记,选取G1组合中BC2代1:1分离的16个株系取样验证。结果表明只有SSR标记CB10443能在7个株系中表型出多态性,其他标记均无多态性,说明CB10443与控制光叶性状的基因中一对基因连锁,并将其命名为"BnaC.NGL1"。
     4)通过AFLP技术和比较基因组开发标记,并利用包含1191个单株G1BC2群体将BnaC.NGL1锁定在甘蓝型油菜N11连锁群SSR标记gls41和gls79之间,它们之前的遗传距离为0.16cM。两个标记在甘蓝C01上的距离大约为230kb,包含约51个注释的基因。
Leaf mutants of crops are abundant and diverse such as the mutation of leaf coloration, leaf morphology and so on. Leaf mutants may be good materials for the researchs about photosynthesis, respiration, energy use, plant development, gene function, pigment metabolism, wax metabolism and so on.The mutation of Leaf is very obvious trait mutation and the mutation frequency is high. They may also be used as a morphological marker for crossbreeding. In our study, we obtained a chlorophyll-deficient mutant and a gossly mutant of Brassica napus. The researchs about preliminary phenotypic analysis, genetic analysis and mapping of the chlorophyll-deficient mutant (BnaC.ygl) and the gossly mutant (Nilla glossy) had been done. And the BnaC.ygl gene was isolated by a map-based cloning approach with the candidate gene approach. The major points were described as follows:
     1The mapping and coloning of Bna C.YGL gene in a chlorophyll-deficient mutant of Brassica napus
     1) There was no changes in the pigment composition of BnaC.ygl mutant.The Chl a and Ch1b levels in BnaC.ygl mutant and the wild type were significant differences at seeding stage, but not at flowering stage.
     2) In BnaC.ygl mutant, the chloroplasts displayed less dense granal stacks and fewer granal membranes compared with those of the wild type. However, in twenty-week-old plants, Chloroplasts in the BnaC.ygl mutant and wild-type had well-ordered granal stacks and normal granal membranes. There was no apparent difference in the structures of chloroplasts in the BnaC.ygl mutant and wild-type.
     3) Mapping of the gene was subsequently conducted in two populations with yellow-green leaves (population Ⅰ BCs and Ⅰ BC4, which comprised3472and5288individuals respectively).And the IP, SSR makers were developed from the sequences of B. oleracea. Then the BnaC. YGL gene was narrowed into a0.35cM region in the linkage group N17of Brassica napus. And in the two populations,18makers cosegregated with BnaC.YGL. The results suggested the recombination between cosegregated markers and BnaC.YGL was severely suppressed. BLAST analysis revealed that the sequences of the makers displayed highly conserved homo logy with C07of B. oleracea. The analysis of the information342genes from
     B. oleracea homologous region indicated that an ORF(Bol027145) in the vicinity of
     SC25maker had homologous to HOI which can catalytic decomposition of heme in the heme/bilin branch. Multiple mutant of HOI in Arabidopsis exhibited yellow-green leaves. Thus we hypothesized that this gene in B.napus, the ortholog of atHO1may be a candidate gene of BnaC. YGL. Comparative sequencing results showed that homologous copy (BnaC.HO1) of HO1on the C genome was losted in the mutant. Two resulting complementation constructs (gDNA和cDNA) were introduced into the BnaC.ygl mutant by Agrobacterium tumefaciens-mediated transformation. The genetic complementation suggested BnaC.HO1corresponds to the mutant gene in the BnaC.ygl mutant.
     4) Comparison of the deduced amino acid sequences between BnaC.HO1and other Brassica HO1s further revealed several highly conserved regions as signature sequence and conserved amino acid residues. These results suggested that BnaC.HO1is highly homologous to BoHO1. Moreover, BnaC.HO1shared more than90%,80%,80%amino acid identities with BnaA.HO1, AtHO1, BrHO1.
     5) Semi-quantitative RT-PCR analysis indicated that BnaC.YGL displayed higher expression level in young leaves and pods and lower in germinating seeds and roots. The subcelluar localization assay showed the BnaC. YGL protein was localized in the chloroplast of the protoplast.
     6) The analysis of16cosegregated makers covering C07at least1.2Mb in B. oleracea showed that16cosegregated makers were detected polymorphism in the BnaC.ygl mutant and wild-type. And comparative sequencing results indicated that the C7homologous copy of three genes were losted. These suggested that there may be a large fragment deletion on N17in the BnaC.ygl mutant.
     2Genetic characterization and fine mapping of a gossly mutant (Nilla glossy)in Brassica napus
     1) The wax of stems, leaves, buds and pods in the glossy mutant was defective in the entire growth period. Scanning electron microscopy indicated that the wax on the leaf and stem surface in Nilla glossy mutan was significantly reduced.
     2) The phenotype of the filial generations obtained by the crosses of the BnaC.ygl mutant and the normal parents (No2127-17and Bing409) was thoroughly investigated. The reciprocal F1plants exhibited glossy leaves as No2127-17and Bing409, which indicated that the phenotype of the glossy mutant was controlled by nuclear genes. The F2populations from both crosses showed an expected Mendelian inheritance ratio of15:1. And the ratio of normal plants to glossy plants in the BC1progenies was approximately3:1. These data indicated that the phenotype of the Nilla glossy mutant was controlled by two recessive genes.
     3) Five possible polymorphic markers from F2population were used to detect the polymorphisms in16lines with1:1separation in BC2generation of G1combination.The results showed that CB10443had polymorphisms in7lines, which indicated that CB10443was linked to one of the two genes and the gene linked with CB10443was named as "BnaC.NGLl".
     4) The rough mapping mapped BnaC.Ngll to linkage group N11. Eight AFLP makers were developed by AFLP technique combined with BAS. The sequences of the CB10443and AFLP markers were submitted to the public database for identification of putative orthologues, which showed sequence homology to the CO I of B. oleracea. The SSR makers were designed from the sequence of C01in B. oleracea and analyzed in population G1BC2with1191plants. Finally, BnaC.YGL locus was mapped to the interval between the markers gls41and gls79, corresponding to a genetic distance of0.16cM. Compared with C01in B. oleracea, the interval between the markers gls41and gls79was about230kb, including51annotated genes.
引文
1.白大勇.拟南芥真叶白化突变体cfll的基因克隆与初步功能分析.河南大学.2013.
    2. 陈青.水稻T-DNA插入黄叶突变体基因克隆与功能分析.中国农业科学院.2007.
    3. 陈艳丽.甘蓝型油菜黄化突变体的基因定位.华中农业大学.2011
    4. 初莲香,王秋艳,王英明,王永昌.无蜡粉亮叶芥蓝的选育及利用.中国蔬菜.1998,04:32-33.
    5.初莲香,张晓红,王余文.甘蓝类无蜡粉亮叶性状遗传规律及其利用的研究.遗传.1996,01:31-33.
    6. 董邵云.黄瓜果皮光泽性状的遗传机制与基因定位.中国农业科学院.2013.
    7.杜瑞民.853番茄及其栽培技术.蔬菜.1994.(04):15
    8.房贤涛,马洪丽,赵福源,章清杞,张书标.6个水稻叶色白转绿光温敏核不育突变体的育种研究.中国农学通报.2011.01:45-51.
    9.冯辉,杨晓飞,辛彬,赵鹏涛,王玉刚.无蜡粉型青梗菜核基因雄性不育系转育研究.沈阳农业大学学报.2010,02:142-146.
    10.高彦魁,陈普红,李欣,赵志军,王丽萍.不同基因型砧木对黄瓜产量和果实品质的影响.长江蔬菜.2008,18:48-50.
    11.高彦魁,李欣,赵志军.不同基因型砧木对黄瓜产量、果霜及抗病性和抗寒性的影响.西北农业学报.2011,03:180-183.
    12.黄镇.分子标记辅助选择培育新型甘蓝型油菜隐性细胞核雄性不育系.华中农业大学.200
    13.蒋博.棉花航天诱变芽黄突变体蛋白质组和转录组学分析.华中农业大学.2012.
    14.李灵之.3个水稻WAX2同源基因的蜡质合成及抗逆性功能分析.湖南农业大学.2012
    15.李瑞.低叶绿素b水稻叶片自然衰老过程中光合作用变化以及叶绿体中Calvin循环多酶复合体的纯化.南京农业大学.2008.
    16.李玮,于澄宇,胡胜武.芥菜型油菜叶片黄化突变体的初步研究.西北农林科技大学学报(自然科学版).2007.09:79-82+89.
    17.李小林,邓安凤,邓君浪,徐雨然,谷安宇,年伟,史胜利,吴殿星,董阳均,李健强,张锦文.水稻苗期白化转绿型叶色标记籼型不育系“云丰66A”的选育.西南农业学报.2011,(02):410-413.
    18.刘德春,曾琼,刘勇,吴启,王玥辰,刘山蓓. ‘纽荷尔’脐橙及其光泽型突变体果皮色差指数变化规律的研究.果树学报.2013,06:914-917.
    19.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传.2003,03:317-321.
    20.刘文真.三个水稻叶色突变体的鉴定与基因克隆.浙江大学.2006.
    21.陆光远,杨光圣,傅廷栋.一个简便的适合于分析油菜中SSR位点的检测体系.中国油料作物学报.2003,03:81-83
    22.马志虎,颜素芳,沈晓昆,宋春.叶色标记技术在辣椒纯度鉴定及雄性不育中的应用前景.中国辣椒.2002,(01):15-18.
    23.莫鉴国,李万渠,彭云强,余勤.甘蓝型油菜无蜡粉种质材料的改良以及在杂优育种上的应用.种子.1999,05:18-20.
    24.牟香丽.结球甘蓝“无蜡粉亮叶”突变体性状分析.东北农业大学.2013.
    25.欧阳爱辉,易俊章,傅建忠.光叶型优质水稻不育系光叶A的选育.杂交水稻.2006,03:13-14.
    26.蒲媛媛.甘蓝型油菜显性光叶突变体BnaA. GL基因定位和表皮蜡质分析.华中农业大学.2013
    27.沈圣泉,舒庆尧,包劲松,吴殿星,崔海瑞,夏英武.实用转绿型叶色标记不育系白丰A的应用研究.中国水稻科学.2004,(01):36-40.
    28.孙伟.蜡质合成与转运相关基因的功能研究.山东师范大学.2007.
    29.孙玉燕.利用拟南芥BOUNTIFUL和HARDY基因以及表皮蜡质合成基因提高番茄耐旱和耐盐性.中国农业科学院.2012.
    30.王婧,刘泓利,宋超,倪郁.甘蓝型油菜叶表皮蜡质组分及结构与菌核病抗性关系.植物生理学报,2012,10:958-964.
    31.曾芳琴.油菜S45AB隐性核不育分子机理与应用研究.华中农业大学.2010
    32.曾新华.不同诱变方法对油菜种子诱变效果及突变体的研究.华中农业大学.2010
    33.周熙荣,李树林,顾龙弟.显性核不育油菜(Brassica napusL.)无蜡粉纯合两型系的选育.上海农业学报.1999,04:25-27.
    34.周熙荣,李树林,庄静,顾龙弟.甘蓝型油菜(Brassica napus L.)无蜡粉隐性核不育两型系的选育.上海农业学报.2002,01:20-24.
    35.周小云.水稻叶表皮蜡质发育及蜡质相关转录因子基因OsWTF1 和 OsWTF2的克隆与鉴定.湖南农业大学.2007.
    36. Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiol,2001,125(3):1248-57.
    37. Andres F, Galbraith DW, Talon M, Domingo C. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytocnromes in photoperiodic flowering in rice. Plant Physiol, 2009, 151(2):681-90.
    38. Apuya NR, Yadegari R, Fischer RL, Harada JJ, Zimmerman JL, Goldberg RB. The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene. Plant Physiol, 2001,126(2):717-30.
    39. Awan MA, Konzak CF, N. RJ, Nilan RA. Mutagenic Effects of Sodium Azide in Rice. Crop Science,1980,20(5):663-668.
    40. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros CE, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map. Mol Genet Genomics, 2003,268(5): 656-65.
    41. Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J et al. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci USA,2008,105(38):14727-31.
    42. Balogun E, Foresti R, Green CJ, Motterlini R. Changes in temperature modulate heme oxygenase-1 induction by curcumin in renal epithelial cells. Biochem Biophys Res Commun,2003,308(4):950-5.
    43. Barry CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol, 2008,147(1):179-87.
    44. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I et al. Classification and terminology of plant epicuticular waxes. J. Linnean Soc,1998,126:137-260.
    45. Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H et al. Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol,2009,150(3):1174-91.
    46. Bentolila S, Hanson MR. Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Rf) gene. Mol Genet Genomics 2001,266(2):223-30.
    47. Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD et al. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell,2012,24(7):3106-18.
    48. Bernard A, Joubes J. Arabidopsis cuticular waxes:advances in synthesis, export and regulation. Progress in lipid research,2013,52(1):110-29.
    49. Bessire M, Borel S, Fabre G, Carraca L, Efremova N, Yephremov A et al. A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell 2011,23(5):1958-70.
    50. Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J2007,52(3):485-98.
    51. Briggs WR, Olney MA. Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol,2001,125(1):85-8.
    52. Cameron KD, Teece MA, Smart LB. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol,2006,140(1):176-83.
    53. Cao Z, Geng B, Xu S, Xuan W, Nie L, Shen W et al. BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation. JExp Bot, 2011,62(13):4675-89.
    54. Cao ZL, Yu QB, Sun Y, Lu Y, Cui YL, Yang ZN. A point mutation in the pentatricopeptide repeat motif of the AtECB2 protein causes delayed chloroplast development. JIntegr Plant Biol, 2011,53(4):258-69.
    55. Cardoza V, Stewart CN. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep,2003,21(6):599-604.
    56. Carrasco S, Meyer T. STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annual review of biochemistry,2011,80:973-1000.
    57. Chen G, Bi YR, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41(3): 364-75.
    58. Chen M, Choi Y, Voytas DF, Rodermel S. Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 2000, 22(4):303-13.
    59. Chen YH, Chao YY, Hsu YY, Hong CY, Kao CH. Heme oxygenase is involved in nitric oxide-and auxin-induced lateral root formation in rice. Plant Cell Reports, 2012,31(6):1085-1091.
    60. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J et al. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet, 2009,118(6):1121-31.
    61. Chi W, Ma J, Zhang D, Guo J, Chen F, Lu C et al. The pentratricopeptide repeat protein DELAYED GREENING 1 is involved in the regulation of early chloroplast development and chloroplast gene expression in Arabidopsis. Plant Physiol,2008, 147(2):573-84.
    62. Chory J, Peto CA, Ashbaugh M, Saganich R, Pratt L, Ausubel F. Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of Arabidopsis thaliana Mutants. Plant Cell 1989,1(9):867-880.
    63. Christopher JT, Manschadi AM, Hammer GL, Borrell AK. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Australian Journal of Agricultural Research,2007,59(4):354-364.
    64. Coschigano KT, Melo-Oliveira R, Lim J, Coruzzi GM. Arabidopsis gls mutants and distinct Fd-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation. Plant Cell,1998,10(5):741-52.
    65. Cottage A, Mott EK, Kempster JA, Gray JC. The Arabidopsis plastid-signalling mutant gunl (genomes uncoupledl) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. JExp Bot,2010,61(13):3773-86.
    66. Cottage AJ, Mott EK, Wang J-H, Sullivan JA, MacLean D, Tran L et al. GUN1 (GENOMES UNCOUPLED 1) Encodes a Pentatricopeptide Repeat (PPR) Protein Involved in Plastid Protein Synthesis-Responsive Retrograde Signaling to the Nucleus. In:Allen JF, Gantt E, Golbeck JH, Osmond B (eds). Photosynthesis. Energy from the Sun. Springer Netherlands:14th International Congress on Photosynthesis, 2008, pp 1201-1205.
    67. Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 2001,409(6818):346-9.
    68. Datla SR, Dusting GJ, Mori TA, Taylor CJ, Croft KD, Jiang F. Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase derived oxidative stress. Hypertension,2007,50(4):636-42.
    69. Davis SJ, Bhoo SH, Durski AM, Walker JM, Vierstra RD. The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants. Plant Physiol,2001,126(2):656-69.
    70. Davis SJ, Kurepa J, Vierstra RD. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci USA,1999,96(11):6541-6.
    71. Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP et al. Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry,2005,44(21):7603-12.
    72. Debono A, Yeats TH, Rose JK, Bird D, Jetter R, Kunst L et al. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 2009,21(4):1230-8.
    73. Doyle J, Doyle J. Isolation of plant DNA from fresh tissue. Focus 1990,12:13-15.
    74. Dun X, Zhou Z, Xia S, Wen J, Yi B, Shen J et al. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J,2011,68(3): 532-45.
    75. Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol,2004,56(1):1-14.
    76. Edgar RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004,32(5):1792-7.
    77. Emborg TJ, Walker JM, Noh B, Vierstra RD. Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol,2006,140(3):856-68.
    78. Fambrini M, Castagna A, Vecchia FD, Degl'lnnocenti E, Ranieri A, Vernieri P et al. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS II activity and low endogenous level of abscisic acid. Plant Science,2004,167(1):79-89.
    79. Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell,2000,12(10):2001-8.
    80. Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol,2003,131(3):1340-6.
    81. Froese-Gertzen EE, Konzak CF, Nilan RA, Heiner RE. The effect of ethyl methanesulfonate on the growth response, chromosome structure and mutation rate in barley Radiation Botany,1964,4(1):61-69.
    82. Gan S, Amasino RM. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 1995,270(5244):1986-8.
    83. Gebhart E. Sister chromatid exchange (SCE) and structural chromosome aberration in mutagenicity testing. Hum Genet,1981,58(3):235-54.
    84. Gisk B, Yasui Y, Kohchi T, Frankenberg-Dinkel N. Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochem J,2010,425(2):425-34.
    85. Gonzalez R, Paul ND, Percy K, Ambrose M, McLaughlin CK, Barnes JD et al. Responses to ultraviolet-B radiation (280-315 nm) of pea (Pisum sativum) lines differing in leaf surface wax. Physiologia Plantarum,1996,98(4):852-860.
    86. GORDON DC, PERCY KE, RIDING RT. Effects of u.v.-B radiation on epicuticular wax production and chemical composition of four Picea species. New Phytologist 1998,138(3):441-449.
    87. Gothandam KM, Kim ES, Cho H, Chung YY. OsPPRl, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol,2005,58(3): 421-33.
    88. Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L et al. The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol, 2007,145(3):653-67.
    89. Guo K, Xia K, Yang ZM. Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot 2008,59(12): 3443-52.
    90. Gustafsson A. The mutation system of the chlorophyll apparatus. Acta Univ. lund. 1940,36:11-40.
    91. Gutierrez-Nava Mde L, Gillmor CS, Jimenez LF, Guevara-Garcia A, Leon P. CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development. Plant Physiol,2004,135(1):471-82.
    92. Han B, Yang Z, Xie Y, Nie L, Cui J, Shen W. Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Molecular plant 2014,7(2):388-403.
    93. Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose-and chain length-dependent manner. The New phytologist,2010,188(4):1039-54.
    94. Hansjakob A, Riederer M, Hildebrandt U. Wax matters:absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy 11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathol,2011,60(6): 1151-1161.
    95. Haslam TM, Manas-Fernandez A, Zhao L, Kunst L. Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol,2012,160(3):1164-74.
    96. Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H et al. Identification and characterization of Crrla, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One 2013,8(1): e54745.
    97. Hirose T, Sugiura M. Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs:development of a chloroplast in vitro RNA editing system. EMBO J, 2001,20(5):1144-52.
    98. Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J. Delimitation of the fertility restorer locus Rfk1 to a 43-kb contig in Kosena radish (Raphanus sativus L.). Mol Genet Genomics,2003,269(3):388-94.
    99. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL. Arabidopsis map-based cloning in the post-genome era. Plant Physiol 2002,129(2):440-50.
    100. Jeffree CE. The fine structure of the plant cuticle. In:Riederer M, Mu"ller C (eds). Biology of the Plant Cuticle, vol.23. Blackwell Publishers:Annual Plant Reviews, 2006, pp 11-110.
    101.Jenks MA, Andersen L, Teusink RS, Williams MH. Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments. Physiol Plant,2001,112(1):62-70.
    102. Jetter R, Kunst L, Samuels AL. Composition of plant cuticular waxes. In:Riederer M, Mu" ller C (eds). Biology of the Plant Cuticle. Blackwell Publishers:Annual Plant Reviews,2006, pp 145-175.
    103Jetter R, Schafferr S, Riederer M. Leaf cuticular waxes are arranged in chemically and mechanically distinct layers:evidence from Prunus laurocerasus L. Plant, cell & environment,2000,23(6):619-628.
    104.Jin QJ, Yuan XX, Cui WT, Han B, Feng JF, Xu S et al. Isolation and Characterization of a Heme Oxygenase-1 Gene from Chinese Cabbage. Mol Biotechnol 2012,50(1):8-17.
    105 Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol,2003,44(5):463-72.
    106.Kamikubo H, Koyama T, Hayashi M, Shirai K, Yamazaki Y, Imamoto Y et al. The photoreaction of the photoactive yellow protein domain in the light sensor histidine kinase Ppr is influenced by the C-terminal domains. Photochem Photobiol,2008, 84(4):895-902.
    107.Karibian D, London IM. Control of heme synthesis by feedback inhibition. Biochemical and biophysical research,1965,18:243-9.
    108.Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature,1997, 389:33-39.
    109.Kim C, Apel K. Arabidopsis light-dependent NADPH:protochlorophyllide oxidoreductase A (PORA) is essential for normal plant growth and development:an addendum. Plant Mol Biol,2012,80(2):237-40.
    110.Kim H, Choi SR, Bae J, Hong CP, Lee SY, Hossain MJ et al. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics,2009,10:432.
    111.Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC. Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol,2012,53(8):1391-403.
    112.Kinnunen H, Huttunen S, Laakso K. UV-absorbing compounds and waxes of Scots pine needles during a third growing season of supplemental UV-B. Environmental pollution 2001,112(2):215-20.
    113.Kobayashi K, Mochizuki N, Yoshimura N, Motohashi K, Hisabori T, Masuda T. Functional Analysis of Arabidopsis thaliana Isoforms of the Mg-Chelatase Chli Subunit. Photochemical & Photobiological Sciences,2008,7(10):1188-95.
    114.Koch K, Barthlott W, Koch S, Hommes A, Wandelt K, Mamdouh W et al. Structural analysis of wheat wax (Triticum aestivum, c.v.'Naturastar'L.):from the molecular level to three dimensional crystals. Planta,2006,223(2):258-70.
    115.Koch K, Ensikat HJ. The hydrophobic coatings of plant surfaces:epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 2008,39(7):759-72.
    116.Koch K, Hartmann KD, Schreiber L, Barthlott W, Neinhuis C. Influence of air humidity on epicuticular wax chemical composition, morphology and wettability of leaf surfaces. Environ. Exp. Bot,2006,56(1-9).
    117.Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP et al. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J,1990,9(5):1337-46.
    118.Kong WW, Zhang LP, Guo K, Liu ZP, Yang ZM. Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant biotechnology journal,2010,8(1): 88-99.
    119.Koornneef M, Rolff E, Spruit CJP. Genetic control of light-induced hy-pocotyl elongation in Arabidopsis thaliana. Zeitschrift fur Pflanzenphysiologie,1980,100(2): 147-160.
    120.Kosambi DD. The estimation of map distances from recombination values. Ann Eugen 1944,12(1):172-175.
    121.KRAUSS P, MARKSTADTER C, Riederer M. Attenuation of UV radiation by plant cuticles from woody species. Plant, cell & environment,1997,20(8):1079-1085.
    122.Kuhlmann F, Muller C. UV-B impact on aphid performance mediated by plant quality and plant changes induced by aphids. Plant Biol (Stuttg),2010,12(4): 676-84.
    123.Kumar AM, Soil D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in arabidopsis. Plant Physiol,2000,122(1):49-56.
    124.Kunst L, Samuels AL. Biosynthesis and secretion of plant cuticular wax. Progress in lipid research,2003,42(1):51-80.
    125.Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1(2):174-81.
    126.Larkin RM, Alonso JM, Ecker JR, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science,2003,299(5608):902-6.
    127.Lei S, Yao X, Yi B, Chen W, Ma C, Tu J et al. Towards map-based cloning:fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet,2007,115(5):643-51.
    128.Leonard B, Creff A, Desnos T. The HY2 gene as an efficient marker for transposon excision in Arabidopsis. Mol Genet Genomics,2003,269(6):746-52.
    129.Li C, Wang A, Ma X, Pourkheirandish M, Sakuma S, Wang N et al. An eceriferum locus, cer-zv, is associated with a defect in cutin responsible for water retention in barley (Hordeum vulgare) leaves. Theor Appl Genet,2013,126(3):637-46.
    130.Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L et al. Identification of the wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol,2008,148(1):97-107.
    131.Li H, Jiang M, Che LL, Nie L, Yang ZM. BjHO-1 is involved in the detoxification of heavy metal in India mustard (Brassica juncea). Biometals,2012,25(6):1269-1279.
    132.Li HT, Chen X, Yang Y, Xu JS, Gu JX, Fu J et al. Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Molecular Breeding,2011,28(4):585-596.
    133.Li J, Hong D, He J, Ma L, Wan L, Liu P et al. Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theor Appl Genet,2012,125(2):223-34.
    134.Li MY, Cao ZY, Shen WB, Cui J. Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation. Gene,2011,486(1-2):47-55.
    135.Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J et al. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One 2012,7(9):e44145.
    136.Lin YT, Li MY, Cui TC, Lu W, Shen WB. Haem Oxygenase-1 is Involved in Hydrogen Sulfide-induced Cucumber Adventitious Root Formation. J Plant Growth Regul,2012,31(4):519-528.
    137.Lincoln S, Daly M, E L. Constructing genetic linkage maps with Mapmaker/exp 3.0: a tutorial and reference manual,3rd edn. Whitehead Institute Technical Report 1992.
    138.Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X et al. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor Appl Genet,2010,121(2):249-58.
    139.Liu X, Rodermel SR, Yu F. A var2 leaf variegation suppressor locus, SUPPRESSOR OF VARIEGATION3, encodes a putative chloroplast translation elongation factor that is important for chloroplast development in the cold. BMC Plant Biol,2010,10: 287.
    140.Liu Y, Moenne-Loccoz P, Loehr TM, Ortiz de Montellano PR. Heme oxygenase-1, intermediates in verdoheme formation and the requirement for reduction equivalents. J Biol Chem,1997,272(11):6909-17.
    141.Liu Z, Liu P, Long F, Hong D, He Q, Yang G. Fine mapping and candidate gene analysis of the nuclear restorer gene Rfp for pol CMS in rapeseed (Brassica napus L.). Theor Appl Genet,2012,125(4):773-9.
    142.Long T, Guo D, He D, Shen W, Li X. The tRNA 3'-end processing enzyme tRNase Z2 contributes to chloroplast biogenesis in rice. J Integr Plant Biol,2013,55(11): 1104-18.
    143.Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM, Cosman KM et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell, 2006, 18(12): 3594-605.
    144.Lu W, Liu J, Xin Q, Wan L, Hong D, Yang G. A triallelic genetic male sterility locus in Brassica napus:an integrative strategy for its physical mapping and possible local chromosome evolution around it. Ann Bot, 2012,111(2):305-15.
    145.Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics, 2003,164(1): 359-72.
    146.Mao BG, Cheng ZJ, Lei CL, Xu FH, Gao SW, Ren YL et al. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta,2012,235(1):39-52.
    147.Matera KM, Takahashi S, Fujii H, Zhou H, Ishikawa K, Yoshimura T et al. Oxygen and One Reducing Equivalent Are Both Required for the Conversion of Graphic-Hydroxyhemin to Verdoheme in Heme Oxygenase. The Journal of Biological Chemistry,1996,271:6618-24.
    148.Matsui T, Nakajima A, Fujii H, Matera KM, Migita CT, Yoshida T et al. O(2)-and H(2)O(2)-dependent verdoheme degradation by heme oxygenase:reaction mechanisms and potential physiological roles of the dual pathway degradation. JBiol Chem,2005,280(44):36833-40.
    149.McCormac AC, Terry MJ. The nuclear genes Lhcb and HEMA1 are differentially sensitive to plastid signals and suggest distinct roles for the GUN1 and GUN5 plastid-signalling pathways during de-etiolation. Plant J,2004,40(5):672-85.
    150.McFarlane HE, Shin JJ, Bird DA, Samuels AL. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell,2010,22(9):3066-75.
    151.Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell,2003,15(6):1480-95.
    152.Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K et al. A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol,2007,63(5):625-35.
    153.Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A. The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci U S A,2008,105(39):15184-9.
    154.Monde RA, Zito F, Olive J, Wollman FA, Stern DB. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. Plant J, 2000, 21(1):61-72.
    155.Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J et al. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell,2003,15(9):1962-80.
    156.Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T et al. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant J,2003,34(5): 719-31.
    157.Moulin M, McCormac AC, Terry MJ, Smith AG. Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci U S A,2008,105(39): 15178-83.
    158.Muangprom A, Osborn TC. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet,2004,108(7): 1378-84.
    159.Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM. The Arabidopsis photomorphogenic mutant hyl is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell,1999,11(3): 335-48.
    160.Muramoto T, Tsurui N, Terry MJ, Yokota A, Kohchi T. Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Plant Physiol,2002,130(4):1958-66.
    161.Nicholas KB, Nicholas HBJ, Deerfield DW. GeneDoc:analysis and visualization of genetic variation-Embnew. Embnew 1997.
    162.Paddock T, Lima D, Mason ME, Apel K, Armstrong GA. Arabidopsis light-dependent protochlorophyllide oxidoreductase A (PORA) is essential for normal plant growth and development. Plant Mol Biol,2012,78(4-5):447-60.
    163.Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V et al. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics,2008,9:113.
    164.Park JJ, Jin P, Yoon J, Yang JI, Jeong HJ, Ranathunge K et al. Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol,2010,74(1-2):91-103.
    165.Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC et al Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171(2):765-81.
    166.Parkin IA, Lydiate DJ. Conserved patterns of chromosome pairing and recombination in Brassica napus crosses. Genome,1997,40(4):496-504.
    167.Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP et al. The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process. Plant J,2013,73(5):733-46.
    168.Pfundel EE, Agati G, Cerovic ZG. Optical properties of plant surfaces. In:Riederer M, Muller C (eds). Biology of the Plant Cuticle. Blackwell:Oxford,2006, pp 21 6-249.
    169.Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R et al. Plant cuticular lipid export requires an ABC transporter. Science,2004,306(5696):702-4.
    170.Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I et al. Construction of an oilseed rape(Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,2005,111(8):1514-23.
    171.Pouilly N, Delourme R, Alix K, Jenczewski E. Repetitive sequence-derived markers tag centromeres and telomeres and provide insights into chromosome evolution in Brassica napus. Chromosome Res,2008,16(5):683-700.
    172.Prasad VB, Gupta N, Nandi A, Chattopadhyay S. HY1 genetically interacts with GBF1 and regulates the activity of the Z-box containing promoters in light signaling pathways in Arabidopsis thaliana. Mech Dev,2012,129(9-12):298-307.
    173.Pu Y, Gao J, Guo Y, Liu T, Zhu L, Xu P et al. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. BMC Plant Biol,2013,13:215.
    174.Pulsifer IP, Kluge S, Rowland O. Arabidopsis long-chain acyl-CoA synthetase 1 (LACS1), LACS2, and LACS3 facilitate fatty acid uptake in yeast. Plant Physiol Biochem,2012,51:31-9.
    175.Qaderi MM, Yeung EC, Reid DM. Growth and physiological responses of an invasive alien species, Silene noctiflora, during two developmental stages to four levels of ultraviolet-B radiation. Ecoscience,2008,15(2):150-159.
    176.Qiao J, Li J, Chu W, Luo M. PRDA1, a novel chloroplast nucleoid protein, is required for early chloroplast development and is involved in the regulation of plastid gene expression in Arabidopsis. Plant Cell Physiol,2013,54(12):2071-84.
    177.Qin BX, Tang D, Huang J, Li M, Wu XR, Lu LL et al. Rice OsGLl-1 Is Involved in Leaf Cuticular Wax and Cuticle Membrane. Molecular plant,2011,4(6):985-995.
    178.Raman H, Raman R, Kilian A, Detering F, Long Y, Edwards D et al. A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits. BMC Genomics,2013,14:277.
    179.Ramel F, Ksas B, Akkari E, Mialoundama AS, Monnet F, Krieger-Liszkay A et al. Light-induced acclimation of the Arabidopsis chlorinal mutant to singlet oxygen. Plant Cell,2013,25(4):1445-62.
    180.Rana D, van den Boogaart T, O'Neill CM, Hynes L, Bent E, Macpherson L et al. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J,2004,40(5):725-33.
    181.Riedel M, Eichner A, Meimberg H, Jetter R. Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Planta,2007,225(6):1517-1534.
    182.Rowland O, Domergue F. Plant fatty acyl reductases:enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci, 2012,193-194:28-38.
    183.Rowland O, Lee R, Franke R, Schreiber L, Kunst L. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett,2007, 581(18):3538-44.
    184.Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol,2006,142(3):866-77.
    185.Rozema J, van de Staaij J, Bjorn LO, Caldwell M. UV-B as an environmental factor in plant life:stress and regulation. Trends Ecol Evol,1997,12(1):22-28.
    186.Ryter SW, Otterbein LE, Morse D, Choi AM. Heme oxygenase/carbon monoxide signaling pathways:regulation and functional significance. Molecular and cellular biochemistry,2002,234-235(1-2):249-63.
    187.Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4(4):406-25.
    188.Sakamoto H, Takahashi K, Higashimoto Y, Harada S, Palmer G, Noguchi M. A kinetic study of the mechanism of conversion of alpha-hydroxyheme to verdoheme while bound to heme oxygenase. Biochem Biophys Res Commun,2005,338(1): 578-83.
    189.Sakuraba Y, Rahman ML, Cho SH, Kim YS, Koh HJ, Yoo SC et al. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J,2013,74(1); 122-33.
    190.Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Andres CB et al. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell,2012,24(2):507-18.
    191.Samuels L, Kunst L, Jetter R. Sealing plant surfaces:cuticular wax formation by epidermal cells. Annual review of plant biology,2008,59:683-707.
    192.Sangtarash MH, Qaderi MM, Chinnappa CC, Reid DM. Differential sensitivity of canola (Brassica napus) seedlings to ultraviolet-B radiation, water stress and abscisic acid. Environ Exp Bot,2009,66(2):212-219.
    193.Sato H, Higashimoto Y, Sakamoto H, Sugishima M, Takahashi K, Palmer G et al. Electrochemical reduction of ferrous alpha-verdoheme in complex with heme oxygenase-1. J Inorg Biochem, 2007,101(10):1394-9.
    194. Sega GA. A review of the genetic effects of ethyl methanesulfonate. Mutat Res,1984, 134(2-3):113-42.
    195.Shen Q, Jiang M, Li H, Che LL, Yang ZM. Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicity. Plant, cell & environment, 2011,34(5):752-63.
    196.Snowdon RJ, Friedrich T, Friedt W, Kohler W. Identifying the chromosomes of the A-and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet,2002,104(4):533-538.
    197.Somervil 1CR. Analysis of Photosynthesis with Mutants of Higher Plants and Algae. Annual Review of Plant Physiology,1986,37:467-506.
    198.Strand A, Asami T, Alonso J, Ecker JR, Chory J. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature,2003, 421(6918):79-83.
    199.Swaminathan MS, Chopra VL, Bhaskaran S. chromosome Aberrations and the Frequency and Spectrum of Mutations Induced by Ethylmethane Sulphonate in Barley and Wheat. Genetics and Plant Breeding,1962,22(3):192-197.
    200.Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24(8):1596-9.
    201.Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. The Arabidopsis book/American Society of Plant Biologists,2011,9:e0145.
    202.Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annual review of plant biology,2007,58:321-46.
    203.Terry MJ, Kendrick RE. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol,1999,119(1):143-52.
    204.Thomas H, Ougham H. The stay-green trait. JExp Bot,2014.
    205.Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell,2006,18(6):1348-59.
    206.Tsuba M, Katagiri C, Takeuchi Y, Takada Y, Yamaoka N. Chemical factors of the leaf surface involved in the morphogenesis of Blumeria graminis. Physiol Mol Plant, P2002,60(2):51-57.
    207.Uppalapati SR, Ishiga Y, Doraiswamy V, Bedair M, Mittal S, Chen J et al. Loss of abaxial leaf epicuticular wax in Medicago truncatula irgl/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens. Plant Cell, 2012,24(1):353-70.
    208.Vothknecht UC, Kannangar CG, Wettstein D. Barley glutamyl tRNA-Glu reduetase mutations affecting haem inhibition and enzyme activity. Phytochemistry, 1998, 47(4):513-519.
    209.Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol,2007,65(6):799-815.
    210.Wang J, Long Y, Wu BD, Liu J, Jiang CC, Shi L et al. The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. Bmc Evol Biol,2009,9.
    211.Wang X, Wang H, Wang J, Sun R, Wu J, Liu S et al. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011,43(10):1035-9.
    212.Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R et al. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol,2012,78(3): 275-88.
    213.Waters MT, Langdale JA. The making of a chloroplast. EMBO J 2009,28(19): 2861-73.
    214. Wei YY, Zheng Q, Liu ZP, Yang ZM. Regulation of tolerance of Chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide. Plant Cell Physiol, 2011,52(9):1665-75.
    215.Weller JL, Terry MJ, Rameau C, Reid JB, Kendrick RE. The Phytochrome-Deficient pcdl Mutant of Pea Is Unable to Convert Heme to Biliverdin IX. The Plant Cell, 1996,8(1):55-67.
    216.Weller JL, Terry MJ, Reid JB, Kendrick RE. The phytochrome-deficient pcd2 mutant of pea is unable to convert biliverdin IXa to 3(Z)-phytochromobilin. The Plant Journal 1997,11(6):1177-86.
    217.Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacsl lacs2 double mutant of Arabidopsis. Planta,2010,231(5):1089-100.
    218. Wettstein DV, Kahn A, Nielesn OF. Genetic regulation of chlorophyll analyzed with mutant in barely. Science,1976,184:800-802.
    219.WHATLEY JM. VARIATIONS IN THE BASIC PATHWAY OF CHLOROPLAST DEVELOPMENT. New Phytologist,1977,78(2):407-420.
    220.Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol,2007,145(1):29-40.
    221.Xia S, Cheng L, Zu F, Dun X, Zhou Z, Yi B et al. Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theor Appl Genet,2012,124(7):1193-200.
    222.Xie Y, Mao Y, Lai D, Zhang W, Zheng T, Shen W. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance. J Exp Bot, 2013,64(10):3045-60.
    223.Xie Y, Xu D, Cui W, Shen W. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. JExp Bot,2012,63(10):3869-83.
    224.Xu J, Xuan W, Huang BK, Zhou YH, Ling TF, Xu S et al. Carbon monoxide-induced adventitious rooting of hypocotyl cuttings from mung bean seedling. Chinese Sci Bull, 2006,51(6):668-674.
    225.Xu P, Lv ZW, Zhang XX, Wang XH, Pu YY, Wang HM et al. Identification of molecular markers linked to trilocular gene (mcl) in Brassica juncea L. Molecular Breeding,2014,33(2):425-434.
    226.Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY et al. The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol,2008,148(2):881-93.
    227.Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics,2008,40(6):761-767.
    228. Yang M, Yang Q, Fu T, Zhou Y. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep,2011,30(3):373-88.
    229.Yeats TH, Rose JK. The formation and function of plant cuticles. Plant Physiol 2013, 163(1):5-20.
    230.Yi B, Chen Y, Lei S, Tu J, Fu T. Fine mapping of the recessive genie male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet,2006,113(4):643-50.
    231.Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y et al. Two duplicate CYP704B1-homologous genes BnMsl and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J,2010,63(6):925-38.
    232.Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature protocols,2007,2(7):1565-72.
    233.Zeng X, Zhu L, Chen Y, Qi L, Pu Y, Wen J et al. Identification, fine mapping and characterisation of a dwarf mutant (bnaC.dwf) in Brassica napus. Theor Appl Genet, 2011,122(2):421-8.
    234.Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ et al. Rice Chlorina-1 and Chlorina-9 encode ChLD and Chll subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol,2006,62(3): 325-37.
    235.Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y et al. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol,2009,69(5):553-63.
    236.Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J,2005,42(5):689-707.
    237.Zhang X, Liu ZY, Wang P, Wang QS, Yang S, Feng H. Fine mapping of BrWaxl, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp pekinensis). Molecular Breeding,2013,32(4):867-874.
    238.Zhao Y, ML W, YZ Z, LF D, T P. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breeding 2000, (19):131-135.
    239.Zheng H, Rowland O, Kunst L. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell,2005,17(5):1467-81.
    240.Zheng X, Wu S, Zhai H, Zhou P, Song M, Su L et al. Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light. Plant Cell 2013,25(1):115-33.
    241.Zhou K, Ren Y, Lv J, Wang Y, Liu F, Zhou F et al. Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta,2013,237(1):279-92.
    242.Zhou W, Cheng Y, Yap A, Chateigner-Boutin AL, Delannoy E, Hammani K et al. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J, 2009,58(1):82-96.
    243.Zhu L, Guo J, Zhu J, Zhou C. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol Biochem 2014,75:24-35.
    244.Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J. Genome evolution in Arabidopsis/Brassica:conservation and divergence of ancient rearranged segments and their breakpoints. Plant J,2006,47(1):63-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700