高效脱色菌的筛选及对偶氮印染废水脱色作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业废水当中,来自印染和纺织工业的印染废水是最难处理的废水之一,这是因为染料是一种合成的、含有复杂的芳环类结构的化合物,很难被生物降解。近年来,全世界染料年产量已超过7×10~5吨,品种达千种以上,其中偶氮染料所占比例最大,约占总染料产量的60%以上。
     本文是以含偶氮染料活性黑5(RB5)的印染废水为研究对象,分离到在好氧条件下和厌氧条件下有较高脱色能力的菌株各10株,其中16号菌株和19号菌株脱色效果最好,经进一步筛选将16号菌株作为最佳脱色菌。采用常规细菌鉴定方法,依据该菌株的形态、生理生化特征,初步鉴定为沼泽红假单胞菌属(Rhodopseudomonas palustris)。又根据16号菌株的16S rRNA基因序列分析,菌株与已知沼泽红假单胞菌的标准菌株相似度为97%,确定本实验室分离所得的16号菌株为沼泽红假单胞菌,将其命名为沼泽红假单胞菌W1。
     研究表明菌株W1对活性黑5的脱色是通过微生物共代谢机理实现的。乳酸钠是本研究的最佳外加碳源,氯化铵是最佳氮源,最佳浓度分别为2g/L和1g/L。菌株W1对环境中的pH值和盐度有较大的适应和耐受能力,在光照厌氧pH为5~10、黑暗好氧pH为6~11范围内和高盐度环境中都能够保持较高的脱色降解活性,同时该细菌对于大部分种类染料都有良好的降解效果,然而对COD降解效果较差,采用光合细菌-活性污泥法可以提高COD降解效果。
     通过紫外-可见光谱、液质联用技术分析可知,活性黑5脱色机理主要是偶氮双键在催化作用下进行的还原裂解反应,同时在脱色过程中伴随产生了中间产物芳香胺类化合物。在光照厌氧条件下,染料初始浓度在50~500mg/L之间变化时,菌株W1对染料活性黑5的脱色过程符合一级动力学方程。降解速率与染料初始浓度之间关系符合Michaelis-Menten方程,反应动力学参数Vmax=80mg/(L.h),K_m=348.20mg/L。
Among industrial wastewater, dyeing wastewater from printing and textile industries is one of the most unmanageable wastewater. The reason is that dyes usually have a synthetic origin and complex aromatic molecular structures, which are hard to biodegrade. In recent years, it is reported that there are over 1000 kinds of commercially available dyes with a production of over 7×10~5 ton. Among these kinds of dyes, azo dyes are the most widely used, they account for 60% of dyes known to be manufactured.
     Considering dyeing wastewater containing Reactive Black 5(RB5) as the subject in the study, which is belong to azo dyes, 10 high-efficient decoloring strains are separated under aerobic condition when the other 10 strains under anaerobic condition. Thereamong, No.16 strain and No.19 strain have higher decolorization capacity. No.16 strain is further screened as the optimal decoloring strain. On the basis of the configuration and physiological and biochemical characteristics of the strain, the strain is primarily identified as Rhodopseudomonas palustris by way of introducing conventional bacterium assessment method. The bacterial 16S rRNA gene sequence analysis of No.16 strain shows that it is most close to the standard strain of Rhodopseudomonas palustris with 97% of identity. Therefore, the No.16 stain is certain to be Rhodopseudomonas palustris, it is named as Rhodopseudomonas palustris W1.
     The research shows that strain W1 decolorize Reactive Black 5 by means of biological co-metabolism. Sodium lactate is the optimal additional carbon resource of the study, the optimal concentration is 2g/L. Ammonium chloride is the optimal nitrogen resource, the optimal concentration is 1g/L. Strain W1 has a adaptive and resistive capability of pH and salinity in environment. It can keep the higher activeness of decolorization and degradation under light anaerobic circumstance of pH 5~10, dark aerobic circumstance of pH 6~11 and circumstance of high salinity. Most of dyes can be decolorized by the stain. However, COD of wastewater is degraded with worse efficiency by strain W1, we can introduce photosynthetic bacteria/activated sludge process to improve the efficiency of COD degradation.
     According to the analysis of UV-Vis absorption spectrum and LC-MS spectrum, the decolorization mechanism of Reactive Black 5 is mainly that cracking reaction, which produce aromatic amine as an intermediate product, happen on the azo-bond of dyes. Decoloriztaion of Reactive Black 5 was first order kinetics when initial concentration of dye ranged from 50 to 500mg/L under light anaerobic condition. The correlation between specific decolorization rate and initial concentration of Reactive Black 5 can be interpreted by Michaelis-Menten model. The Michaelis constant Km=348.20mg/L and the maximum specific decolorization rate Vmax=80mg/(L.h).
引文
1傅平青,程鸿德.印染废水治理研究现状.地质地球化学. 2001, 29(4): 86~91
    2戴日成,张统,郭茜等.印染废水水质特征及处理技术综述.给水排水. 2000, 26(10): 33~34
    3孙雷军.印染生产工艺及其废水的特性.甘肃科技. 2005, 21(8): 38~40
    4张俊,王宏勋,罗莉等.菌糠过滤处理染料溶液研究.环境科学与技术. 2006, 29(1): 77~78
    5刘精今,李小明,杨麒.炉渣的吸附性能及在废水处理中的应用.工业用水与废水. 2003, 34(1): 12~15
    6张智宏,宋封琦.铁屑过滤-光催化氧化处理染料废水.江苏工业学院学报. 2003, 15(3): 27~29
    7钱伯兔.沉淀-活性污泥-沉淀工艺处理印染废水.新疆环境保护. 2005, 27(2): 19~21
    8魏文圆,张志刚.活性炭在印染废水脱色中的应用.工业水处理. 1996, 16(2): 3~6
    9 K. Kadirvelu, M. Palanival. Activated Carbon from an Agricultural By-product for the Treatment of Dyeing Industry Waste Water. Bioresource Technology. 2000, 74(3): 263~265
    10芦春梅,李增文,姜桂兰.活性秸杆炭素吸附-化学氧化法在印染废水处理中的应用研究.工业水处理. 2005, 25(5): 56~58
    11周峰,林金清,姚晓亮等.活性炭对印染废水中碱性紫的吸附作用.华侨大学学报. 2006, 27(3): 304~306
    12 G. Mckay. Absorbing Dye Waste Water with Activated Carbon. Colorage. 1988, 73(10): 35~36
    13李志平,欧阳玉祝,麻成金等.大孔树脂吸附法处理印染废水的研究.广西民族学院学报. 2005, 11(2): 94~96
    14 S. Karcher, A. Kommuller, M Jekel. Removal of Reactive Dyes by Sorption/Complexion with Cucurbituril. Wat. Sci. Tech. 1999, 40(4/5): 425~433
    15叶长青,曾庆福.膨润土的改性及其在环保中的应用.自然杂志. 2003, 25(4): 216~220
    16周珊,杨春凤.粉煤灰吸附去除弱酸性艳蓝印染废水.能源环境保护. 2005, 19(3): 32~35
    17明银安,陆晓华.印染废水处理技术进展.工业安全与环保. 2003, 29(8): 38~39
    18 J. Y. Hang, S. D. Huang. Removal of Organic Dye(Direct Blue) from Synthetic Wastewater by Adsorptive Bubble Separation Techniques. Environ. Sci Technol. 1993, 27(6): 1169~1175
    19郭迎庆.水解酸化-生物接触氧化-混凝气浮工艺处理印染废水.环境工程. 2005, 23(6): 30~32
    20吴俊,邢卫红,徐南平.无机陶瓷膜处理印染废水的研究.应用化工. 2004, 33(5): 56~59
    21彭晓文,杨迎新.膜分离技术在印染废水处理中的应用.江西化工. 2003, (1): 21~23
    22王红梅,郑振晖.改性膨润土处理印染废水的研究.河北化工. 2005, (4): 72~73
    23 Ting Hui Liu, Matsuurat, Sourirujon S. Effect of Membrane Material Sand Average Pore Size on Reverse Osmosis Separation of Dyes. Ind Eng Chem Prod Dev. 1983, (22): 77~85
    24魏翔,朱琨等.改性沸石对印染废水的脱色研究.兰州铁道学院学报(自然科学版). 2003, 22(4): 113~115
    25余跃,冯晖,吴沪宁等.纳滤膜处理印染废水的研究.化工时刊. 2004, 18(9): 26~29
    26 C. Soma, M. Rumeau, C. Sergent. Use of Mineral Membrares in the Treatment of Textile Effluents Pore 1 Intl Cont Inorganic Membranes. France. Monrpellier. 1989: 523~526
    27明银安,陆晓华.印染废水处理技术进展.工业安全与环保. 2003, 29(8): 16~18
    28 Yoshifumi Kado, Tsutomu Nonaka. Ultrasonic Effects on Electroorganic Processes-Part 20. Photocatalytic Oxidation of Aliphatic Alcohols in Aqueous Suspension of TiO2 Powder. Ultrasonic Sonochemistry. 2001, 8(2): 69~74
    29王桂华,尹平河,赵玲等.超声波辅助Ti02光催化降解印染废水的研究.工业水处理. 2004, 24(4): 42~45
    30吴文军.用超声波气振技术处理染料废水.污染防治技术. 1994, 7(1):26~27
    31 N. Geroff, W. Lutz. Radiation Induced Decomposition of Hydrocarbons in Water Resources. Radiation Physical Chemistity. 1985, 25(1): 21~26
    32李胜利,李劲,王泽文等.用高压脉冲放电等离子体处理印染废水的研究.中国环境科学. 1996, 16(1): 73~76
    33冯秀娟,葛天源.无机混凝剂在印染废水处理中的研究进展.中国资源综合利用. 2005, (10): 6~9
    34赵华章.以TEOS为硅源的聚硅氯化铝中铝及硅形态分布.环境科学学报. 2004, 24(2): 215~219
    35高宝玉,刘总纲,岳钦艳.聚合硅酸硫酸铝溶液中铝的形态分布及转化规律.环境化学. 2004, 23(2): 208~212
    36边凌飞,高宝玉. BT-04复合混凝剂应用于活性染料印染废水的脱色研究.天津化工. 2006, 20(4): 53~55
    37薛锐,赵美玲.印染废水脱色的研究进展.环境科学与管理. 2005, 30(3): 30~33
    38高蓉菁,夏明芳,尹协东等.臭氧氧化法处理印染废水.污染防治技术. 2003, 16(4): 68~70
    39 J. D. Nigel, Graham. Removal of Humic Substrates by Oxidaiton/Biofiltration Processes- a Review. Wat. Sci. Tech. 1999, 40(9): 141~148
    40刘时松,何瑾馨.低浓度染色废水的臭氧-活性炭在线脱色及其回用的研究.东华大学学报(自然科学版). 2006, 32(2): 16~20
    41汪晓军,林德贤,顾晓扬等.臭氧-曝气生物滤池处理酸性玫瑰红染料废水.环境污染治理技术与设备. 2006, 7(7): 43~46
    42顾晓扬,汪晓军,林德贤等. O3和Fenton试剂化学氧化处理酸性玫瑰红印染废水.染料与染色. 2006, 43(1): 34~36
    43史红香,胡晓敏. Fenton试剂氧化处理印染废水的实验研究.辽宁化工. 2006, 35(4): 202~204
    44 W. G. Kuo. Decolorizing Dye Treatments of Azo Dyes Waters with Fenton’s Reagent. Wat. Res. 1992, 26(7): 881~886
    45谭亚军,疆展鹏等.废水处理催化湿化氧化法及其催化剂的研究进展. 1999, 17(4): 14~18
    46雷乐成,汪大辉.湿式氧化法处理高浓度活性染料废水.中国环境科学. 1999, 19(1): 42~46
    47汪学军.染料废水处理技术应用进展.环境污染与防治(网络版). 2004, 1(2): 4~7
    48 L. Lei, X. Hu, H. Chu, et al. Catalytic Wet Air Oxidation of Dyeing and Printing. Wat. Sci. Tech. 1997, 35(4): 311~319
    49王星敏,陈胜福.印染废水的光催化氧化处理新进展.重庆工商大学学报(自然科学版). 2004, 21(6): 229~232
    50 A. V. Vorontson, E. V. Savinov, L. Davydov, et al. Environmental Applications of Semiconductor Photo Catalysis. Appl Catal B:Environmental. 2001, (32): 11~24
    51罗洁,陈建山,程凯英. TiO2光催化氧化降解印染废水的研究.应用化工. 2004, 33(5): 24~26
    52王成国,邓兵.纳米TiO2光催化氧化处理直接耐晒翠蓝染料溶液.染整技术. 2005, 27(4): 1~4
    53 I. Arslan, I. A. Balcioglu, T. Tuhkanen. Oxidative Treatment of Simulated Dyehouse Effluent by UV and near UV Light Assisted Fenton's Reagent. Chemosphere. 1999, 39(15): 2767~2783
    54 C. Pablo, G. Jesus, L. Ljusto. Modeling of Wastewater Electrooxidation Process Part II. Paalication to Active Electrodes. In Eng Chem Res. 2004, 43(9): 1923~1931
    55 A. E. Wilcock, S. P. Hay. Recycling of Electrochemically Treated Disperse Dye Effluent. Canadian Textile Journa. 1991, 108(5): 56~59
    56 C. Comninellis, Szpyrkow iczL. Electrochem Icalw Astew Ater Treatmentusing High Overvoltage Anodes. J. Appl. Electrochem. 1991, 23: 108~112
    57陈武,杨昌柱,梅平等.三维电极电化学方法处理印染废水实验研究.工业水处理. 2004, 24(8): 43~45
    58罗亚田,梅建辉.印染废水的实验研究.环境技术. 2004, (6): 34~36
    59 L. Daniliuc. Performance and Economic Aspects of the Dffluents by Electro-Floccuation Using the Dequaflox. Tribune del Ean. 1995, 48(576): 37~39
    60 U. B. Ogutveren, N. Gonen, S. Koparal. Removal of Dyestuff form Wastewater Electrocoagulation of Acilan Blue Using Soluble Anode. J Environ Sci Health. 1992, 27(5): 67~74
    61彭会清,许开.印染废水处理方法进展与述评.南方冶金学院学报. 2003, (4): 57~61
    62 T. G. Ellis, M. J. Higgins, S. K. Kaiser. Activated Sludge and Other Anerobic Suspend Culture Processes. Water Environment Research. 1998, 70(4): 473~495
    63 M. W. Fills. Biological Fixed-film systems. Water Environment Research. 1998, 70(4): 518~540
    64张宇峰,滕洁.印染废水处理技术的研究进展.工业水处理. 2003, 23(4): 23~27
    65 A. Baban, A. Yediler, N. K. Ciliz. Biodegradability Oriented Treatability Studies on High Strength Segregated Wastewater of a Woolen Textile Dyeing Plant. Chemosphere. 2004, (57): 731~738
    66 T. J. Park, K. H. Lee. Dyeing Wastewater Treatment by Activated Sludge Process with a Polyurethane Fluidized Bed Biofilm. Wat. Sci. Tech. 1996, 34(5/6): 193~200
    67 S. M. Ghoreishi, R. Haghighi. Chemical Catalytic Reaction and Biological Oxidation for Treatment of Non-biodegradable Textile Effluent. Chemical Engineering Journal. 2003, 95(1): 163~169
    68严道岸.实用环境工程手册-水工艺与工程.化学工业出版社. 2001: 99~119
    69林昆霞.印染废水处理探讨.云南环境科学. 1998, 17(4): 36~38
    70邵云海,蒋克彬.水解与接触氧化工艺处理印染废水.中国给水排水. 2001, 17(8): 53~55
    71 R. Minke, U. Rott. Anaerobic Treatment of Split Flow Wastewater and Concentrates from the Textile Processing Industry. Wat. Sci. Tech. 1999, 40(1): 169~176
    72 H. Horisu. Degradation of P-a Minoazobenzene by Bacillus Subrills. Eur. J. Appl. Microbial. 1997, (14): 217~224
    73 P. K. Wong. Decolorization and Biodegradation of Methel red by Klebsiella pneumoniae RS-13. Wat. Res. 1996, 30(7): 1736~1744
    74 T. L. Hu. Decolourization of Reactive Azo Dyes by Transformation with Pseudomonas Luteola. Biosource Technology. 1994, (49): 47~51
    75 T. L. Hu. Degradation of Azo Dye RP2B by Pseudomonas Luteola. Wat. Sci. Tech. 1998, 38(4/5): 299~300
    76 Blumel Silke, Contzen Mattias, Lutz Mactina. Isolation of a Bacterial Strain with the Ability to Utilize the Sulfonated Azo Compound 4-Carboxy-4’-Sulfoazobenzene as the Sole Source of Carbon and Energy. Applied and Environmental Microbiology. 1998, 64(6): 2315~2317
    77江锋.高生物吸附活性微生物对染料吸附脱色的研究,华南理工大学硕士学位论文. 2003: 43~50
    78 D. Raton. Fungal Decolorization of Kraft Bleach Plant Effluent. Tappi T. 1980, (63): 103~109
    79 P. Barr, S. D. Aust. Mechanisms White Rot Fungi Use to Degrade Pollutants. Environ. Sci. Technol. 1994, 28(2): 78~87
    80 Jinqi Liu. Degradation of Azo dyes by Algae. Environmental Pollution. 1992, (75): 273~273
    81郭秒,陈金全,李世平等.阳宗海中光合细菌对活性艳红X-3B脱色的研究.云南环境科学. 2004, 23(3): 19~20
    82吴国庆,杜恒利,张琳等.光合细菌对染料废水脱色的初步研究.环境科学. 1989, 10(5): 46~50
    83 B. Smet, E. Rittmann, DA. Stahl. The Role of Genes in Biological Processes. Environment Science Technology. 1990, 24(2): 162~168
    84 Y. Urushigawa, Y. Yonezaua. Chemico-biological Interactions in Biological Purification System, Biodegradation of Azo-compounds by Activated Sludge. Bull Environ Contam Toxical. 1997, 17(2): 214~218
    85 Gang-mon Duen, Kee-lim Kim, Ping-shen Hwei. Microbial Agents for Decolorization of Dye Wastewater. Biotechnol Adv. 1991, 9(4): 613~616
    86 Mustafa Isik, Delia Teresa Sponza. A Batch Study for Assessing the Inhibition Effect of Direct Yellow 12 in a Mixed Methanogenic Culture. Process Biochemistry. 2005, (40): 1053~1062
    87李蒙英,倪建国,洪法水等.真菌和细菌对染料的吸附脱色及再生能力的研究. 2002, 22(6): 779~783
    88文湘华,王建龙.环境生物技术原理与应用.清华大学出版社, 2004: 1~106
    89张锡辉.高等环境化学与微生物学原理及应用.化学工业出版社, 2001: 87~99
    90蒋姬,姜佩华.分散染料的生物降解性能.东华大学学报(自然科学版). 2003, 29(6): 115~119
    91 H. Sawada, P. L. Rogers. Photosynthetic Bacteriain Waste Treatment-Pure Culture Studies with Rhodopseudomona Capsulata. J Ferment Technol. 1977, 55(4): 297~310.
    92英荣,周业亭,刘自平.染料脱色真菌的选育及其对合成染料的脱色作用. 2004, 28(1): 64~68
    93文湘华.含盐废水的生物处理进展研究.环境科学. 2000, (3):104~106
    94赵亮,李兰生,刘金雷.海洋光合细菌对五种活性染料的脱色研究.海洋湖沼通报. 2006, (3): 73~78
    95马杰,马跃,胡洪营等.光催化-光合细菌法处理印染废水的基础性研究.水处理技术. 2004, 30(1): 44~47
    96 CK. Loyd, GD. Boardman, DL. Michelsen. Anaerobic/Aerobic Treatment of a Textile Dye Wastewater. Hazard Ind Wastes. 1992, (16): 33~37
    97 D. Brown, P. Laboureur. The Degradation of Dyestuffs: PartⅠPrimary biodegradation under anaerobic conditions. Chemospere. 1983, 12(3): 397~404
    98 T. Zimmermann, H. G. Kdla, T. Lcisingcr. Properties of PurifiedorangeПAzoreductaae, the Enzytae Initiating Azo Dye Degradation by Pseudomotms KF46. Eur. J. Biochem. 1982, (129): 197~203
    99 H. G. Kulla, F. Klausener, U .Meyer, et al. Interference of Aromatic Sulfo Groups in the Microbial Degradation of the Azo Dyes OrangeⅠand orangeⅡ. Arch Microbiol. 1983, (135): 1~7
    100 Judy A. Libra, Maren Borchert, Lothar Vigelahn et al. Two stage of Biological Treatment of a Diazo Reactive Textile Dye and the Fate of the Dye Metabolites. Chemosphere. 2004, (56): 167~180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700