酶在新型纳米结构TiO_2薄膜电极上的固定化及其生物电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科学与技术的发展为新型高效、稳定的生物传感器的研发提供了条件。本论文主要是针对改性纳米TiO_2与酶复合电极的制备及其生物电化学传感性能进行了研究,同时对所合成的纳米TiO_2进行了光催化活性评价。努力实现纳米技术、生物传感技术和生物科学技术的三者有机结合。主要内容及结论如下:
     在溶胶-水热法所合成的锐钛矿相TiO_2纳米粒子基础上,通过浸渍过程实现了银、铂和钌这三种金属离子表面修饰的纳米TiO_2粉体的合成。荧光汞灯辐射下的光催化实验结果表明,Pt的修饰提高了TiO_2纳米粒子的杀菌效果,但效果并不十分明显。Ru的修饰降低了TiO_2纳米粒子的杀菌效果。Ag的表面修饰显著地提高了TiO_2纳米粒子的杀菌效果,尤其是在日光下也能够表现出较好的杀菌效果,进一步的拓展了其应用范围。
     在溶胶-水热法所合成的锐钛矿相TiO_2纳米晶基础上,利用模板剂调制的SiO_2溶胶进一步合成了SiO_2-TiO_2复合纳米粒子。重点研究了复合SiO_2对纳米锐钛矿相TiO_2热稳定性及光催化活性的影响。结果表明,复合SiO_2显著地提高了纳米锐钛矿相TiO_2的热稳定性,甚至经过900℃热处理后仍然具有以锐钛矿相为主的相组成。在光催化降解罗丹明B实验过程中,经过高温热处理的复合纳米粒子样品表现出了优越于国际商品P25-TiO_2的活性,这主要与其锐钛矿相结晶度提高而同时又有着较大比表面积等有关。
     贵金属的修饰及结晶度的提高有利于光生电荷的传输与分离,这为研发新型高效的酶传感器提供了条件。采用光还原法合成了Au纳米粒子修饰的纳米SiO_2-TiO_2复合物(Au/SiO_2-TiO_2),并将其应用于固定辣根过氧化物酶(HRP),考察利用Au纳米粒子修饰的纳米SiO_2-TiO_2复合物加速HRP与玻碳电极之间的直接电子传递行为,探索研制非媒介体型的过氧化氢传感器。实验结果表明,Au在纳米SiO_2-TiO_2上的修饰提高了HRP的电化学响应,HRP/Au/SiO_2-TiO_2/GC电极的氧化还原峰电流大于HRP/SiO_2-TiO_2/GC电极的峰电流;HRP/Au/SiO_2-TiO_2/GC电极中的HRP对过氧化氢具有较强的催化作用,对H_2O_2具有快速地电流响应。
The development of nano-techonology provides a new opportunity to the development of biosensors. Nanobiosening technology is revealing its superiority not only have good effect on it, but also on biosensor. This dissertation focuses on 1) fabricating novel biosensors based on new nanomaterials and nanostructures, and integrated them with microdialysis, flow injection analysis, etc. 2) establishing the bases for application of them to detect glucose, hypoxanthine and organophosphate pesticides. We are adhering to an organic combination of nanotechnology, biosensing technology and clinical researches. The details are given as follows:
     SiO_2-TiO_2 composite nanoparticles have been synthesized by utilizing TiO_2 nanopartilces obtained by a sol-gel method, followed by an impregnation process with Ag+, Pt+ and Ru3+ solution. The results of sterilization show that, the bactericidal effect of TiO_2 nanoparticles modified by Pt is stronger than that of TiO_2 nanoparticles, appreciably; The bactericidal effect of TiO_2 nanoparticles modified by Ru is lower than that of TiO_2 nanoparticles; The bactericidal effect of TiO_2 nanoparticles modified by Ag is obviously stronger than that of TiO_2 nanoparticles, especially under visible light, extending the application of TiO_2 nanoparticles.
     SiO_2-TiO_2 composite nanoparticles have been synthesized by utilizing TiO_2 nanopartilces obtained by a sol-gel method, followed by an impregnation process with SiO_2 sol. The effects of the SiO_2 on the thermal stability and photocatalytic activity of anatase nanoparticles were mainly investigated. The results show that the SiO_2 can greatly enhance the thermal stability, even having a principal anatase phase composition after thermal treatment at 900℃. During the processes of photocatalytic degradation RhB, all the as-prepared SiO_2-TiO_2 composite nanoparticles by thermal treatment at high temperature exhibit higher activity than P-25 TiO_2, which is attributed to their high anatase crystallinity and to their large surface area.
     Gold nanoparticles-modified SiO_2-TiO_2 nanocomposite (Au/SiO_2-TiO_2) was used to immobilize horseradish peroxidase (HRP) on a glassy carbon electrode surface for the construction of an amperometric hydrogen peroxide (H2O2) biosensor. The properties of HRP immobilized in the Au/SiO_2-TiO_2 film were characterized by the electrochemical methods. the HRP immobilized in Au/SiO_2-TiO_2/GC electrode exhibited a rapid electrocatalytical response. The good direct electrochemical behavior of HRP and electrocatalytical response to H2O2 reduction was due to the enhancement of specific surface area and the reduction of electron transfer resistance by the uniform deposition of gold nanoparticle on SiO_2-TiO_2 surface.
引文
[1]任光雷.纳米材料增效固定化酶电极的研究与应用[D].天津大学, 2006.
    [2]汪尔康. 21世纪的分析化学[M].科学出版社, 2001, 216.
    [3] Niwa O., Y. Xu, Halsall H. B., et al.. Small-volume voltammetric detection of 4-aminophenol with interdigitated electrodes and its application to electrochemical enzyme immunoassay [J]. Anal.Chem., 1993, 65(11): 1559-1563.
    [4] Kalab T., Skladal P.. Disposable multichannel immunosensors for 2, 4-dichlorophenoxyacetic acid using acetylcholinesterase as an enzyme label[J]. Electroanalysis., 1997: 9(2): 293-297.
    [5] J. Wang, L. Chen., Hocevar S. B., et al.. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose[J], Analyst, 2000 125(8): 1431-1434.
    [6] Hedenmo M., Narvacz A., Dominguez E., et al.. Improved mediated tyrosinase amperometric enzyme electrode[J]. J. Electroanal. Chem., 1997, 425(1): 1-11.
    [7] Vanderlaan M., Watkins B. E., Stanker L.. Environmental monitoriby immunoassay[J]. Environ. Sci. Tech., 1998, 22(2): 247-254.
    [8] Heyrovsky J.. Electrolysa so rtufovou kapkovou. Katkodou[J]. Chem. Listy., 1922, 16(2): 256-264.
    [9] [0]Bentley R.. Glucose oxidase[J]. The Enzymes, 1963, 7(2): 567-586.
    [10] Updike S. J., Hicks G. P.. The enzyme electrode[J]. Nature, 1967, 214(92): 986-988.
    [11] Janata J.. Immunoelectrode[J]. J. Am. Chem. Soc., 1975, 97(10): 2914-2916.
    [12] Cams S., Janata J.. Field effect transistor sensitive to penicillin[J]. Anal. Chem., 1980, 52 (12): 1935-1937.
    [13] Rechnitz G. A.. Biosensor using lettuce-seed meal for L-glutamine[J]. Chem. Eng. News, 1978, 56(41): 16-18.
    [14]司士辉.生物传感器.北京化学工业出版社[M], 2003, 1-2.
    [15] J. G. Zhao, Daly J. P, Kens R. W.. A xanthine oxidase/colloidal gold enzymeelectrode for amperometric biosensor applications[J]. Biosens. Bioelectron, 1996, 11: 493-502.
    [16]沈同,王镜岩.生物化学,北京:高等教育出版社[M], 2000: 232-316.
    [17]张洪渊.生物化学教程,成都:四川大学出版社[M], 2002: 158-165.
    [18] [0] D. M. Sun, C. X. Cai, X. G. Li., et al.. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon[J]. J.Electroanal. Chem., 2004, 566: 415-421.
    [19] S. Q. Liu, H. X. Ju. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode[J]. Biosens. Bioelectron, 2003, 19: 177-183.
    [20] Sergey S., Anna J., Anna K., et al. Direct electron transfer reactions of laccases from different origins on carbon electrodes[J]. Bioelecirochemistry, 2005, 67: 115-124.
    [21] Volodkin D. V., Larionova N. L., Sukhorukov G. B.. Protein encapsulation via porous CaCO3 microparticles templating[J]. Biomacromolecules, 2004, 5: 1962-1972.
    [22] Clark L. C., Lyons C.. Electrode system for continuous monitoring in cardiovascular surgery, ann. NewYork acadamic.[J]. Science, 1962, 102: 29-45.
    [23] [0]Ricci F., Amine A., Palleschi G., Moscone D.. Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability[J]. Biosens.Bioelectron, 2003, 18(2-3): 165-174.
    [24] [0]土洪柞,刘世勇.酶和细胞的固定化[J].化学通报, 1997, 2: 22-27.
    [25] [0][0]董绍俊,车广礼,谢远武.化学修饰电极[M].第一版.北京:科学出版社, 1995.
    [26] Ikeda T., Shibata T., Senda M.. Amperometric enzyme electrode for maltose based on an oligosaccharide dehydrogenase-modified carbon paste electrode containing p-benzoquinone[J]. J Electroanal Chem., 1989, 261: 351-362.
    [27] Lechband D., Langer R. An approach for the stable immobilization of proteins[J]. Biotech& Bioeng, 1991, 37: 227-237.
    [28] Williams R. A., Blanch H. W.. Covalent immobilization of protein monolayers forbiosensor applications[J]. Biosensor&Bioelectronics, 1994, 9: 159-167.
    [29] [0] Suzuki S., Hirose S.. Development and future prospects of biosensor membranes for analysis[J]. Bioengineering, 1986,2(3): 1-15.
    [30] [0][0]Boyaral P., Goulet J.. Optimal conditions for production of lactic acid from cheese whey permeate by Ca-alginate-entrapped lactobacillus helveticus[J]. Enzyme Microbial Technol, 1988, 10(12): 725-728.
    [31] Wollenberger U., Scheller F., Pfeiffer D., Bogdanovskaya V. A., Tarasevich M. R. Hanke G.. Laccase/glucose oxidase electrode for determination of glucose[J]. Anal Chim Acta, 1986,187: 39-45.
    [32] Kirstein D., Kirstein L., Scheller F.. Enzyme electrode for urea with amperometric indication: part I-basic principle[J]. Biosensors, 1985, 1(1): 117-130.
    [33]张先恩,张兴,夏祥明等.酶电极流动注射分析法测定葡萄糖[J].生物化学杂志, 1990, 6(4): 294-300.
    [34] Kerenvez J. P., Konate L., Romette J. L.. Determination of substrate concentrations by a computerized enzyme electrode[J]. Biotech&Bioengin, 1983, 25: 845-855.
    [35] Hodak J., Etchenique R., Calvo E. J., Singhal K., Bartlett P. N.. Layer-by-Layer Self-assembly of Glucose oxidase with a poly(allylamine) ferrocene redox mediator[J]. Langmuir, 1997, 13: 2708-2716.
    [36] Tien H. T., Salamon Z., Vlkochev S., Ottova A., Zviman M..以双层脂膜为基础的生物传感器和器件及其应用及进展[J].生物化学与生物物理进展, 1992, 19: 100-104.
    [37]李泰明,徐秀兰,李伟等.AS 1-398中性蛋白酶固定化条件的初步研究[J].药物生物技术, 1998, 5 (4): 214-218.
    [38]钱军民,李旭祥.纤维素固定化葡萄糖氧化酶的研究[J].西安交通大学学报, 2001, 35(4): 416-420.
    [39]李军,伊敏,吴清泉等.丙烯醛在聚苯乙烯小球表面预辐射接枝及其对蛋白质固定化[J].高分子学报, 1999, 2: 252-254.
    [40]雷福厚,杨再环,石晓红.高分了络合树醋固定化多酚氧化酶的研究[J].生物化学与生物物理进展, 2000, 27(4): 434-437.
    [41]黄锡荣,李越中,姜兴涛等.脂肪酶微乳液的凝胶固定化技术[J].药物生物技术, 2000, 7(2): 93-97.
    [42] S. H. Huang, M. H. Liao, D. H Chen. Direct binding and characterization of lipase onto magnetic nanoparticles[J]. Biotechnol Prog, 2003, 19: 1095-1100.
    [43] J. M. Zen, C. W. Lo. A glucose sensor made of an enzymatic clay-modified electrode and methyl viologn mediator[J]. Anal. Chem., 1996, 68(15): 2635-2640.
    [44]周华,杨正景,欧阳平凯.固定化细胞法制备L-天冬氨酸中甲壳素固定化条件的确定[J].南京化工大学学报, 1999, 12(2): 68-70.
    [45] Horisberger M.. Colloidal gold as a tool in molecular biology[J]. Trends Biochem Sci., 1983, 8: 395-397.
    [46] Crnmbliss A. L., Stonehuerner J., Henkens R. W., O'Daly J. P., J. Zhao. The use of inorganic materials to control or maintain immobilized enzyme activity[J]. New J Chem., 1994, 18: 327-339.
    [47] Z. J. Chen, X. M. Ou, F. Q. Tang, L. Jiang. Effect of nanometer particles on the adsorbability and enaymatic activity of glucose oxidase[J]. Colloids and Surfaces B., 1996, 7: 173-179.
    [48] Vertegel A. A., Siegel R. W., Dordick J. S.. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme[J]. Langmuir, 2004, 20: 6800-6807.
    [49] Y. X. Huang, W. J. Zhang, H. Xiao, G. X. Li. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode[J]. Biosensors and Bioelectronics. 2005, 30(4): 456-460.
    [50]张立德,牟季美.纳米材料和纳米结构[M].科学出版社:北京, 2001.
    [51] Brown K. R., Natan M. J.. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes[J]. J. Am. Chem. Soc., 1996, 118: 1154-1157.
    [52] H. Y. Gu, A. M. Yu, H. Y. Chen. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode[J]. J.elelctroanal.chem., 2001, 516: 119-126.
    [53] Y. Xiao, H. X. Ju, H. Y. Chen. Hydrogen peroxide sensor based on horseradishperoxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer[J]. Anal. Chim. Acta., 1999, 391: 73-82.
    [54] E. Katz Willner.. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications[J]. angewande chemie international edition, 2004, 43: 6042-6108.
    [55] Y. Xu, W. L. Peng, X. J. Liu, G. X. Li. A new film for the fabrication of an unmediated H2O2 biosensor[J]. Biosensors and Bioelectronics, 2004, 20(3): 533-537.
    [56] D. Avnir, S. Braun, O. Lev, M. Ottolengi. Enzymes and other proteins entrapped in Sol-Gel. Materials[J]. Chem. Mater., 1994, 6: 1605-1614.
    [57] J. Wang. Anal.. Sol–gel materials for electrochemical biosensors[J]. Chim. Acta., 1999, 399: 21-27.
    [58] E. Topoglidis, A. E. G. Cass, C. Gilard, S. Sadeghi, N. Beaumont, J. R. Durrant. Protein adsorption on nanocrystalline TiO_2 films: an immobilization strategy for bioanalytical devices[J]. Anal.Chem., 1998, 70: 5111-5113.
    [59] O.Y. Nadzhafova, V. N. Zaitser, M.V. Drozdiva, A. Vaze, J. F. Rusting. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium[J]. Electrochem. Commun., 2004, 6: 105-109.
    [60] Q. L. Wang, G. X. Lu, B. J. Yang. Myoglobin/Sol-Gel film modified electrode: direct electrochemistry and electrochemical catalysis[J]. Langmuir, 2004, 20: 1342-1347.
    [61] A. E. Kasmi, M. C. Leopold, R. Galligan, R. T. Robertson, S. S. Savedra, K. E. Kacemi, E. F. Bowden. Heme proteins sequestered in silica sol–gels using surfactants feature direct electron transfer and peroxidase activity[J]. Electrochem. Commun., 2002, 4: 177-181.
    [62] E. Topoglidis, Colin J., Campbell. Nitric Oxide Biosensors based on the immobilization of hemoglobin on mesoporous titania electrodes[J]. J.Electroanl. Chem., 2006, 18(9): 882-887.
    [63] K. J. Mckenzie, F. Marken. Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO_2 phytate[J]. Langmuir, 2003, 19:4327-4331.
    [64] M. A. Franco, J. M. Thomas, R. D. Shannon. Crystallographic shear structures derived from CrO2: An electron microscopic study[J]. Journal of Solid State Chemistry, 1974, 9(3): 261-266.
    [65] M. Andrew, L. H. Stephen. An overview of semiconductor photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108: 1-35.
    [66] Y. Nosaka, M. A. Fox. Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width[J]. J. Phys. Chem., 1988, 92(7): 1893-1897.
    [67] I. L. Marta. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems[J]. Applied Catalysis B: Environmental, 1999, 23: 89-114.
    [68] R. M. Alberici, W. F. Jardim. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide[J]. Appl. Catal. B: Environ., 1997, 14: 55-68.
    [69] E. Brillas, E. Mur, R. Sauleda, L. Sànchez, J. Peral, X. Domènech, J. Casado. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes[J]. Appl. Catal. B: Environ., 1998, 16: 31-42.
    [70] J. Schwitzgebel, J. G. Ekerdt, H. Gerischer, Adam Heller. Role of the oxygen molecule and of the photogenerated electron in TiO_2-Photocatalyzed air oxidation reactions[J]. J. Phys. Chem., 1995, 99(15): 5633-5638.
    [71] M. Anpo, T. Shima, S. Kodama, Y. Kubokawa. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates[J]. J. Phys. Chem., 1987, 91(16): 4305-4310.
    [72] J. M. Herrmann. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types aqueous pollutants[J]. Catal. Today, 1999, 53(1): 115-129.
    [73]毛立群,杨建军,李庆霖等.多孔纳晶TiO_2薄膜光催化剂的研制及其催化性能[J].催化学报, 2003, 24(7): 553-557.
    [74]姚焕英.纳米材料及其在环境科学中的应用[J].陕西环境, 2002, 9(4): 27-29.
    [75] [0]刘孝恒,汪信,杨绪杰等.纳米二氧化钛的制备、表征及应用[J].江苏化工, 1999, 27(5): 5-7.
    [76]李佩衍,阎红,邱志光.汽车尾气净化催化剂载体表面改性的研究[J].稀土, 2001, 22(2): 46-49.
    [77] S. M. Attia.溶胶-凝胶法制备TiO_2薄膜及其光学特性[J].同济大学学报, 2001, 29(10): 1209-1212.
    [78]余家国. TiO_2/ SnO2纳米薄膜的光催化活性和亲水性[J].物理化学学报, 2001, 17(3): 261-264.
    [79]赵修建.聚乙二醇添加量对TiO_2薄膜光催化性能的影响[J].武汉理工大学学报, 2001, 23: 18-19.
    [80]于向阳.铁、铬离子掺杂对TiO_2薄膜光催化活性的影响[J].无机材料学报, 2001, 16(4): 742-745.
    [81] E. Topoglidis, A. E. G. Cass, G. Gilardi, S. Sadeghi, N. Beaumont, J. R. Durrant. Protein adsorption on nanocrystalline TiO_2 films: an immobilization strategy for bioanalytical devices[J].Anal. Chem., 1998, 70 (23): 5111-5113.
    [82] E. Topoglidis, A. E. G. Cass, B. O Regan, J. R. Durrant. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO_2 and ZnO films[J]. J. Electroanal. Chem., 2001, 517 (1-2): 20-27.
    [83] E. Topoglidis, C. J. Campbell, A. E. G. Cass, J. R. Durrant. Factors that affect protein adsorption on nanostructured titania films. A Novel Spectroelectrochemical Application to Sensing[J]. Langmuir, 2001, 17(25): 7899-7906.
    [84] E. Topoglidis, Y. Astuti, F. Duriaux, M. Gratzel, J. R. Durrant. Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline in oxide electrodes[J]. Langmuir, 2003, 19(17): 6894-6900.
    [85] J. Wang, P. V. A. Pamidi, M. Jiang. Low-potential stable detection ofβ-NADH at sol-gel derived carbon composite electrodes [J]. Anal. Chim. Acta., 1998, 360 (1-3): 171-178.
    [86] Q. W. Li, G. A. Luo, J. Feng. Direct electron transfer for heme proteins assembled on nanocrystalline TiO_2 film[J]. Electroanal., 2001, 13: 359-363.
    [87] Y. Zhang, P. L. He, N. F. Hu. Horseradish peroxidase immobilized in TiO_2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry andbioelectrocatalysis [J].Electrochim. Aeta., 2004, 49(12): 1981-1988.
    [88] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake. Photochemical sterilization of microbial cells by semiconductor powders[J]. FEMS Microbiol. Lett., 1985, 29(4): 211-214.
    [89] A. Fujishima, N. R. Tata, A. T. Donald. Titanium dioxide photocatalysis[J]. Photochem Photobiol C: Photochem Rev., 2000, 1: 1-21.
    [90] Y. Horie, D. A. David, M. Taya, S. Tone. Efects of light intensity and titanium dioxide concentration on photocatalytic sterilization rates of microbial cells[J]. Ind Eng Chem Res., 1996, 35: 3920-3926.
    [91] K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima. Bactericidal and detoxification effects of TiO_2 thin film photocatalysts[J]. Environ Sci Technol., 1998, 32(5): 726-728.
    [92] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima. Photocatalytic bactericidal effect of TiO_2 thin films: dynamic view of the active oxygen species responsible for the effect[J]. J. Photochem. Photobiol. A., 1997, 106: 51-56.
    [93] S. Nagame, T. Oku, M. Kambara, etal. Antibacterial effect of the powdered semiconductor TiO_2 on the viability of oral micro-organisms[J]. J. Dent. Res, 1989, 68: 1696-1697.
    [94] H. N. Pham, E. Wilkins, A. S. Heger, et al.. Quantitative analysis of variations in initial Bacillus pumilus spore densities in aqueous TiO_2 suspension and design of a photocatalytic reactor[J]. J Environ. Sci. Health, Part A: Environ Sci Eng Toxic Hazard Subst Control, 1997, 32(1): 153-163.
    [95] I. M. Butterfield, P. A. Christensen, T. P. Curbs, J. Gunlazuardi. Water disinfection using an immobilized titanium dioxide film in a photochemical reactor with electric field enhancement[J]. Water Res., 1997, 31(3): 675-677.
    [96] B. Kim, D. Kim, D. Cho, S. Cho. Bactericidal effect of TiO_2 photocatalyst on selected food-borne pathogenic bacteria[J]. Chemosphere, 2003, 52(1): 277-281.
    [97] J. A. Jlmay, I. Fridovich. Suppression of oxidative damage by pseudoreversion of a superoxide dismounts deficient mucanc of E .Coli[J]. J Bacteriol., 1992, 174(3): 953-961.
    [98] K. Shimada, K. Shimahara. Responsibility of hydrogen peroxide for the lethality of resting Escherichia Coli. B cells [J]. Agric Biol Chem., 1982, 46(8): 1329-1337.
    [99]吕跃钢,马家津. TiO_2/GAC光催化剂对中水杀菌效果的研究[J].北京工商大学学报(自然科学版), 2005, 23(4): 4-7.
    [100]苏会东,郝清伟,邵忠财,翟玉春.载银微弧氧化TiO_2膜光催化杀菌研究[J].稀有金属快报, 2005, 24 (10): 18-22.
    [101] M. Addamo, V. Augugliaro, A. D. Paola, E. Garcia-Lopez, V. Loddo, G. Marci, R. Molinari, L. Palmisano, M. Schiavello. Preparation, Characterization and photoactivity of polycrystalline nanostructured TiO_2 catalysts[J]. J. Phys. Chem. B, 2004, 108(10): 3303-3310.
    [102] R. A. Spurr, H. Myers. Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer[J]. Anal Chem., 1957, 29: 760-762.
    [103] K. Li, D. Wang, F. Wu et al.. Surface Electronic states and photovoltage gas-sensitive characters of nanocrystalline LaFeO3. materials[J]. Chemistry and Physics, 2000, 64: 269-272.
    [104] X. Qian, D. Qin, Q. Song et al.. Surface Photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO_2 electrodes[J]. thin solid films, 2001, 385: 152-161.
    [105]王宝辉,王德军,崔毅等. CdS超微粒子薄膜电极的光电化学特性[J].高等学校化学学报, 1995, 16: 1610-1613.
    [106] Y. Lin, D. Wang, Q. Zhao et al.. A Study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy[J]. J. Phys. Chem. B, 2004, 108: 3202-3206.
    [107] N. Ashkenasy, M. Leibovitch, Y. rosenwaks et al.. Characterization of quantum well structures using surface photovoltage spectroscopy[J]. Mat. Sci. Eng. B, 2000, 74: 125-132.
    [108] Kayano S., Yoshihiko K., Kazuhitoh.. Bactericidal and detoxification effects of TiO_2 thin film photocatalysts[J]. Environmental Science, 1998, 32(5): 726-728.
    [109] Kayano S., Tohiya W., Kazuhito H.. Bactericidal activity of copper-depositedTiO_2 thin film under weak UV light illumination[J]. Environ. Sci. Technol., 2003, 37: 4785-4789.
    [110] C. Hu, Y. Q. Lan, J. H. Qu, et al.. Ag/AgBr/TiO_2 visible light photocatalyst for destruction of azodyes and bacteria[J]. J. Phys. Chem. B, 2006, 110(9): 4066-4072.
    [111] Z. X. Lu, L. Zhou, Z. L. Zhang, et al.. Cell damage induced by photocatalysis of TiO_2 thin films[J]. Langmuir, 2003, 19: 8765-8768.
    [112] Z. X. Lu, Z. L. Zhang, M. X. Zhang, et al.. Core/Shell Quantum-Dot- Photosensitized Nano-TiO_2 Films: Fabrication and application to the damage of cells and DNA[J]. J. Phys. Chem. B, 2005, 109: 22663-22666.
    [113] J. Yu, W. Ho, J. Lin. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO_2 films coated on a stainless steel substrate[J]. Environ. Sci. Technol, 2003, 37: 2296-2301.
    [114] Fox M. A., Dulay M. T.. Heterogeneous photocatalysis[J]. Chem. Rev., 1993, 93(1): 341-367.
    [115] Hoffmann M. R., Martin S. T., Choi W. Y., et al.. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96.
    [116] L. Q. Jing, X. J. Sun, B. F. Xin, et al.. The preparation and characterization of La doped TiO_2 nanoparticles and their photocatalytic activity[J]. Journal of Solid State Chemistry, 2004, 177: 3375-3382.
    [117] O. Carp, C. L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide[J]. Solid State Chem.[J], 2004, 32: 33-177.
    [118] J. Zhang, M. J. Li, Z. C. Feng, et al.. UV Raman spectroscopic study on TiO_2. I. phase transformation at the surface and in the bulk[J]. J. Phys. Chem. B, 2006 110: 927-935.
    [119] C. Hu, Y. Z. Wang, H. X. Tang. Preparation and characterization of surface bond-conjugated TiO_2/SiO_2 and photocatalysis for azo dyes[J]. Applied Catalysis B:Environmental, 2001, 30: 277-285.
    [120] K. Y. Shi, Y. J. Chi, H. T. Yu, et al.. Controlled growth of mesostructured crystalline iron oxide nanowires and fe-filled carbon nanotube arrays templated bymesoporous silica SBA-16 film[J]. J. Phys. Chem. B, 2005, 109: 2546-2551.
    [121] S. D. Li, L. Q. Jin, W. Fu, et al.. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation[J]. Mater. Res. Bull., 2007, 42: 203-212.
    [122] P. Cheng, M. R. Zheng, Y. P. Jin, et al.. Preparation and characterization of silica-doped titania photocatalyst through sol–gel method[J] .Mater. Lette., 2003, 57: 2989-2994.
    [123] P. Cheng, J. X. Qiu, M. Y. Gu. Synthesis of shape-controlled titania particles from a precursor solution containing urea[J]. Materials Letter, 2004, 58(29): 3751-3755.
    [124] Lee D. W. , Ihm S. K., Lee K. H.. Mesostructure control using a titania-coated silica nanosphere framework with extremely high thermal stability[J]. Chem. Mater., 2005, 17(17): 4461-4467.
    [125] P. Cheng, M. P. Zheng, Y. P. Jin, et al.. Preparation and characterization of silica-doped titania photocatalyst through sol–gel method[J]. Materials Letter, 2003, 57(20): 2989-2994.
    [126] Jung K. Y., Park S. B.. Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene[J]. Appl. Catal., 2000, 25: 249-256.
    [127] X. T. Gao, Wachs I. E.. Investigation of Surface Structures of Supported Vanadium Oxide Catalysts by UV-vis-NIR Diffuse Reflectance Spectroscopy[J]. J. Phys. Chem. B, 2000, 104: 1261-1268.
    [128] Z. M. Liu, Y. Yang, H. Wang, Y. L. Liu, G. L. Shen, R. Q. Yu. A Hydrogen peroxide biosensor based on nano-Au/PAMAM dendrimer/cystamine modified gold electrode [J]. Sens. Actuat. B, 2005, 106: 394-400.
    [129] E. C. Hurdis, J. H. Romeyn. Accuracy of determination of hydrogen peroxide by cerate oxidimetry[J]. Anal. Chem., 1954, 26: 320-325.
    [130] C. Matsubara, N. Kawamoto, K. Takamura. Oxo [5, 10, 15, 20-tetra (4-pyridyl) porphyrinato] titanium (IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide[J]. Analyst, 1992, 117: 1781-1784.
    [131] S. Hanaoka, J. M. Lin, M. Yamada. Chemiluminescent flow sensor for H2O2 basedon the decomposition of H2O2 catalyzed by cobalt (II)-ethanolamine complex immobilized on resin[J]. Anal. Chim. Acta, 2002, 426: 57-64.
    [132] S. Wu, H. Zhao, H. Ju, C. Shi, J. Zhao. Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose[J]. Electrochem. Comm., 2006, 8: 1197-1203.
    [133] M. G. Garguilo, N. Huynh, A. Proctor, A. C. Michael. Amperometric sensors for peroxide, choline, and acetylcholine based on electron transfer between horseradish peroxidase and a redox polymer[J]. Anal. Chem., 1993, 6: 523-528.
    [134] J. Hong, H. Ghourchian, S. Rezaei-Zarchi, A. A. Moosavi-Movahedi, S. Ahmadian, A. A. Saboury. Nafion-methylene blue functional membrane and its application in chemical and biosensing[J]. Anal. Lett., 2007, 40: 483-496.
    [135] T. Ruzgas, E. Cs?regi, J. Emnéus, L. Gorton, C. Marko-Varga. Peroxidase- modified electrodes: Fundamentals and application [J]. Anal. Chim. Acta., 1996, 330(2-3): 123-138.
    [136] O. Ryan, M. R. Smyth, C.ó. Fágáin. Thermostabilized chemical derivatives of horseradish peroxidase[J]. Enzyme Microb. Technol, 1994, 16(6): 501-505.
    [137] T. Loetzbeyer, W. Schuhmann, H. L. Schmadt. Minizymes. A new strategy for the development of reagentless amperometric biosensors based on direct electron-transfer processes[J]. Bioelectrochem. Bioenerg., 1997, 42(1): 1-6.
    [138] A. Morales, F. Céspedes, J. Munoz, E. Martínez-Fábregas, S. Alegert. Hydrogenperoxide amperometric biosensor based on a peroxidase-graphite-epoxy biocomposite[J]. Anal. Chim. Act., 1996, 332, 131-138.
    [139] F. A. Armstrong. Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions[J]. J. Chem. Soc. Dalton. Trans., 2002, 5: 661-671.
    [140] A. L. Ghindilis, P. Atanasov, E. Wilkins. Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications [J]. Electroanalysis, 1997, 9(9): 661-674.
    [141] W. Schuhmann. Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers[J]. Biosens. Bioelectron., 1995, 10: 181-193.
    [142] I. Winner, E. Katz. Integration of layered redox proteins and conductive supports for bioelectronic applications[J]. Angew. Chem. Int. Ed., 2000, 39(7): 1180-1218.
    [143] M. Viticoli, A. Curulli, A. Cusma, S. Kaciulis, S. Nunziante, L. Pandolfi, F. Valentini, G Padeletti. Third-generation biosensors based on TiO_2 nanostructured films[J]. Mater. Sci. Eng. C, 2006, 26: 947-951.
    [144] D. M. Yu, B. Blankert, E. Bodoki, S. Bollo Kauffmann. Amperometric J. C. Vire, R. Sandulescu, A. Nomura, J. biosensor based on horseradishperoxidase- immobilised magnetic microparticles[J]. Sens. Actuat. B., 2006, 113: 749-754.
    [145] Y. Zhuo, R. Yuan, Y. Chai, Y. Zhang, X. L. Li. amperome antibody tric immunosensor based on immobilization of Zhu, N. Wang. An Hepatitis B surface on gold electrode modified gold nanoparticles and horseradish peroxidase[J]. Anal. Chim. Acta, 2005, 548: 205-210.
    [146] L. Wang, E. Wang. Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode[J]. Electrochem. Commun, 2004, 6: 49-54.
    [147] H.Y. Gu, A. M. Yu, H. Y. Chen. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode[J]. Electraanal. Chem., 2001, 516:119-126.
    [148] W. Yang, Y. Li, Y. Bai, C. Sun. Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a nafion film[J]. Sens. Actuat. B, 2006, 115: 42-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700