基于视觉的驾驶行为建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车保有量的急剧增加,交通安全问题日益突显。驾驶行为建模是自主驾驶和车辆安全辅助驾驶的关键技术之一,对减少交通事故、提高交通安全具有重大的理论意义和应用价值,本文围绕基于视觉的驾驶行为建模的关键技术进行了深入研究。论文的主要工作和创新点如下:
     (1)提出了一种基于序列图像的交通场景三维重建方法。采用EM算法进行静态点集和基础矩阵估计,E步利用极线约束和基础矩阵检测交通场景中的静态特征点,M步根据静态点采用8点法估计基础矩阵;利用奇异值分解和绝对二次曲线约束估计投影矩阵;提出了基于PCA的交通运动场景点的重建方法,使用PCA确定轨迹基元,将运动场景点的轨迹看作是轨迹基元的线性组合,利用最小二乘法求得场景点的三维轨迹,实现交通运动场景点的重建。该方法省去了摄影重建的过程,大大减少了计算复杂度。实验结果表明了该方法的有效性。
     (2)提出了基于协方差描述子的交通场景理解方法。为了克服基于单一特征的交通场景分割与识别的不足,采用交通场景的运动结构特征、纹理和颜色特征,并利用协方差描述子进行多特征融合,以消除特征冗余以及不同特征数值悬殊对图像分割的影响;使用多类LogitBoost分类器进行交通场景分割与识别。实验结果表明该方法有效地提高了交通场景分割与识别的效果。
     (3)将视觉注意机制引入交通险情的检测,提出了基于视觉注意力模型的交通险情的检测方法。为了提高检测速度,采用半球形稀疏采样法减少了计算量;使用贝叶斯概率模型和高斯核函数对交通视频进行非参数显著性度量,分析视频显著性,采用多尺度显著图计算方法以提高检测精度。实验结果表明该方法能有效检测交通险情。
     (4)提出了基于贝叶斯模型的驾驶行为建模方法,以贝叶斯概率模型作为驾驶模型,根据交通场景和车辆自身的速度、位置信息,预测正常情况下的驾驶行为;利用稀疏贝叶斯学习方法对模型参数进行估计。该模型实现了直行、变道、加速、减速等多种驾驶行为的预测。实验结果证明本文方法有较好的预测性能。
     (5)提出了基于模糊规则的险情驾驶行为建模方法。根据驾驶人的经验,建立了7种情况险情驾驶行为模糊规则集,结合高斯函数和Sigmoid函数给出了混合型隶属函数,并利用C均值聚类法和梯度下降法对模糊规则模型参数进行估计。实验结果证明该方法能很好的描述人的驾驶行为,可用于各种险情的驾驶行为决策。
Transportation safety problems have become more and more obvious with rapid growth of vehicle population. Driving behavior modeling is one of the key technologies of autonomous driving and safety vehicle assistant driving, which has great theoretical significance and applied value in reducing accidents and improving traffic safety. In this dissertation, the exploratory research work has been done regarding driving behavior modeling based on vision, which include3D traffic scene reconstruction, traffic scene understanding, dangerous traffic events detecting, and driving behavior modeling.The main contributions of this dissertation are summarized as follows:
     (1) The3D reconstruction method of traffic scene based on image sequence is proposed. The EM algorithm is adopted to estimate static feature points and the fundamental matrix. In step E, static feature points of traffic scene are detected by using epipolar constraint and fundamental matrix. In step M,8-points algorithm is applied to compute the fundamental matrix based on the static feature points.This method also estimates Projection Matrix by using singular value decomposition and the restriction of absolute conic. The reconstruction method of traffic scene's moving points based on PCA is proposed. This method determines the trajectory basis by using PCA, and the trajectory of scene's moving points can be seen as the linear combination of trajectory basis. The reconstruction of traffic scene is achieved by calculating the3-D trajectory using least squares method. This method omits the process of projective reconstruction and reduces the computational complexity distinctly. Experimental results prove the effectiveness of this method.
     (2) An approach for traffic scene understanding is proposed based on covariance descriptor. In order to overcome the drawback of segmenting and recognizing the traffic scene based on single feature, this method adopts the movement structure features, texture and color features in traffic sense, and uses covariance descriptors to integrate multi-feature for eliminating feature redundancy and effects on image segmentation causing by the numerical disparity of different features. The multiclass LogitBoost classifier is used for image segmentation to improve the accuracy of segmentation. Experimental results show that this method can effectively improve the effect of traffic scene segmentation and recognition.
     (3)The method is proposed to detect dangerous traffic events based on visual attention models. The Hemispherical sparse sampling method has been adopted to improve the detecting speed; The Bayesian probability models and Gaussian kernel function has been used to do nonparametric saliency measure of video in order to analyze visual attention; The calculation method base on multi-scale saliency map has been used to improve the detection accuracy. The experimental results show that this method can effectively detect traffic danger.
     (4) The method of driving behavior modeling based on Bayesian model is proposed. This method can predict the appropriate driving behavior based on the traffic scene and the car's own speed, location information. Besides, the model parameters are estimated by adopting the sparse Bayesian learning method. This model achieves the prediction of several driving behaviors such as going straight, changing lanes, accelerating, decelerating and so on. The experimental results show that our method has a good performance on driving behavior predicting.
     (5) The method to model driving behaviors is put forward based on fuzzy rules under a dangerous traffic environment. The fuzzy rules of seven driving behavior is established according to the driver's experience. It gives a mixed membership function by combining Gaussian function with Sigmoid function and an estimation of the model parameters of fuzzy rules by adopting a C-means clustering method and gradient descent. The experimental results show that this method can be very good for driver's behavior description and can be used in all kinds of driving behavior decisions when it is dangerous.
引文
[1]Mima H, Ikeda K, Shibata T, et al. Estimation of driving phase by modeling brake pressure signals[C].Neural Information Processing, Springer Berlin Heidelberg,2009:468-475.
    [2]Berndt H, Dietmayer K.Driver Intention Inference with Vehicle Onboard Sensors[C].Vehicular Electronics and Safety ICVES 2009 IEEE International Conference on Pune,2009:102-107.
    [3]Khodayari A, Ghaffari A, Kazemi R, et al. ANFIS based modeling and prediction car following behavior in real traffic flow based on instantaneous reaction delay[C].Intelligent Transportation Systems (ITSC),2010 13th International IEEE Conference on IEEE,2010:599-604.
    [4]Labayrade R, Royere C, Aubert D. A collision mitigation system using laser scanner and stereovision fusion and its assessment[C].Intelligent Vehicles Symposium,2005 Proceedings IEEE,2005:441-446.
    [5]Hillenbrand J, Kroschel K, Schmid V. Situation assessment algorithm for a collision prevention assistant[C].Intelligent Vehicles Symposium,2005 Proceedings IEEE,2005:459-465.
    [6]Hayashi K, Kojima Y, Abe K, et al. Prediction of stopping maneuver considering driver's state[C].Intelligent Transportation Systems Conference, 2006 ITSC'06,IEEE,2006:1191-1196.
    [7]Toledo R, Pinzolas M, Cano-Izquierdo J M. Supervised dFasArt:A Neuro-fuzzy Dynamic Architecture for Maneuver Detection in Road Vehicle Collision Avoidance Support Systems[M].Nature Inspired Problem-Solving Methods in Knowledge Engineering. Springer Berlin Heidelberg,2007: 419-428.
    [8]Zamora-Izquierdo M A, Toledo-Moreo R, Valdes-Vela M, et al. Neuro-fuzzy based maneuver detection for collision avoidance in road vehicles[M].Nature Inspired Problem-Solving Methods in Knowledge Engineering. Springer Berlin Heidelberg,2007:429-438.
    [9]Kishimoto Y, Oguri K. A.Modeling Method for Predicting Driving Behavior Concerning with Driver's Past Movements[C]. Proceedings of the 2008 IEEE International Conference on Vehicular Electronics and Safety. Columbus, OH, 2008:132-137
    [10]Sato T, Akamatsu M. Modeling and prediction of driver preparations for making a right turn based on vehicle velocity and traffic conditions while approaching an intersection[J]. Transportation Research Part F:Traffic Psychology and Behaviour,2008,11(4):242-258.
    [11]Sato T, Akamatsu M. Analysis of drivers' preparatory behaviour before turning at intersections[J]. IET Intelligent Transport Systems,2009,3(4): 379-389.
    [12]Sharifuddin A F, Abdullah A S, Arof H. Development of real-time lane detection software for automated steering system[C].Technical Postgraduates (TECHPOS),2009 International Conference for IEEE,2009:1-6.
    [13]McCall J C, Wipf D P, Trivedi M M, et al. Lane change intent analysis using robust operators and sparse Bayesian learning[J]. Intelligent Transportation Systems, IEEE Transactions on,2007,8(3):431-440.
    [14]Salvucci D D, Mandalia H M, Kuge N, et al. Lane-change detection using a computational driver model[J]. Human Factors:The Journal of the Human Factors and Ergonomics Society,2007,49(3):532-542.
    [15]Dogan U, Edelbrunner H, Iossifidis I. Towards a driver model:Preliminary study of lane change behavior[C].Intelligent Transportation Systems,2008. ITSC,2008.11th International IEEE Conference on IEEE,2008:931-937.
    [16]Oliver N, Pentland A P. Graphical models for driver behavior recognition in a smartcar[C].Intelligent Vehicles Symposium,2000. IV 2000. Proceedings of the IEEE,2000:7-12.
    [17]Liu A, Salvucci D. Modeling and prediction of human driver behavior [C].Proceedings of the 9th International Conference on Human-Computer Interaction,2001:1479-1483.
    [18]Rammelt P. Planning in driver models using probabilistic networks[C].Robot and Human Interactive Communication,2002. Proceedings.11th IEEE International Workshop on IEEE,2002:87-92.
    [19]Macadam C C. Understanding and modeling the human driver[J]. Vehicle System Dynamics,2003,40(1-3):101-134.
    [20]Salvucci D D. Modeling driver behavior in a cognitive architecture[J]. Human Factors:The Journal of the Human Factors and Ergonomics Society,2006, 48(2):362-380.
    [21]McCall J C, Wipf D P, Trivedi M M, et al. Lane change intent analysis using robust operators and sparse Bayesian learning[J]. Intelligent Transportation Systems, IEEE Transactions on,2007,8(3):431-440.
    [22]Salvucci D D, Mandalia H M, Kuge N, et al. Lane-change detection using a computational driver model [J]. Human Factors:The Journal of the Human Factors and Ergonomics Society,2007,49(3):532-542.
    [23]Toledo T, Koutsopoulos H N, Ben-Akiva M. Integrated driving behavior modeling[J]. Transportation Research Part C:Emerging Technologies,2007, 15(2):96-112.
    [24]Toledo T, Koutsopoulos H N, Ben-Akiva M. Estimation of an integrated driving behavior model [J]. Transportation Research Part C:Emerging Technologies,2009,17(4):365-380.
    [25]Amata H, Miyajima C, Nishino T, et al. Prediction model of driving behavior based on traffic conditions and driver types[C].Intelligent Transportation Systems,2009, ITSC'09,12th International IEEE Conference on IEEE,2009: 1-6.
    [26]Ghaemi S, Khanmohammadi S, Tinati M A, et al.Creating a Fuzzy Model for Stressful Driver's Behavior [J].International Journal of Computer Theory and Engineering,2012,4 (2):278-282.
    [27]Sicco V, Mathijs D W,Cees W.Learning Driving Behavior by Timed Syntactic Pattern Recognition[C].Proceedings of the Twenty-Second international joint conference on Artificial Intelligence,2011:1529-1534.
    [28]Heracles M, Martinelli F, Fritsch J. Vision-based behavior prediction in urban traffic environments by scene categorization[J]. Bbhavior Prediction in urban traffic environments,2010:1-6.
    [29]Kamijo S, Ikeuchi K, Sakauchi M. Event recognitions from traffic images based on spatio-temporal markov random field model[C].8th World Congress on ITS, Sydney,2001:1-12.
    [30]Kamijo S, Matsushita Y, Ikeuchi K, et al. Traffic monitoring and accident detection at intersections [J]. Intelligent Transportation Systems, IEEE Transactions,2000,1(2):108-118.
    [31]Tran C, Doshi A, Trivedi M M. Modeling and prediction of driver behavior by foot gesture analysis [J]. Computer Vision and Image Understanding,2012, 116(3):435-445.
    [32]于黎明,王占林.人机系统最优预见补偿跟踪控制研究[J].自动化学报,2001,27(3):421-423.
    [33]甘霖,李灵犀,王飞跃.高速公路驾驶员行为模型的建立与仿真[J].模式识别与人工智能,2003,16(3):358-362.
    [34]张开冉.基于BP神经网络模型的驾驶行为环境影响评价[J].华北科技学院学报,2005,2(4):56-56.
    [35]闻育,吴铁军,周春芳,等.基于决策优化模型的驾驶行为建模方法[J].浙江大学学报(工学版),2006,40(4):705-709.
    [36]刘雁飞,吴朝晖.驾驶ACT-R认知行为建模[J].浙江大学学报(工学版),2006,40(10):1657-1662.
    [37]王晓原,杨新月.驾驶行为非参数微观仿真模型[J].交通运输工程学报,2007,7(1):76-81.
    [38]许骏,李一兵.基于Markov决策过程的驾驶员行为模型[J].汽车工程,2008,30(1):14-16.
    [39]宗长富,杨肖,王畅,等.汽车转向时驾驶员驾驶意图辨识与行为预测[J].吉林大学学报(工学版),2009,39(增刊1):27-32.
    [40]郭孜政,陈崇双,王欣.基于贝叶斯判别的驾驶行为危险状态辨识[J].西南交通大学学报,2009,44(5):771-776.
    [41]张磊,王建强,杨馥瑞,等.驾驶员行为模式的因子分析和模糊聚类[J].交通运输工程学报,2009,9(5):121-126.
    [42]胡斌,王生进,丁晓青.基于云模型的驾驶员驾驶状态评估方法[J].清华大学学报(自然科学版),2009,49(10):1614-1619.
    [43]肖献强,王其东.基于驾驶行为的汽车主动安全控制系统研究[J].中国机械工程,2010,21(9):2390-2393.
    [44]郭孜政,陈崇双,王欣,等.基于证据理论的驾驶行为险态识别方法[J].东南大学学报(自然科学版),2010,40(4):866-870.
    [45]Wang WH, Zhang W, Guo HW, et al. A safety-based approaching behavioural model with various driving characteristics[J]. Transportation Research Part C, 2011,19:1202-1214.
    [46]任晓明,薛青,郑长伟,等.驾驶员状态模型研究[J].系统仿真学报,2012,24(9):1993-1998.
    [47]He L, Zong C, Wang C. Driving intention recognition and behaviour prediction based on a double-layer hidden Markov model[J]. Journal of Zhejiang University SCIENCE C (Computers & Electronics),2012 13(3): 208-217.
    [48]肖献强,任春燕,王其东.基于隐马尔可夫模型的驾驶行为预测方法研究[J].中国机械工程,2013,24(21):2972-2976.
    [49]Shinar D, Oppenheim I. Review of models of driver behavior and development of a unified driver behavior model for driving in safety critical situations[C]. Human Modeling in Assisted Transportation. Springer-Verlag Italia,2011:215-223.
    [50]McLeod R W, Walker G H, Moray N. Analysing and modeling train driver performance[J]. Applied Ergonomics,2005,36(6):671-680.
    [51]Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002,47(1/2/3):7-42
    [52]Kanade T, Okutomi M. A Stereo Matching Algorithm with an Adaptive Window:Theory and Experiment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(9):920-932
    [53]Sun J, Li Y, Kang S B, Shum H Y. Symmetric stereo matching for occlusion handling[C]. In CVPR(2),2005:399-406
    [54]Zitnick C L, Kang S B. Stereo for Image-Based Rendering using Image OverSegmentation[J]. International Journal of Computer Vision,2007,75(1): 49-65
    [55]Nister D. An Efficient Solution to the Five-Point Relative Pose Problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2004,26(6): 756-770.
    [56]Pollefeys M, Koch R, Gool L. Self-Calibration and Matric Reconstruction In spite of Varying and Unknown Intrinsic Camera Parameters. International Journal of Computer Vision.1999,32(1):7-25.
    [57]Schmid C, Mohr R, Bauckhage C. Evaluation of Interest Point Detectors[J]. International Journal of Computer Vision.2000,37(2):151-172.
    [58]Lowe D. Object Recognition From Local Scale-Invariant Features. The Proceedings of the Seventh IEEE International Conference on Computer Vision,1999,2:1150-1572.
    [59]Ohta Y, Kanade T. Stereo by Intra-and Inter-scanine Seareh Using Dynamic Programming[J], IEEE Trans. Pattern Analysis and Machine Intelligence, 1985,7(2):139-154.
    [60]Beardsley P, Torr P, Zisserman A.3D model acquisition from extended image sequences[A]. In Proceedings of the 4th European Conference on Computer Vision, Lecture Notes in Computer Science[C]. Springer-Verlag, Cambridge, UK,1996:683-695.
    [61]Pritchett P, Zisserman A. Matching and reconstruction from widely separated views in 3D structure from multiple images of large-scale Environments [A]. LNCS 1506 [C].Springer-Verlag,1998:78-92.
    [62]Tuytelaars T, Van G L. Matching widely separated views based on affine invariant regions[J]. International Journal of Computer Vision,2004,1(59): 61-85.
    [63]Lhuillier M, Luong Q. Robust dense matching using local and global geometric constraintst[A]. Proceedings of the 16th International Conference on Pattern Recognition [C]. Barcelona, Spain,2000,1:968-972.
    [64]Hartley R. Estimation of relative camera Positions for uncalibrated cameras [A]. In Proceedings of European Conference on Computer Vision[C]. Springe-Verlag,1992:579-587.
    [65]陈泽志,吴成柯.一种高精度估计的基本矩阵的线性方法[J],软件学报,2002,13(4):840-845.
    [66]Luong Q, Faugeras O. Determining the Fundamental matrix with Planes: unstability and new Algorithms [A], In Proc. Conference on Computer Vision and Pattern Recognition [C]. New-York,1993:489-494.
    [67]Huber P J. Robust Statistics[M]. New York:John Wiley & Sons,1981: 30-320.
    [68]Faugeras O, Luong Q T, Maybank S. Camera self-calibration:Theory and experiments [A]. In:Proceedings of the 2nd European conference on Computer Vision, Italy,1992.321-334
    [69]Triggs B. Auto-calibration and the absolute quadric[C]. In:Proceedings of Computer Vision and Pattern Recognition,1997.609-614.
    [70]Pollefeys M, Van G L, Oosterlinck A. The modulus constraint:A new constraint for self-calibration[C]. In:Proceedings of International Conference of Pattern Recognition, Vienna,1996,349-353.
    [71]Chandraker M, Agarwal S, Kriegman D, Belongie S. Globally optimal affine and metric upgrades in stratified autocalibration[C], ICCV07,2007,1-8.
    [72]Chandraker M, Agarwal S, Kriegman D, Belongie S. Globally optimal algorithms for stratified autocalibration, Int. J. Comput. Vis.90 (2010) 236-254, ISSN 0920-5691, URLhttp://dx.doi.org/10.1007/s11263-009-0305-2, doi:10.1007/s11263-009-0305-2.
    [73]Chandraker M, Agarwal S, Kahl F, Nister D, Kriegman D. Autocalibration via rank-constrained estimation of the absolute quadric[C],CVPR07,2007:1-8.
    [74]Gherardi R, Fusiello A. Practical autocalibration[C], ECCV 2010:Proceedings of the 11th European Conference on Computer Vision, Crete, Greece.2010: 790-801.
    [75]Stuart B, Heinrich, Wesley E S, Jan-Michael F. Maximum likelihood autocalibration[J], In:Image and Vision Computing,2011,29:653-665.
    [76]Pollefeys M, Van G L, Vergauwen M. Visual modeling with a hand—held camera[J]. International Journal of Computer Vision,2004,59(3):207-232.
    [77]Kang J, Cohen I, Medioni G, Yuan C. Detection and tracking of moving objects from a moving platform in presence of strong parallax[C]. In ICCV,, 2005,1:10-17.
    [78]Arthur D, Nan L, Donald R. Maximum likelihood from incomplete data via the EM algorith[J]. Journal of the Royal Statistical Society, Series B,1977, 39(1):1-38.
    [79]Hartley R L. Estimation of relative camera positions for uncalibrated cameras[C]. In Proc.2nd European Conference on Computer Vision, LNCS5 88, Santa Margherita Ligure, Springer-Verlag,1992:579-587.
    [80]Hartley R, Zisserman A. Multiple View Geometry in Computer Vision, second edn., Cambridge U. Press,2003.
    [81]Triggs B, McLauchlan P, Hartley R, Fitzgibbon A. Bundle adjustment-a modern synthesis. In Workshop on Vision Algorithms,1999.298-372.
    [82]Hyun S P, Takaaki S, Iain M, Yaser S.3D Reconstruction of a Moving Point from a Series of 2D Projections[C]. In:Computer Vision-ECCV (2010),2010. 158-171,
    [83]Akhter I, Sheikh Y, Khan S, Kanade T. Nonrigid structure from motion in trajectory space[C]. In:NIPS. (2008)
    [84]Yasutaka F, Jean P. Accurate, Dense, and Robust Multiview Stereopsis[J]. IEEE Trans. Pattern Anal. Mach. Intell.2010,32(8):1362-1376.
    [85]Lookingbill A, Rogers J. Reverse optical flow for self-supervised adaptive autonomous robot navigation[C]. IJCV,2007,74:287-302.
    [86]Geronimo D, Lopez A M, Sappa A D, Graf T. Survey of pedestrian detectionfor advanced driver assistance systems[C]. PAMI,2010,32: 1239-1258.
    [87]Medici P, Caraffi C, Cardaralli E. Real-time road signs Classification[C]. IEEE International Conference on Vehicular Electronics and Safety,2008: 253-258.
    [88]Vailaya A, Jain A, Zhang H. On image classification:City vs. Landscapes[C]. Pattern Recognition,1998,31(12):1921-1935.
    [89]Vailaya A, Figueiredo A, Jain A, Zhang H. Image classification for contentbased indexing[J]. IEEE Transactions on Image Processing,2001, 10:117-129.
    [90]Shi J, Malik J. Normalized cuts and image segmentation[C]. PAMI,2000, 22(8):888-905.
    [91]Szummer M, Picard R W. Indoor-outdoor image classification[C]. In ICCV Workshop on Content-Based Access of Image and Video Databases,1998: 42-51.
    [92]Lowe D. Distinctive image features from scale-invariant keypoints[C]. IJCV, 2004,60(2):91-110.
    [93]Li FF, Perona P. A bayesian hierarchical model for learning natural scene categories[C]. In Proc. CVPR,2005:524-531.
    [94]Perronin F, Dance C, Csurka G, Bressan M. Adapted vocabularies for generic visual categorization[C]. In Proc. ECCV,2006:464-475.
    [95]Lazebnik S, Schmid C, Ponce J. Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories[C]. In Proc. CVPR,2006: 2169-2178.
    [96]Bosch A, Zisserman A, Munoz X. Scene classification via pLSA[C]. In Proc. ECCV,2006:517-530
    [97]Quelhas P, Monay F, Odobez J M, Perez D G, Tuytelaars T, Van G L. Modeling scenes with local descriptors and latent aspects[C]. In Proc. ICCV, 2005:883-890
    [98]Cao LL. Li FF. Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes[C]. In Proc. ICCV,2007: 1-8.
    [99]Li LJ, Socher R, Li FF. Towards total scene understanding:Classification, annotation and segmentation in an automatic framework[C]. In Proc. CVPR, 2009:2036-2043
    [100]Wang C, Blei D, Li FF. Simultaneous image classification and annotation[C]. In Proc. CVPR,2009:1903-1910.
    [101]Fleyeh H. Road and Traffic Sign Color Detection and Segmentation-A Fuzzy Approach[C]. Conference on Machine Vision Applications. Tsukuba Science City, Japan, May 16-18,2005:124-127.
    [102]Wojek C, Schiele B. A dynamic CRF model for joint labeling of object and scene classes[C]. In ECCV,2008:733-747.
    [103]Ladicky L, Russell C, Kohli P, et al. Associative Hierarchical CRFs for Object Class Image Segmentation [C]. In CVPR,2009:739-746.
    [104]Shotton J, Winn J M, Rother C, Criminisi A. TextonBoost:Joint appearance, shape and context modeling for multi-class object recognition and segmentation[C]. In ECCV,2006,1:1-15.
    [105]Shotton J, Johnson M, Cipolla R. Semantic texton forests for image categorization and segmentation[C]. In CVPR,2008.
    [106]Kohli P, Torr P H S. Robust higher order potentials for enforcing label consistency [J]. International Journal of Computer Vision,2009,82(3): 302-324.
    [107]Ess A, Mueller T, Grabner H, et al. Segmentation-based urban traffic scene understanding[C].Proceedings 20th British machine vision conference BMVC, 2009:1-11.
    [108]Brostow G J, Shotton J, Fauqueur J, et al. Segmentation and Recognition using Structure from Motion Point Clouds[C]. In ECCV,2008 (1):44-57.
    [109]Sturgess P, Alahari K, Ladicky L, et al. Combining Appearance and Structure from Motion Features for Road Scene Understanding[C]. In BMVC, London, Sep.2009.
    [110]谭论正,夏利民,夏胜平.基于多级Sigmoid神经网络的城市交通场景理解[J].国防科技大学学报,2012,34(4):132-137.
    [111]谭论正,夏利民.基于协方差描述子和LogitBoost的交通场景图像分割[J].湖南大学学报:自然科学版,2013,40(8):58-63.
    [112]Amir R, Lalitha R. Medical image segmentation using linear combination of Gabor[J]. International Journal of Machine Intelligence,2011,3(4):212-216.
    [113]Tuzel O, Porikli F, Meer P. Region covariance:A fast descriptor for detection and classification[C]. In Proc.9th European Conf. on Computer Vision, Graz, Austria,2006, (2):589-600.
    [114]Tuzel O, Porikli F, Meer P. Pedestrian detection via classification on Riemannian manifolds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(10):1713-1727.
    [115]Fletcher P T, Joshi S. Riemannian Geometry for the Statistical Analysis of Diffusion Tensor Data[J]. Signal Processing,2007,87(2):250-262.
    [116]Pennec X, Fillard P, Ayache N. A Riemannian Framework for Tensor Computing[J]. International Journal of Computer Vision,2006,66(1): 41-66.
    [117]Tuzel O, Porikli F, Meer P. Pedestrian detection via classification on Riemannian manifolds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(10):1-15.
    [118]Friedman J, Hastie T, Tibshirani R. Additive logistic regression:A statistical view of boosting[J]. The Annals of statistics,2000,28:337-374.
    [119]Brostow G J, Fauqueur J, Cipolla R. Semantic object classes in video:A high-denition ground truth database[J]. Pattern Recognition Letters,2009, 30(2):88-97.
    [120]Lai YC, Lin P, Liao W, et al. A region-based clustering mechanism for channel access in vehicular ad hoc networks [J]. Selected Areas in Communications, IEEE Journal on,2011,29(1):83-93.
    [121]Han KH, Ko YB, Kim JH. A novel gradient approach for efficient data dissemination in wireless sensor networks[C].Vehicular Technology Conference,2004:Proceedings of the 59th IEEE International Conference on Vehicular Technology.2004,4:2979-2983.
    [122]Bertozzi M, Broggi A. Gold:A Parallel Real-Time Stereo Vision System for Generic Obstacle and Lane Detection[J]. IEEE Transactions on Image Processing,1998,7(1):62-81.
    [123]Holden E J, Owens R. Segmenting occluded objects using a motion snake[C]. The 6th Asian Conference on Computer Vision(ACCV).2004:342-347.
    [124]Nouar O D, Ali G, Raphael C. Improved object tracking with CamShift algorithm[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing.2006,2:657-660.
    [125]Siagian C, Itti L. Biologically inspired mobile robot vision localization[J].IEEE Transactions on Robotics,2009,25(4):861-873.
    [126]Barron J L, Fleet D J, Beauchemin S. Performance of Optical Flow Techniques[J]. International Journal of Computer Vision,1994,12(1):43-77.
    [127]Kivanc Mihcak M, Kozintsev I, Ramchandran K, et al. Low-complexity image denoising based on statistical modeling of wavelet coefficients [J]. Signal Processing Letters, IEEE,1999,6(12):300-303.
    [128]Naka I H. Robust Object Detection Using A-Posteriori Probability [J]. Information Processing Society Japan,2001,15 (4):431-441.
    [129]Hazewinkel, Michiel, ed. (2001), "Haar system", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4.
    [130]Anne H, Solberg S, Jain A K. Texture Fusion and Feature Selection Applied to SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing. 1997:475-479.
    [131]Rojas J C, Crisman J D. Vehicle detection in color images[C]. IEEE Conference on Intelligent Transportation System, Boston, MA, Nov.1998: 403-408.
    [132]Ma B, Zhang LE. Vehicle Recognition Based on Texture Feature[J]. Electronic Sci.1 & Tech. Feb.15,2010:94-97.
    [133]Gavrila D M. Pedestrian detection from a moving vehicle[M]. In:Proceedings of European conference on Computer Vision[C]. Dublin, Ireland,2000.1843: 37-49.
    [134]Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
    [135]Borji A, Itti L. State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1): 185-207.
    [136]Sihite D N, Borji A, Itti L. Quantitative analysis of human-model agreement in visual saliency modeling:A comparative study [J]. IEEE Transactions on Image Processing,2013,22(1):55-69.
    [137]Judd T, Durand F, Torralba A. A benchmark of computational models of saliency to predict human fixations[J]. Tech. Rep. MIT-CSAIL-TR-2012-001, Mas-sachusetts institute of technology (2012)
    [138]Toet A. Computational versus psychophysical bottom-up image saliency:A comparative evaluation study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(11):2131-2146.
    [139]Itti L, Dhavale N, Pighin F. Realistic avatar eye and head animation using a neurobiological model of visual attention[C]. Optical Science and Technology, SPIE's 48th Annual Meeting. International Society for Optics and Photonics, 2004:64-78.
    [140]Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on pattern analysis and machine intelligence,1998,20(11):1254-1259.
    [141]Itti L, Baldi P. Bayesian surprise attracts human attention[J]. Advances in neural information processing systems,2006,18:547.
    [142]Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[M]. Computer Vision-ECCV 2000. Springer Berlin Heidelberg, 2000:751-767.
    [143]Monnet A, Mittal A, Paragios N, et al. Background modeling and subtraction of dynamic scenes[C]. Computer Vision,2003. Proceedings. Ninth IEEE International Conference on. IEEE, Oct.2003:1305-1312.
    [144]Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern recognition letters, 2006,27(7):773-780.
    [145]Bruce N D B, Tsotsos J K. Saliency, attention, and visual search:An information theoretic approach[J]. Journal of vision,2009,9(3):1-24.
    [146]Seo H J, Milanfar P. Static and space-time visual saliency detection by self-resemblance [J]. Journal of vision,2009,9(12):1-27.
    [147]Mancas M, Riche N, Leroy J, et al. Abnormal motion selection in crowds using bottom-up saliency[C]. Image Processing (ICIP),2011 18th IEEE International Conference on. IEEE,2011:229-232.
    [148]Tavakoli H R, Rahtu E, Heikkila J. Fast and efficient saliency detection using sparse sampling and kernel density estimation[M]. Image Analysis. Springer Berlin Heidelberg,2011:666-675.
    [149]Tatler B. The central fixation bias in scene viewing:selecting an optimal viewing position independently of motor bases and image feature distributions[J]. J Vis.2007:14(7),4,1-17
    [150]马钧,曹静.基于中国市场特定需求的汽车先进驾驶辅助系统发展趋势 研究[J].农业装备与车辆工程,2012,3:10-14.
    [151]Varewyck M, Martens J P. A practical approach to model selection for support vector machines with a Gaussian kernel [J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2011,41(2):330-340.
    [152]Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research,2001,1:211-244.
    [153]Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural networks,2004,17(1):113-126.
    [154]Oliver N, Pentland A P. Driver behavior recognition and prediction in a SmartCar[C]. AeroSense 2000. International Society for Optics and Photonics, 2000:280-290.
    [155]Zhang LY, Tong MH, Marks TK, Shan H, Cottrell GW. SUN:A Bayesian Framework for Saliency Using Natural Statistics. Journal of vision,2008,8(7): 20-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700