行人流安全运动元胞自动机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的高速发展,城市规模急剧膨胀,城市人口迅速增长,大型高层建筑、商业繁华街、公共场所等大量涌现。在这些人员密集的场所,一旦发生火灾、地震、危险源泄漏等紧急情况,如何将建筑物中的大量人员快速安全地疏散是保证人员安全的重要手段,因此,对行人流安全运动的研究已经成为一件极为紧迫和相当重要的事情。
     行人流是由相互作用的行人构成的多主体复杂系统,行人彼此之间具有较强的非线性相互作用,因此,行人流的运动比交通车辆流的运动更加复杂。为了研究和描述行人的运动,人们提出了各种各样的行人流微观仿真模型,最主要的有社会力模型、格子气模型及元胞自动机模型等,其中元胞自动机模型因其易于计算机模拟运算,受到了更为广泛的关注。元胞自动机是一种时间、空间和变量均离散的数学模型,具有算法简单、灵活可调和计算效率高等特点,是研究非线性复杂系统的有效工具,具有广阔的应用前景。
     本文根据行人运动特征和建筑物结构的不同特点,在目前对行人流研究的基础上,对现有的某些模型存在不足的地方加以改进使其更加完善。用改进的模型或创新的方法建立新的模型,计算机模拟了特定场合(情景)下行人的安全运动与疏散过程,讨论了不同参数对行人运动的影响,并研究了行人运动自组织现象及其相变和时空图样特性。
     本文的主要工作包括以下四个方面:
     1.根据二维元胞自动机的Moore邻居并考虑房间的结构确定行人运动规则,建立行人流疏散仿真模型,对较大房间内人员疏散过程进行了模拟研究,该模型能够较好地再现了房间内人员疏散的整个过程,得到了行人在疏散过程中出现的典型现象,如拥挤、堵塞、人群的拱形结构等,并讨论了疏散时间与房间出口宽度、人员密度及与平均速度和平均流量之间的变化关系。
     2.考虑行人的位置交换、侧向前进和后退行为,建立了一种改进的元胞自动机模型,来研究地下通道中具有多种运动速度的双向行人流。并将改进的元胞自动机模型同Weng的模型相比较。计算机模拟表明,改进的模型具有提高系统中行人的平均速度并降低行人占据密度的倾向。
     3.熟悉的行人之间经常存在着聚集运动的整体跟随行为现象,为了研究成对行为对疏散过程的影响,考虑了行人的并排成对、前后成对和混合成对三种方式,建立了一个新的元胞自动机模型,研究了三种成对方式对双出口房间内行人疏散过程的影响,并分析、讨论了不同参数下成对方式之间的差异,得到了行人单个疏散总要比成对疏散快,行人成对行为总要对疏散起阻碍作用的特征,对于双出口的房间,两出口间距太小或太大也都不利于行人的疏散。
     4.根据内廊式建筑楼层系统的结构特点,重新定义位置危险度,并引入运动优先级的概念,对楼层中的行人分别采用同步并行更新和排队按序更新位置,建立楼层系统行人疏散元胞自动机模型,对内廊式建筑某楼层的行人疏散过程进行了模拟研究,得出了行人排队按序疏散能极大地缩短疏散时间提高疏散效率,房间出口相对位置对疏散时间影响较小,而房间出口宽度、走廊宽度对整个疏散有较大的影响。
     最后,对全文的工作进行了总结,并指出了若干有待进一步研究的问题,对今后行人流的研究进行展望。
With the rapid development of society, rapid expansion of urban scale, the urban scale inflates suddenly, urban population explosive growth, large-scale high-rise construction, commercial lively street, public place and so on massive emergences. In these crowded place, Once has the emergency case, such as the fire or the earthquake and so on, how is guarantees building's in massive people fast safety dispersal the personal security the important means that ,therefore, research of the security of pedestrian flow movement has become a very necessary and signification.
     Pedestrian flow is a kind of complex system with multi-agent, which has a strong nonlinear interaction between the pedestrian, therefore, the movement of pedestrian is more complex than the traffic flow. In order to research and describe the movements of the pedestrian flow, many micro-simulation models have been proposed by people, these include the more important model such as social force model, lattice gas model and cellular automaton model. The research of cellular automata model has been concerned extensively because of its easy computer simulation. Cellular automaton model is a mathematical model in which space, time and state values are discrete. It’s parallel and simple for computation, with algorithm simple, flexible and adjustable and high computational efficiency, so cellular automaton is a very good tool for simulating variable complex nonlinear phenomena and physical problems.
     According to the characteristics of pedestrian movement and the structure of the different building, in this paper, we improved the current deficiencies of study on pedestrian flow to make it more perfect. Using the improved model or innovative methods to propose a new model, computer simulation of the specific occasions (the scene) under the pedestrian safety movement with the evacuation process, discussed the different parameters on the impact of pedestrian movement and studied the phenomenon of self-organizing pedestrian movement and phase transition and characteristics of spatial and temporal patterns.
     This dissertation consists of the following five main parts:
     1. According to two-dimensional Cellular automata Moore neighbors and Considering the structure of the room, pedestrian moving rules were established. Occupant evacuation process from a hall was simulated via cellular automaton model. The model can better reproduce the room evacuation of the entire process, the simulation results show that the presented model can capture some essential features of pedestrian counter flows, such as jamming, congestion, arching around the door et al. The relationships among escape time, exit width, mean velocity, mean flux and the density of pedestrian were obtained by simulation.
     2. Taking into account three basic pedestrian behaviors, position-exchange, lateral-move and step back, we proposed an improved cellular automaton model to simulated pedestrian counter flow with different velocities in subterranean channel. We compared cellular automaton model with Weng’s model. By using computer simulation, the improved model is more efficiency. Moreover, Pedestrians in the system tend to have higher mean velocity and lower occupancy density.
     3.Collective following behavior is a common phenomenon among familiar pedestrians, In order to investigate the effect of such behavior, a new cellular automaton evacuation model is proposed to simulate the evacuation process for two exits by considering the side-by-side paired, the front-behind paired, and the mixed paired. Three types of paired pattern are respectively discussed and analyzed in detail under different parameters. We get the following conclusions: paired behaviors hindered the evacuation. For a room have two exits, the distance between the two doors is too small or too large is also not conducive to pedestrian evacuation.
     4. Considering the structural features of building which composed of one corridor at central and several rooms, we redefined the position danger grade, and introduced the concept of movement priority, all the pedestrians in the system are synchronized update or updated in order respectively. Pedestrian moving rules and the evacuation model were established. By using computer simulation, pedestrian evacuated in order can greatly shorten the evacuation time and improve the efficiency of the evacuation, the location of the exit have a smaller impact on evocation time, while the exit width and the corridor with play a important role.
     Finally, we give the conclusions of our works and present the prospect of further research of pedestrian flow.
引文
[1]翁文国,袁宏永,范维澄.一种基于移动机器人行为的人员疏散元胞自动机模型[J].科学通报,2006,51(23):2818-2821.
    [2]吕春杉,翁文国,杨锐,等.基于运动模式和元胞自动机的火灾环境下人员疏散模型[J].清华大学学报:自然科学版,2007,47(12): 2163-2167.
    [3]赵道亮.紧急条件下人员疏散特殊行为的元胞自动机模拟[D].合肥:中国科学技术大学,2007.
    [4]杨立中,方伟峰,李健,等.考虑人员行为的元胞自动机行人运动模型[J].科学通报,2003, 48(11):1143-1147.
    [5] Blue V.J,Adler J.L.Cellular automata microsimulation for modeling bi-directional pedestrian walkways[J], Transportation Researsh B, 2001,35:293-312.
    [6] Jiang R,Wu Q S. The moving behavior of a large object in the crowds in a narrow channel[J].Physica A,2006,364:457-463.
    [7] Song W G, Xuan X, Wang B H, et al. Simulation of evacuation processes using a multi-grid model for pedestrian dynamics[J]. Physica A, 2006,363: 492-500.
    [8] Weng W G, Shen S F, Yuan H Y, et al. A behavior-based model for pedestrian counter flow[J]. Physica A,2007,375:668-678.
    [9]崔喜红,李强,陈晋,等.基于多智能体技术的公共场所人员疏散模型研究[J].系统仿真学报,2008,20(4):1006-1010.
    [10]宋卫国,于彦飞,范维澄,等.一种考虑摩擦与排斥的人员疏散元胞自动机模型[J].中国科学E辑工程科学&材料科学, 2005,35(7):725-736.
    [11]杨立中,方伟峰,黄锐,等.基于元胞自动机的火灾中人员逃生的模型[J].科学通报,2002,47 (12):896-901.
    [12]邱冰.楼房内人员逃生流的自动机模拟研究[D].桂林:广西师范大学,2004.
    [13] Jiang R,Wu Q S. Pedestrian behaviors in a lattice gas model with large maximum velocity[J].Physica A,2007,373:683-693.
    [14]陈涛,宋卫国,范维澄,等.十字出口宽度与人员阻塞的依赖关系及其模拟和分析[J].自然科学进展,2004,14(4):567-572.
    [15] Helbing D. Traffic and related self-driven many-particle systems[J], Reviews of Modern Physics. 2001,73:1067-1142.
    [16] Henderson L F. The statistic of crowd fluids. Nature, 1971,229:381-383.
    [17]孟俊仙,周淑秋,饶敏.大型建筑内人员疏散计算机仿真研究综述[J].计算机应用与软件,2008,25(3):159-161.
    [18] Helbing D, Farkas I, Vicsek T.Simulating dynamical features of escape panic[J],Nature, 2000, 407: 487-490.
    [19] Helbing D, Molnar P. Social force model for pedestrian dynamics[J], Physical Review E, 1995, 51: 4282-4286.
    [20] Seyfried A, Steffen B, Lippert T. Basics of modelling the pedestrian flow[J]. Physica A, 2006,368:232-238.
    [21] Parisi D.R, Dorso C.O.Microscopic dynamics of pedestrian evacuation[J]. Physica A,2005,354:606-618.
    [22] Parisi D.R, Dorso C.O. Morphological and dynamical aspects of the room evacuation process[J]. Physica A, 2007,385:343-355.
    [23] Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow [J].Physica A, 1999,267:487-498.
    [24] Muramatsu M, Nagatani T.Jamming transition in two-dimensional pedestrian traffic[J], Physica A, 2000, 275:281-291.
    [25] Muramatsu M, Nagatani T. Jamming transition of pedestrian traffic at a crossing with open boundaries[J], Physica A, 2000, 286:377-390.
    [26] Tajima Y, Nagatani T.Scaling behavior of crowd flow outside a hall[J], Physica A, 2001, 292:545-554.
    [27] Tajima Y, K.Takimoto, Nagatani T.Scaling of pedestrian channel flow with a bottleneck[J], Physica A, 2001,294: 257-268.
    [28] Tajima Y, Nagatani T.Clogging transition of pedestrian flow in T-shaped channel[J], Physica A, 2002, 303:239-250.
    [29] Qiu B, Tan H L, Kong L J, et al.Lattice-gas simulation of escaping pedestrian flow in corridor[J].Chinese Physics,2004,13(7):990-995.
    [30] Guo R Y, Huang H J.A mobile lattice gas model for simulating pedestrian evacuation[J]. Physica A, 2008,387:580-586.
    [31] Kuang H,Song T, Li X L,et al. Subconscious effect on pedestrian counter flow[J]. Chinese Physics Letters.2008,25(4): 1498-1501.
    [32] Kuang H, Li X L, Song T, et al. Analysis of pedestrian dynamics in counter flow via an extended lattice gas model[J]. Physical Review E, 2008,78: 066117.
    [33] Frisch U, Hasslacher B, Pomeau Y, Lattice-gas automata for the Navier-Stokes equation[J], Physical Review Letter. 1986,56:1505-1508.
    [34] Chopard B, Droz M著.祝玉学,赵学龙译.物理系统的元胞自动机模拟[M].北京:清华大学出版社,2003:5-59.
    [35] Burstedde C, Klauck K, Schadschneider A, et al, Simulation of pedestriandynamics using a two-dimensional cellular automaton [J], Physica A, 2001,295: 507-525.
    [36] Zhang J, Song W G, Xu X. Experiment and multi-grid modeling of evacuation from a classroom[J].Physica A, 2008,387:5901-5909.
    [37] Zhao D L, Yang L Z, Li J.Exit dynamics of occupant evacuation in an emergency[J].Physica A, 2006,363:501-511.
    [38] Zhao D L, Li J, Zhu Y, et al. The application of a two-dimensional cellular automata random model to the performance-based design of building exit[J]. Building and Environment, 2008,43:518-522.
    [39] Nishidate K, Baba M. Cellular automaton model for random walkers[J]. Physical Review Letters,1996,77(9):1675-1677.
    [40] Schreckenberg M, Sharma S D. Pedestrian and evacuation dynamics[M]. New York:Springer, 2001:21-58.
    [41] Kirchner A, Schadschneider A.Simulation of evacuation process using a bionics -inspired cellular automaton model for pedestrian dynamics[J].Physica A, 2002, 312: 260-276.
    [42] Song W G, Yu Y F, Wang B H, et al. Evacuation behaviors at exit in CA model with force essentials:A comparison with social force model[J]. Physica A, 2006,371:658-666.
    [43] Yuan W F, Tan K H. A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability condition[J]. Physica A, 2007, 379:250-262.
    [44] Yang L Z, Fang W F, Huang R, et al. Occupant evacuation model based on cellular automata in fire[J], Chinese Science Bulletin. 2002,47(17):1484-1488.
    [45] Yuan W F, Tan K H. An evacuation model using cellular automata[J]. Physica A,2007,384:549-566.
    [46] Yue H, Hao H R, Chen X M, et al. Simulation of pedestrian flow on square lattice based on cellular automata model[J]. Physica A,2007,384: 567- 588.
    [47] Zhao D L, Yang L Z, Li J.Occupants’behavior of going with the crowd based on cellular automata occupant evacuation model[J].Physica A, 2008,387:3708-3718.
    [48] Weng W G, Pan,L L, Shen S F,et al.Small-grid analysis of discrete model for evacuation from a hall[J].Physica A, 2007,374:821-826.
    [49] Xu X, Song W G, Zheng H Y.Discretization effect in a multi-grid egressmodel[J].Physica A, 2008,387:5567-5574.
    [50] Nagatani T.Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck[J].Physica A, 2001, 300: 558-566.
    [51] Yanagisawa D, Nishinari K.Mean-field theory for pedestrian outflow through an exit[J].Physical Review E, 2007,76 061117.
    [52] Nakayama A, Hasebe K, Sugiyama Y.Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model[J].Physical Review E, 2005, 71: 036121.
    [53] Yu W J, Chen R, Dong L Y, et al. Centrifugal force model for pedestrian dynamics[J]. Physical Review E, 2005, 72: 026112.
    [54]郭谨一,刘爽,陈绍宽,等.行人运动仿真研究综述[J].系统仿真学报,2008,20(9):2237-2242.
    [55]龚晓岚,魏中华.行人动力学的研究进展[J].人类工效学,2008,14(2):68-71.
    [56]方伟峰,杨立中,黄锐.基于元胞自动机的多自主体人员行为模型及其在性能化设计中的应用[J].中国工程科学,2003, 5(3): 67-71.
    [57]李君霞,曹菡,周影,等.基于智能体的行人路径查找微观模型研究[J].计算机工程与科学,2008, 30(3):145-148.
    [58] Izquierdo J, Montalvo I, Pérez R, et al. Forecasting pedestrian evacuation times by using swarm intelligence[J].Physica A, 2009,388:1213-1220.
    [59]方正,卢兆明.建筑物避难疏散的网格模型[J].中国安全科学学报,2001,11(4): 10-13.
    [60]陈智明,霍然,王国栋.建筑内人员疏散的一种网络模型算法的讨论[J].火灾科学,2004 (2): 90-94.
    [61]方正,陈大宏,张铮,卢兆明,建筑物火灾人员疏散的计算机仿真[J].计算机仿真,2001,18(2): 49-52.
    [62]陆君安,方正,卢兆明,等.建筑物人员疏散逃生速度的数学模型[J].武汉大学学报, 2002, 35(2): 66-70.
    [63]方正,卢兆明.试论建筑物人员疏散的量化研究[J].武汉大学学报:工学版, 2002, 2:71-75.
    [64] Fang Z, Lo S M, Lu J A. On the relationship between crowd density and movement velocity[J]. Fire Safety Journal, 2003,38:271-283.
    [65]田玉敏,蔡晶菁.基于人群动力学的疏散时间工程计算方法的探讨[J].科技通报,2008,24(1):138-142.
    [66] Fang Z, Yuan J P, Wang Y C, et al. Survey of pedestrian movement anddevelopment of a crowd dynamics model[J].Fire Safety Journal, 2008,43:459- 465.
    [67]袁建平,方正,卢兆明,等.车站客流观测及其对人群疏散动力学模型的验证[J].西安建筑科技大学学报:自然科学版,2008,40(1):108-113.
    [68] Schadsclmeider A, Klingsch W, Klupfel H,et al. Evacuation Dynamics:Empirical Results, Modeling and Applications[J].2008, http://cn.arxiv.org/abs/ 0802.1620v1.
    [69] Isobe M, Adachi T,Nagatani T.Experiment and simulation of pedestrian counter flow[J]. Physica A, 2004,336:638-650.
    [70] Helbing D, Isobe M, Nagatani T, et al, Lattice gas simulation of experimentally studied evacuation dynamics[J], Physical Review E, 2003, 67: 067101.
    [71] Nagai R, Fukamachi M, Nagatani T. Evacuation of crawlers and walkers from corridor through an exit[J]. Physica A, 2006,367:449-460.
    [71] Li X M, Chen T, Pan L L, et al. Lattice gas simulation and experiment study of evacuation dynamics[J]. Physica A,2008,387:5457-5465.
    [72] Liu S B,Yang L Z,Fang T Y, et al. Evacuation from a classroom considering the occupant density around exits[J].Physica A, 2009,388:1921-1928.
    [73] Lin P, Lo S M, Yuan K K.et al. A granular dynamic method for modelling the egress pattern at an exit[J]. Fire Safety Journal, 2007,42:377-383.
    [74] Zheng X P, Zhong T K, Liu M T. Modeling crowd evacuation of a building based on seven methodological approaches[J]. Building and Environment,2009, 44(3):437-445.
    [75] Yamamoto K, Kokubo S, Nishinari K.Simulation for pedestrian dynamics by real-coded cellular automata (RCA)[J]. Physica A, 2007,379:654-660.
    [76] Yang L Z, Zhao D L, Li J,et al. Simulation of the kin behavior in building occupant evacuation based on cellular automaton[J]. Building and Environment, 2005,40:411-415.
    [77]李强,崔喜红,陈晋.大型公共场所人员疏散过程及引导作用研究[J].自然灾害学报,2006, 15(4): 92-99.
    [78]崔喜红,李强,陈晋,陈春晓.大型公共场所人员疏散模型研究—考虑个体特性和从众行为[J].自然灾害学报,2005, 14(6): 133-140.
    [79]秦文虎,查骏元,苏国辉,等.人群疏散行为仿真技术研究[J].中国安全科学学报,2008,18(2):22-27.
    [80]张培红,陈宝智,刘丽珍.虚拟现实技术与火灾时人员应急疏散行为研究[J].中国安全科学学报,200,12(1):46-50.
    [81]张培红,陈宝智.火灾时人员疏散的行为规律[J].东北大学学报:自然科学版,2001,22(1):54-56.
    [82]苑红伟,肖贵平.基于交通心理的行人不安全行为研究[J].中国安全科学学报,2008,18(1):20-26.
    [83] Nagel K, Schreckenberg M. A cellular automata model for freeway traffic[J]. Journal de Physique I,1992,2:2221-2229.
    [84]谭惠丽,邱冰,刘慕仁,等.房间内人群疏散过程的元胞自动机研究[J].广西师范大学学报:自然科学版,2004,22(4):1-4.
    [85] Chen R H, Qiu B, Zhang C Y et al. A study on the evacuation of people in a hall using the cellular automaton model[J]. International Journal of Modern Physics C,2007, 18(3):359-367.
    [86] Yang L Z, Li J, Liu S B. Simulation of pedestrian counter-flow with right- moving preference[J].Physica A, 2008,387:3281-3289.
    [87] Zhao D L, Yang L Z, Li J.Exit dynamics of occupant evacuation in an emergency [J], Physica A,2005,363:501-511.
    [88] Li J, Yang L Z, Zhao D L. Simulation of bi-direction pedestrian movement in corridor[J], Physica A,2005,354:619-628.
    [89] Varas A, Cornejo M.D, Mainermer D, et al.Cellular automaton model for evacuation process with obstacles[J], Physica A ,2007,382:631-642.
    [90] Burstedde C, Kirchner A, Klauck K. et al.Cellular automaton approach to pedestrian dynamics applications[J].2001,http://cn.arxiv.org/abs/ cond-mat/ 0112119v1.
    [91] Takimoto K, Tajima Y, Nagatani T, Effect of partition line on jamming transition in pedestrian counter flow[J].Physica A,2002, 308, 460-470.
    [92] Yu Y F, Song W G. Cellular automaton simulation of pedestrian counter flow considering the surrounding environment[J]. Physical Review E,2007,75: 046112.
    [93] Yu Y F, Song W G. Effect of traffic rule breaking behavior on pedestrian counter flow in a channel with a partition line [J]. Physical Review E, 2007,76: 026102.
    [94] Weng W G, Chen T, Yuan H Y.et al.Cellular automaton simulation of pedestrian counter flow with different walk velocities[J]. Physical Review E, 2006,74: 036102.
    [95] Maniccam S.Traffic jamming on hexagonal lattice[J].Physica A,2003,321:653-664.
    [96] Matsui A, Mashiko T,Nagatani T. Traffic flow of mobile objects through obstacles: Turning and translational objects[J].Physica A, 2009,388:157-173.
    [97] Saegusa T, Mashiko T,Nagatani T.Flow overshooting in crossing flow of lattice gas[J]. Physica A, 2008,387:4119-4132.
    [98] Kirchner A, Nishinari K, Schadschneider A. Friction effects and clogging in a cellular automaton model for pedestrian dynamics[J]. Physical Review E, 2003, 67: 056112.
    [99] Huang H J, Guo R Y.Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits[J]. Physical Review E, 2008,78: 021131.
    [100] Cheng X D, Zhang H P, Xie Q Y,et al. Study of announced evacuation drill from a retail store[J]. Building and Environment, 2009,44(5): 864-870.
    [101] Xu X, Song W G. Staircase evacuation modeling and its comparison with an egress drill[J]. Building and Environment, 2009,44(5):1039-1046.
    [102] Zheng R S,Qiu B, Deng M Y,et al. Cellular automaton simulation of evacuation process in story[J]. Communications in Theoretical Physics.2008,49(1):166- 170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700