静电纺丝技术制备二氧化钛纳米材料与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十年中,静电纺丝技术作为一种简单而又快捷地制备一维纳米-亚微米材料的方法获得了迅速的发展,并逐渐成为纳米材料研究领域的热点。静电纺丝是基于高压静电场下导电流体产生高速喷射的原理发展而来,其基本过程是:聚合物溶液或熔体在几千至几万伏的高压静电场下克服表面张力而产生带电喷射流,溶液或熔体射流在喷射过程中干燥,并保持一定电荷量,最终落在接收板上形成纤维。静电纺丝制成的超细纤维膜具有多孔结构及较高的比表面积,在过滤、纳米复合材料、伤口敷料以及组织上支架等方面具有许多潜在的用途。
     本文采用溶胶-凝胶法配制出有一定粘度的前驱溶液,采用静电纺丝技术成功地制备出PVP(K30)/Ti(SO_4)_2、PVP(K90)/Ti(SO_4)_2复合纤维以及PVP(K90)+PMMA/ Ti(OC_4H_9)_4、PMMA/Al((CH_3)_2CHO)_3纳米带,经过高温焙烧成为多孔空心二氧化钛纳米纤维、柔性二氧化钛纳米纤维、二氧化钛纳米带以及氧化铝纳米带。
     对工艺条件的影响进行了系统的研究,发现PVP(PMMA)浓度、电压、固化距离和无机盐的含量是影响复合纤维特性的主要因素。
     二氧化钛纳米纤维直径在100-200nm,长度为200μm。二氧化钛、氧化铝纳米带宽度在8-15μm,长度为200-300μm。利用XRD、TEM、SEM、TG-DTA、FTIR等手段对样品进行了表征。结果表明不同于以往所报道的单晶纳米纤维、纳米带,本实验中所制备的纳米纤维、纳米带呈现出典型的多晶结构,这种新结构纳米纤维、纳米带的合成为纳米材料的制备提供了一条新途径。
As a simple and quick method for preparation of nano- or submicrometer fibers, great progress has been made in electrospinning technique in the past decade. Therefore, electrospinning technique has become one of the current studied subjects in the nanomaterials research field. Electrospinning origins from that electrically charged fluid is forced jets in the high voltage electrostatic field. Electrospinning occurs when the electrical forces at the surface of a polymer solution or melt overcome the surface tension and cause an electrically charged jet to eject. When the jet is dried or solidified, an electrically charged fiber remains. This charged fiber can be directed or accelerated by electrical forces and then collected in mats or other useful geometrical forms. Nonwoven membranes composed of electrospun fibers have a large specific surface area and small pore size compared with commercial textiles, and have many potential applications in the fields of filters, nanocomposites, wound dressings and engineering scaffolds.
     In this dissertation, sol-gel method was applied to prepare the precursor solution with a viscosity, and electrospinning technique was used to fabricate PVP(K30)/Ti(SO_4)_2, PVP(K90)/Ti(SO_4)_2, PVP(K90)+PMMA/Ti(OC_4H_9)_4、PMMA/Al((CH_3)_2CHO)_3 composite nanoribbons. TiO_2 nanofibers with porous surface, TiO_2 nanofibers with flexibility, TiO_2 nanoribbons and Al_2O_3 nanoribbons were obtained by calcinations of the above relevant composite microfibers.
     The morphology of fibers were discussed by adjusting all the important parameters such as concentration of PVP(PMMA), voltage, distance between tip and collector, the mass of metal salts added to the sol. It was found that these factors were the main factors affecting the properties of the composites.
     The TiO_2 nanofibers with diameters of 100-200nm and a length of 200μm. The TiO_2, Al_2O_3 nanoribbons with a width of 8-15μm and a length of 200-300μm.The samples were characterized with XRD, TEM, SEM, TG-DTA and FTIR in detail. It was indicated that the as-prepared nanofibers and nanoribbons exhibited polycrystalline structure which were different from monocrystalline structures of the TiO_2 nanofibers and TiO_2, Al_2O_3 nanoribbons previously reported. The synthesis of the nanoribbon with this new microstructure might provide a novel route to the nanomaterials.
引文
1孟季如,赵磊,梁国正等.无机非金属纳米微粒的制备方法[J].化工新型材料, 2000, 28(4): 23-27
    2杨彧,贾殿,葛炜炜等.低热固相反应制备无机纳米材料的方法[J].无机化学学报, 2004, 20(8): 881-888
    3章金兵,许民,周小英等.固相法合成纳米二氧化钛[J].有色金属, 2005, (6): 42-44
    4胡晓力,尹虹,胡晓洪等.用均匀沉淀法制备纳米TiO2粉体[J].中国陶瓷, 1997, 33(4): 5-9
    5祖庸,雷闫盈,俞行等.新型防晒剂-纳米二氧化钛[J].化工新型材料, 1998, (6): 26-30
    6王金敏,杜芳林,崔作林等.纳米氧化钛的沉淀法制备及表征[J].青岛化工学院学报, 2001, (2): 121-123
    7王全杰,周庆芳,孙根行等.纳米二氧化钛的制备及其在皮革涂饰剂中的应用展望[J].中国皮革, 2004, 33(23): 11-15
    8孙家跃,肖昂,杜海燕等.均相沉淀-发泡法制备纳米氧化钛的应用[J].国外建材科技, 2004, 25(4): 57-59
    9李竟先,吴基球,鄢程等.纳米颗粒的水热法制备[J].中国陶瓷, 2002, 38(5): 36-39
    10梁建,马淑芳,韩培德等.二氧化钛纳米管的合成及其表征[J].稀有金属材料与工程, 2005, 34(2): 287-290
    11 Yu J G, Yu H G, Cheng B, et al. Preparation and photocatalytic activity ofmesoporous anatase TiO2 nanofibers by a hydrothermalmethod[J]. J Photochem Photobiol. A, 2006, 182:121-127
    12 KontosA I, Arabatzis I M, Tsoukleris D S, et al. Efficient photocatalysts by hydrothermal treatment of TiO2[J]. Catalysis Today, 2005, 101: 275-281
    13 Bokhimia X, Pedraza F. Characterization of brookite and a new corundum-like titania phase synthesized under hydrothermal conditions[J]. J Solid State Chem, 2004, 177(7): 2456-2463
    14 Wang F M, Jiu J T, Pei L H, et al. Effect of nitrate ion on formation of TiO2 nanoplate structure in hydrothermal solution[J]. Materials Letters, 2007, 61: 488-490
    15 Yang J, Mei S, Ferreira J M F, et al. Fabrication of rutile rod-like particle by hydrothermal method: an insight into HNO3 peptization[J]. J Colloid Interface Sci, 2005, 283:102-106
    16 Su C, Tseng C M, Chen L F, et al. Sol-hydrothermal preparation and photocatalysis of titanium dioxide[J]. Thin Solid Films, 2005, 498(3): 259-265
    17 Jiang B P, Yin H B, Jian T S, et al. Hydrothermal synthesis of rutile TiO2 nanoparticles using hydroxyl and carboxyl group containing organicsasmodifiers[J]. Materials Chemistry and Physics, 2005, 98(8): 2312-2335.
    18 Kolenko Y V, Churagulov B R, Kunst M, et al. Photocatalytic properties of titania powders prepared by hydrothermal method[J]. Applied Catalysis, 2004, 54(1): 51-58
    19王晓慧,王子枕,李熙等.胶溶法合成二氧化钛超微粒子[J].材料科学进展, 1992, 6(6): 533-537
    20 Zhang Baolong, Chen Baishun. Preparation and characterization of nanocrystal grain TiO2 porous microsphere[J]. Appl Catal B, 2003, 40: 253-258
    21单凤君,高杰.溶胶-凝胶法制备纳米氧化钛粉体分散性研究[J].化学与环境工程, 2004, (4): 25-26
    22李小兵,刘竞超.纳米粒子与纳米材料[J].塑料, 1999, 28(1): 19-22
    23施利毅,胡莹玉,张剑平等.微乳液反应法合成二氧化钛超细粒子[J].功能材料, 1999, 30(5): 495-497
    24 Saiwan C, Krathong S, Anukulprasert T, et al. Nano-Titanium Dioxide Synthesis in AOT Microemulsion System with SalinityScan[J]. J Chem Eng Jpn, 2004, 37(2): 279-285
    25魏绍东,王杏.以硫酸氧钛为原料制备纳米二氧化钛的研究[J].涂料工业, 2005, 35(8): 49-50
    26 Sekhar S, Michael J H, Geoff D M, et al. Influence of stirrer speed on the precipitationof anatase particles from titanysulphate solution[J]. J Cryst Growth, 2001, 223 : 225-234
    27李凤生,杨毅,马振叶等.纳米功能材料与应用[M].北京:国防工业出版社, 2003: 31-33
    28张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001
    29解宪英.纳米级二氧化钛的制备及其应用进展(上)[J].上海化工, 2001, 1(3): 372-381
    30张玉龙,高叔理,李常德等.纳米改性剂[M].北京:国航工业出版社, 2004
    31 Jang H D, Kim S K. Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame reactor[J]. Matherials Research Buulletin, 2001, 36(3): 627-637
    32张玉龙,李长德,张银生等.纳米技术与纳米塑料[M].北京:中国轻工业出版社, 2002
    33李大成,周大利,刘恒等.纳米TiO2的制备[J].四川有色金属, 2003, (2): 1-8
    34张春光,邵磊,陈建峰等.超重力法制备纳米二氧化钛影响因素的研究[J].功能材料, 2003, 34(6): 662-664
    35胡晓珍,葛曼珍,杨辉等.纳米陶瓷TiO2的制备和特性[J].材料科学与工程, 1997, 15(2): 26-31
    36方湘怡,黄丽清,赵军武等.超临界干燥法制备TiO2微粉[J].西安交通大学学报, 1998, 32(8): 108-110
    37唐阳清,周馨我.纳米TiO2的制备方法[J].材料导报, 1995, (3): 20-26
    38 Suzuki M, Kagawa M, Syono Y, et al. Synthesis of Ultrafine Single-Component Oxide Particles by the Spray-ICP Technique[J]. J Master Sci, 1992, 27(3): 679-684
    39刘忠士,咎菱.超细TiO2粉体制备之微波水解法[J].武汉大学学报(理学版), 2001, 47(2): 192-194
    40王俊文,孙彦平,梁镇海等. RF-PCVD法纳米TiO2的制备及光催化研究[J].稀有金属材料与工程, 2004, 33(5): 478-481
    41 A Fujishima K, Honda. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:37-38
    42 R Wang, K Hashimoto, A Fujishima, et al. Light induced amphiphilic surfaces[J]. Nature, 1997, 388: 431-432
    43肖汉宁,李玉平.纳米二氧化钛的光催化特性及其应用[J].陶瓷学报, 2001, 22(3): 191-195
    44李晓平,徐宝琨,刘国范等.纳米TiO2光催化降解水中有机污染物的研究与发展[J].功能材料, 1999, 30(3): 242-245
    45时桂杰.关催化氧化处理水中污染物的研究现状及发展趋向[J].环境科学与技术, 1998, (3): 1-4
    46 Tada H, Kubo M, Inubushi Y, et al. N=N bond cleavage of azobenzene through Pt/TiO2 photocatalytic reduaction[J]. Chem Commun, 2000, (11): 977-978
    47 Bandam J, Mielczarski J A, Kiwi J. Molecular mechanism of surface recognition, Azo dyes degradation on Fe, Ti, and Al Oxides through metal sulfonate complexes[J]. Langmuir, 1999, 15(22): 7670-7679
    48 Galindo C, Jacques T, Kalt A. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation process: UV/H2O2, UV/TiO2 and Vis/TiO2[J]. J Photochem Photopbiol. A: Chem, 2000, 130(1): 35-47
    49方佑龄,赵文宽,尹少华等.纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷[J].应用化学, 1997, 14(2): 81-83
    50 Joanna Grzechulska, Maciej Hamerski, Antoni W Morawski, et al. Photocatalytic degradation of oil in water[J]. Water Research, 2000, 34(5): 1638-1644
    51 L A Dibble,G B Raupp. Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated[J]. Environ Sci Technol, 1992, 26(3): 492-495
    52黄婉霞,孙作凤,吴建春等.纳米二氧化钛光催化降解甲醛的研究[J].稀有金属, 2005, (1): 38-42
    53张健,吴全兴.纳米二氧化钛的研究进展[J].稀有金属快报, 2005, 24(3): 1-5
    54邓昭平,倪师军,庹先国等.纳米二氧化钛对有机污染物的光催化降解机理及发展趋势[J].成都理工大学学报(自然科学版), 2005, 32(1): 78-81
    55李雪冰.纳米二氧化钛及其复合物的制备和性质研究:[博士学位论文].合肥:中国科学技术人学化学系, 2007
    56 Wang R Hashimoto, K Fujishima A, Chikuni M, et al. Light-induced amphilic surface[J]. Nature, 1997, 388: 431-433
    57余家国,赵修建.多孔二氧化钛薄膜自清洁玻璃的亲水性和光催化活性[J].高等学校化学学报, 2000, 21(9): 1437-1440
    58 Sun R D, Nakajima A, Fujishima A, et al. Photoinduced surface wettability conversion of ZnO and TiO2[J]. Phys Chem B, 2001, 105(10): 1984-1990
    59 Huang Zh, Maness P M, Blake D M, et al. Bacterial mode of Titanium dioxide photocatalysis[J]. J Photochem Photobiol. A: C, 2000, 130: 163-170
    60 Jacoby W A, Maness P M,Wolfrum E J, et al. Mineralization of bacterial cell mass on a photocatalytic surface in air[J]. Environ Sci Technol, 1998, 32(17): 2650-2653
    61 Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and detoxificationeffects of TiO2 film photocatalysts[J]. Environ Sci Techno, l 1998, 32: 726-728
    62 Machida M, Norimato K, Watanabe T, et al. Effects of SiO2 addition in super-hydrophilic property of TiO2 photocatalys[J]. Mater Sci, 1999, 34: 2569-2574
    63刘守新,曲振平,韩秀文等. Ag担载对TiO2光催化活性的影响[J].催化学报, 2004, 25(2): 133-137
    64刘卫军.基于氧化钛的纳米结构复合膜的制备、表征及其性能研究: [硕士学位论文].北京:北京大学, 2000
    65徐群华,孟卫,杨绪杰等.纳米二氧化钛增强增韧不饱和聚酯树脂的研究[J].高分子材料科学与工程, 2001, 17(2): 158-160
    66 PINTAR A, BERCIC G, BESSON M, et al. Catalytic wet-air oxidation of industrial effluents: total mineralization of organics and lumped kinetic modeling [J]. Appl Catal B, 2004, 47(3): 143-152
    67 VAN GRIEKEN R, AGUADO J, LOPEZ-MUNOZ M J, et al. Photocatalytic degradation of ironcyanoco-mplexes by TiO2 based catalysts[J]. Appl Catal, 2005, 55(3): 201-211
    68 LIN Yunming, TSENG Yaohsuan, HUANG Jiahung, et al. Photocatalytic activity for degradation of nitrogen oxides overvisible light responsive titaniabased photocatalysts[J]. Environ Sci Technol, 2006, 40(5): 1616-1621
    69徐明芳,陈心满,徐开强.光催化反应器中光降解重金属Cr(Ⅵ)的研究[J].现代化工, 2005, 25(3): 30-33
    70 CHU W, WONG C C. The photocatalytic degradation ofdicamba in TiO2 suspensions with the help of hydrogen peroxide by different near UV irradiations [J]. Water Res, 2004 , 38(4): 1037-1043
    71 DOLL T E, FRIMMEL F H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol andiopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways [J], Water Res, 2004, 38(4): 955-964
    72 GRZECHULSKA J, MORAWSKI A Wl. Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water [J]. Appl Catal B, 2003, 46(2): 415-419
    73 DREW C, LIU X, ZIEGLER D, et al. Metal oxide coated polymer nanofibets[J]. Nano Letters, 2003, 3: 143-147
    74 LI D, XIA Y. Fabrication of titania nanofibers by electenspinning[J]. Nano Letters, 2003, 3(2): 555-560
    75李从举,翟国钧,付中玉等. TiO2纳米纤维无纺布的制备及光催化性能研究[J].无机化学学报, 2006, 22(11): 2061-2064
    76韩晓建,黄争鸣,何创龙等.聚碳酸酯/TiO2超细纤维的制备与表征[J].无机材料学报, 2007, 22(3): 407-412
    77许云波,延卫,刘湘鄂等.电喷法合TiO2纳米纤维与微米球及其光催化制氢性能[J].西安交通大学学报, 2005, 39(7): 693-696
    78郑岩,张玉军,孙士东.高压静电纺丝法制备EVOH/TiO2无纺布[J].纤维复合材料, 2006, (3): 17-19
    79李磊,王立国,王岩等.聚乙烯-乙烯醇/TiO2共混非织造布的制备及其表征[J].合成纤维, 2007, 8: 13-16
    80沈翔,于运花,李鹏等.聚丙烯腈/二氧化钛杂化纳米活性碳纤维制备与结构变化规律[J].化工进展, 2007, 26(7):974-979
    81冯淑芹,付中玉,李从举等. PA6/纳米TiO2复合亚微米级纤维的制备及拉伸性能[J].北京服装学院学报, 2006, 22(4): 18-22
    82侍井林,戴素华.基于静电纺丝技术制备Cu2+掺杂TiO2纳米纤维的研究[J].弹性体, 2006, 16(4): 38-41
    83王永芝.有机/无机纳米纤维的制备及其性能研究: [博士学位论文].长春:吉林大学化学学院, 2007
    84赵冬梅,张贞浴,杜宇红等.基于静电纺丝技术制备Zn2+掺杂TiO2纳米纤维[J].黑龙江大学自然科学学报, 2007, 24(3): 407-410
    85 Li D, Wang Y, Xia Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays[J]. Nano Lett, 2003, 3: 1167-1171
    86 Li D, Wang Y, Xia Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning[J]. Nano Lett, 2004, 4: 933-938
    87张双虎.静电纺丝技术制备TiO2@SiO2同轴纳米电缆与表征: [硕士学位论文].长春:长春理工大学化学与环境工程学院, 2007
    88 Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15): 2235-2253
    89杨清彪,王策,洪有良等.聚丙烯腈纳米纤维的再细化[J].高等学校化学学报, 2004, 25(3): 589-591
    90 Bognitzki M, Czado W, Frese T, et al. Nanostructured fibers via electrospinning[J]. Adv Mater, 2001, 13(1): 70-72
    91 Casper C L, Stephens J S, Tassi N G, et al. Controlling surfacemorphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process[J]. Macromolecules, 2004, 37(2): 573-578
    92 Zhao S L, Wu X H, Wang L G, et al. Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions[J]. Appl Polym Sci, 2004, 91(1): 242-246
    93 Matsuyama H, Takida Y, Maki T, et al. Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation[J]. Polymer, 2002, 43(19): 5243-5248
    94 Guan H Y, Shao C L, Wen S B, et al. Preparation and characterization of NiO nanofibers via an electrospinning technique[J]. Inorg Chem Commun, 2003, 6(10): 1302-1303
    95 Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Preparation and morphology of niobium oxide fibres byelectrospinning[J]. Chem Phys Lett, 2003, 374(2): 79-84
    96 Gong J, Shao C L, Yang G C, et al. Preparation of ultrafine fiber mats contained H4SiW12O40[J]. Inorg Chem Commun, 2003, 6(7): 916-918
    97范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展[J].科学通报, 2001, 46(4): 265-273
    98 Hoyer P. Semiconductor nanotube formation by a two-step template process [J]. Adv Mater, 1996, 8(10): 857-859
    99 Lei Y, Zhang L D, Meng G W, et al. Preparation and photoluminescence of highly ordered TiO2 nanowire arrays[J]. Appl Phys Lett, 2001, 78(8): 1125-1127
    100 Yuan Z Y, Colomer J, Su B L. Titanium oxide nanoribbons[J]. Chem Phys Lett, 2002, 363(3): 362-366
    101 Carp O, Huisman C L, Reller A, et al. Photoinduced reactivity of titamium dioxide[J]. Progress in Solid State Chemistry, 2004, 32(2): 33-177
    102 Calza P, Medana C, Pazzi M, et al. Photocatalytic transformation of sulphonamide on titanium dioxide[J]. Appl Catal B, 2004, 53(1): 63-69
    103 Liu H Z, Chen H Y, Zhang H, et al. Journal of Shanghai Jiaotong University (Shanghai Jiaotongdaxue Xuebao), 2001, 35(5): 680-683
    104 Li Y Z, Lee N H, Hwang D S, et al. Synthesis and characterization of nano titania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl2 aqueous solution at low temperatures[J]. Langmuir, 2004, 20(25): 10838-10844
    105 Z W Pan, Z R Dai, Z L Wang. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947-1949
    106 S Kar, S Chaudhuri. Shape selective growrth of CdS one-dimensional nano-structures by a thermal evaporation process[J]. J Phys Chem B, 2006, 110(10): 4542-4547
    107 W Shi, H Peng, N Wang, et al. Free-standing single crystal silicon nanoribbons[J]. J Am Chem Soc, 2001, 123(44): 11095-11096
    108 Z R Dai, Z W Pan, Z L Wang, et al. Gallium oxide nanoribbons and naposheets[J]. Phys Chem B, 2002, 106(5): 902-904
    109 Z Y Yuan, J F Colomer, B L Su, et al. Titanium oxide nanoribbons[J]. Chem Phys Lett, 2002, 363: 362-366
    110黄在银. TiO2纳米带的水热合成表征及光催化性能[J].厂西民族学院学报(自然科学版), 2005, 11(4): 117-120
    111商书芹.二氧化钛纳米材料的合成、表征及其光催化性能研究: [硕士学位论文].济南:山东大学纳米材料化学系, 2007
    112林茜,赵秀阁,毕伟等.α-Al2O3的性质对负载钯催化剂催化CO偶联反应的影响[J].催化学报, 2006, 27(10): 911-915
    113宋立民,李伟,张明慧等. Ni2P/SiO2-Al2O3催化剂的制备、表征及其4,6-二甲基二苯并噻吩加氢脱硫反应的催化性能[J].催化学报, 2007, 27(2): 143-147
    114王芳,吕功煊. Na-Rh/γ-Al2O3催化剂的表征及其CO选择氧化的催化性能[J].催化学报, 2007, 28(1): 27-33
    115杨秋红,曾智江,徐军等. Mg,Ti共Al2O3透明多晶陶瓷光谱性能研究[J].物理学报, 2006, 55(6): 2726-2729
    116王芬,安世武,范志康等.掺杂Nb2O5对自生Al2O3强化TiAl复合材料结构的影响[J].稀有金属材料与工程, 2006, 35(11): 1744-1747
    117杨秋红,曾智江,徐军等. Cr4+在Al2O3多晶体中的光谱性能研究[J].物理学报, 2006, 55(8): 4166-4169
    118杨琪,刘磊,沈彬等.氧化铝纳米线的催化氧化法制备及表征[J].无机材料学报, 2007, 22(2): 232-236
    119谈淑咏,方峰,施春陵等.挤压铸造法制备(Al2O3f+Cf)/ZL109复合材料及其组织观察[J].铸造, 2006, 55(11): 1145-1148
    120张少明,赵海霞,胡双启.非水介质中制备纳米Al2O3的研究[J].中北大学学报, 2007, 28(1): 60-63
    121沈湘黔,景茂祥,王涛平等.有机凝胶法制备微细纤维的研究[J].无机材料学报, 2005, 20(4): 821-826
    122张春野,沈湘黔,景茂祥等.有机凝胶-热分解法制备MgO,Al2O3,MgAl2O4微细纤维[J].稀有金属材料与工程, 2006, 35(9): 1470-1474
    123潘金芝,赵红,陈春焕等.由多孔型阳极氧化铝制备纳米氧化铝纤维[J].无机材料学报, 2006, 21(4): 828-832
    124王芬,范志康,吕臣敬.原位自生氧化铝纤维增强TiAl金属间化合物的制备[J].稀有金属材料与工程, 2006, 35(5): 791-793
    125李泉,宋慎泰.氧化铝基连续陶瓷纤维的发展现状[J].耐火材料, 2006, 40(1): 50-52
    126景茂祥,沈湘黔.氧化铝纤维的研究现状与发展趋势[J].矿冶工程, 2004, 24(2): 69-71
    127王德刚,仲蕾兰,顾利霞.氧化铝纤维的制备及应用[J].化工新型材料, 2002, 30(4): 17-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700