超大型天线馈源指向跟踪系统的力学分析及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国家自然科学基金重点项目的支持下,基于前人的工作,本文主要对新一代超大口径球反射面射电望远镜FAST(Five-hundred Meter Aperture Spherical RadioTelescope)馈源指向跟踪系统的力学分析与控制进行研究。完成的主要工作和取得的研究结论归纳如下:
     1.基于柔索的弹性悬链线方程,针对超大型天线的特点,建立了FAST馈源舱柔索支撑系统的非线性静力学模型,导出了系统静态刚度矩阵的解析表达式。由刚度表达式可见,系统刚度与馈源舱的位姿、舱索固接点的位置、柔索数目以及柔索拉力有关。最后,通过数值算例和物理实验验证了分析方法的正确性和有效性。
     2.根据馈源舱柔索支撑机构交流伺服驱动系统的等效电路模型,建立了由伺服驱动电机到卷扬机的机电系统的动力学模型。在该模型中不但考虑了摩擦非线性环节的影响,而且还考虑了未建模动态等干扰的影响。在此基础上,针对该交流伺服驱动系统,设计了一种模糊滑模控制方法。这种方法通过分阶段的加入指数趋近控制来加快系统响应,同时利用模糊控制器实时调整滑模控制的趋近律参数。不仅保证了控制系统的快速性和鲁棒性,而且有效地削弱滑模控制的颤动;另外,该控制方案设计简单,便于工程应用。以馈源舱柔索支撑系统交流伺服驱动机构为对象进行数值仿真,结果表明这种控制方法能够获得良好的控制精度和较强的鲁棒性。进一步证明了理论分析的正确性和设计方法的有效性。
     3.应用拉格朗日方程建立了馈源舱柔索支撑系统的动力学模型,解决了已知馈源舱运动轨迹,对馈源舱柔索支撑系统的逆运动学、逆动力学问题。同时,在考虑舱体动态运动过程中惯性力影响的前提下,进行馈源舱柔索支撑系统的轨迹规划,进一步可求解特定长度的柔索对处于某一位姿的馈源舱的作用力,并采用具有二次收敛性的Newton-Raphson迭代法进行解算,得到了更快的求解速度以满足控制的要求。数值计算结果表明,舱体中心的运行轨迹与运动要求相吻合;索长、舱体沿各坐标方向的位移、速度和加速度符合周期变化曲线;舱体上作用力的数值合理;从而验证了所建立的馈源舱柔索支撑系统的动力学模型是正确的。同时为进一步实现馈源舱柔索支撑系统的精确控制奠定了基础。
     4.通过对馈源舱柔索支撑系统动力学的强非线性、参数不确定性以及受到外界干扰等系统特性的分析,探讨了该类控制系统的控制特点和适用的控制策略。进一步,设计了一种将常规PI控制和Fuzzy控制相结合的Fuzzy-PI混合离散控制策略来实现馈源舱轨迹跟踪控制。这种控制策略不仅能发挥模糊控制鲁棒性强、动态响应快的特点,而且具有常规PI控制器的动态跟踪品质和稳态精度。在此基础上,为了进一步提高Fuzzy-PI混合离散控制系统的适应能力,设计了一种带有自调整因子的模糊控制规则。为了验证该Fuzzy-PI混合离散控制算法的优良控制性能,在相同给定条件和扰动下把Fuzzy-PI混合离散控制算法与常规模糊控制和离散非线性PID控制算法进行了比较研究。数值计算及结果分析表明,该Fuzzy-PI混合离散控制方法可在较大程度上补偿系统的非线性特性,并能提高系统响应的快速性、运动跟踪精度以及抗扰动能力。
     5.根据KED(Kineto Elastio Dynamic Analysis)原理建立了柔性支腿Stewart平台的动力学模型。解决了已知动平台运动规划轨迹,求各滑动关节驱动力的动力学逆问题。由于充分考虑了动平台惯性、支腿惯性、支腿弹性和关节摩擦等因素,保证了模型的准确性。这种动力学模型为研究Stewart平台高精度轨迹跟踪控制奠定了基础。针对该机构的非线性、强耦合和多输入多输出等特点,设计了一种PID神经网络控制器(Proportional-Integral-Derivative Neural Network controller)来实现精调Stewart平台的高精度轨迹跟踪。这种PID神经网络控制策略采用基于优化神经网络的PID解耦控制,将PID控制规律融进神经元之中,既具有神经网络自学习、自适应及逼近任意函数的能力,又具有常规PID控制器结构简单、可靠性高等特点。理论分析和数值计算结果表明了该方法的有效性。
This work was supported by Chinese National Natural Science Foundation under Grant No. 10433020. On the basis of the predecessor work, this paper is mainly concerned with the mechanics analysis and control of the feed tracking system for the next generation super antenna, which is the new design project of five-hundred meter aperture spherical radio telescope (FAST ). The main research works can be described as follows.
     1. Based on the elastic analytical equation of catenary of a cable with two endpoints fixed and considering the special characteristics of super antenna, a nonlinear static mechanical model of the cable-suspended system is derived. According to the highly nonlinear relationship between end force of a cable and cabin displacement, the incremental expression of forces on cabin exerted by the cable-suspended system, in terms of cabin displacement, is formulated based on the static mechanical model, and then the analytical expression of the static stiffness matrix is obtained. It can be noted from the expression that the static stiffness of cable-suspended system has relations with position and posture of the cabin, position of connection point between the cabin and the cable, and the number and drag force of the cable. In the end, the correctness and effectiveness of the analysis method is verified by the combination of numerical simulation and experimental research. Results between simulation and experiment can be matched fairly well.
     2. According to the equivalent circuit of the servomechanism, the dynamic model of the electromechanical coupling system for the cable-suspended mechanism is developed in the presence of internal model uncertainties in both nonlinear friction and servomechanism dynamics and external disturbances. Due to the inherent characteristics of the nonlinearity structure, a novel control method combining sliding mode control with fuzzy logic control is designed for the sake of realizing the trajectory tracking of the object. The approach applies fuzzy controller to adjust the parameters of reach law of sliding mode timely. At the same time the exponent approximating control is added by grading. This approach not only ensures the speediness and robustness of the control system, but also can weaken chattering, and the design of the control system is simple and it can be easily applied in the engineering. Taking the servomechanism model for the cable-suspended system as example, the simulation study on the algorithm is carried out, and its effectiveness and higher robustness are confirmed.
     3. Aiming at the cable-suspended system, on the basis of the inverse kinematics analysis the inverse dynamic formulation of the cable-cabin system with non-negligible cable mass was established by means of Lagrange's Equations. At the same time, considering the inertia force of the cabin in motion, trajectory planning of the cable-cabin system is conducted. So the actuating forces on the cabin locating at a certain position and pose can be solved with the given driving cable lengths. The equations can be solved by using Newton-Raphson method possessing the quadratic convergence property, which can guarantee a faster computation speed to meet the requirement of real time control algorithm. Simulation results illustrate that the center of the cabin tracks the planned trajectory relatively well; the length of cable varies symmetricly; the forces actuating on the cabin in the direction of X and Y are equal to the centripetal forces in the direction of X and 7 as the cabin moves along the path, respectively; on the other hand, the force actuating on the cabin in the direction of Z equals the gravity of the cabin. From the aforementioned results, it may be concluded that we justify the dynamic modeling for control.
     4. Taking account of the model uncertainties and external disturbances for the cable-suspended system, control strategy of the flexible system is discussed. In addition, considering the characteristics of nonlinearity, slow time-varying, and multivariable coupling of the system, a fuzzy control plus proportional-integral hybrid discrete-time control method combining PI control with fuzzy logic control, which can enhance the control performance for steady state errors, is developed for more effective and robust performance. The scheme with proportional-integral-tuning unit, which optimizes the control rules by adjusting factors, is utilized to carry out the trajectory tracking of the cabin. For comparison, a discrete-time nonlinear PID control arithmetic and a conventional fuzzy logic controller are also used for the motion control for the cable-suspended system. The system is simulated with expected signal input via the controller based on the established dynamic equation. The results show that the control system achieves a better tracking performance and the control system has strong robustness.
     5. On the basis of the principle of KED ( Kineto Elastio Dynamic Analysis ), an inverse dynamic formulation for a flexible Stewart platform with elastic legs is derived through Newton-Euler method, which involves the inertias of the platform and six legs, the elasticity of the legs and frictions at joints. So this establishes a basis for realizing the tracking control of the Stewart platform. In view of the characteristics of nonlinearity, strong coupling, and MIMO ( Multi-Input and Multi-Output ) system, a proportional-integral-derivative neural network controller is designed to carry out the high-precision trajectory tracking of the platform. The PID neural network is a kind of feedforward multilayer network. Its hidden layer neurons are proportional neuron ( P ), integral neuron ( I ), and derivative neuron ( D ). The numbers of the neurons, the connective forms and primary value of the weights are based on the rules of the PID control. The PID neural network controller can effectively incorporate neural network and PID control into its basic design, and has very good dynamic and static properties. The results of theoretical analysis and simulation verify that the proposed control strategy is effective and reasonable, and can realize dynamic trajectory following under the condition of external disturbances.
引文
[1]段宝岩.柔性天线结构分析、优化与精密控制.北京:科学出版社,2005.
    [2]雷源忠.我科学家对新一代大射电望远镜研究取得重要进展.中国机械工程,1998,9(11):87.
    [3]Nan R D and Peng B.A Chinese concept for the 1 km~2 radio telescope.Acta Astronautica,2000,46(10-12):667-675.
    [4]南仁东。500m球反射面射电望远镜FAST。 中国科学,2005,35(5):449-466。
    [5]Luo Y and Deng C.Structural analysis of the FAST reflector supporting system and its model.Astrophysics and Space Science,2001,278(1):231-236.
    [6]Duan B Y.Study of the feed system for a large radio telescope from the viewpoint of mechanical and structural engineering.Proceedings of the Int.Conference of the 3rd Large Telescope Working Group and of a Workshop on Spherical Radio Telescopes.Guiyang.1995.
    [7]Duan B Y.A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis.Mechatronics,1999,9(1):53-64.
    [8]Su Y X and Duan B Y.The mechanical design and kinematics accuracy analysis of a fine tuning stable platform for the large spherical radio telescope.Mechatronics,2000,10(7):819-834.
    [9]Duan B Y.Review of antenna structural design with mechatronics in China.Mechatronics,2002,12(5):657-667.
    [10]Li H.China hopes to move FAST on largest telescope.J.Science,1998,281(5378):771.
    [11]王文利,段宝岩,刘宏等.并联宏-微机器人系统的逆运动学模型.科学通报,2000,45(15):1617-1622.
    [12]仇原鹰.大射电望远镜馈源支撑与指向跟踪系统的力学模型及实验研究[博士论文].西安:西安电子科技大学,2002.
    [13]苏玉鑫.大射电望远镜精调Stewart平台的优化、分析与控制[博士论文].西 安:西安电子科技大学,2002.
    [14]董志强.大射电望远镜馈源舱支撑结构的减振与测量[博士论文]。西安:西安电子科技大学,2003.
    [15]保宏.大型射电望远镜馈源指向系统的控制、优化与实验[博士论文].西安:西安电子科技大学,2005.
    [16]丁学恭.机器人控制研究.杭州:浙江大学出版社,2006.
    [17]Kim B K and Chung W K.Performance tuning of robust motion controllers for high-accuracy positioning systems.IEEE Transactions on Mechatronics,2002,7(4):500-514.
    [18]杜敬利.超大型天线馈源索支撑系统与索网主动主反射面的力学分析与优化设计[博士论文].西安:西安电子科技大学,2006.
    [19]蔡自兴.机器人学.北京:清华大学出版社,2000。
    [20]冯志友,李永刚,张策等。并联机器人机构运动与动力分析研究现状及展望.中国机械工程,2006,17(9):979-984.
    [21]Didrit O and Petitor M.Guaranteed solution of direct kinematic problems for general configurations of parallel manipulators.IEEE Transactions on Robotics and Automation,1998,14(2):259-265.
    [22]Lebret G.,Liu K,and Lewis F L.Dynamic analysis and control of a Stewart platform manipulator.Journal of Robotic System,1993,10(5):629-655.
    [23]Dasgupta B and Mruthyunjaya T.Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach.Mechanism and Machine Theory,1998,33(7):993-1012.
    [24]Lucente G,Montanari M and Rossi C.Modeling of an automated manual transmission system.Mechatronics,2007,17(2-3):73-91.
    [25]Utkin V I.Variable structure systems with sliding mode.IEEE Transaction on Automatic Control 1997,22(2):212-222.
    [26]高为炳.变结构控制理论基础.北京:科学技术出版社,1990.
    [27]Ha Q P,Rye D C,and Durrant-Whyte H F.Fuzzy moving sliding mode control with application to robotic manipulator.Automatica,1999,35:607-616.
    [28]Janardhanan S and Bandyopadhyay B.Output feedback sliding-mode control for uncertain systems using fast output sampling technique.IEEE Transactions on Industrial Electronics,2006,53(5):1677-1682.
    [29]Zadeh L A.A rationale for fuzzy control.ASME,Journal of Dynamic System Measure Control,1972,94:3-4.
    [30]Takagi T and Sugeno M.Fuzzy identification of systems and its application to modeling and control.IEEE Transactions on Systems,Man,Cybernetics,1985,15(1):116-132.
    [31]Cao S G,Rees N W,and Feng G.Analysis and design for a class of complex control systems-Part Ⅰ:Fuzzy modeling and identification.Automatica,1997,33:1017-1028.
    [32]Johansen T A.Fuzzy model based control:stability robustness and performance issues.IEEE Transaction on Fuzzy Systems,1994,2(1):221-233.
    [33]Peyravi H,Khoei A,and Hadidi K.Design of an analog CMOS fuzzy logic controller chip.Fuzzy Sets and Systems,2002,132:245-260.
    [34]Lee C C.Fuzzy logic in control systems:Fuzzy logic controller.IEEE Transactions on Systems,Man,Cybernetics,1990,20:404-434.
    [35]Wai R J and Chen P C.Intelligent tracking control for robot manipulator including actuator dynamics via TSK- type fuzzy neural network.IEEE Transactions on Fuzzy Systems,2004,12(4):552-560.
    [36]Li W X,Chang G.et al.Hybrid fuzzy P+ID control of manipulators under uncertainty.Mechatronics,1999,9(4):301-315.
    [37]Onat M and Dogruel M.Fuzzy plus integral control of the effluent turbidity in direct filtration.IEEE Transactions on Control Systems Technology,2004,12(1):65-74.
    [38]Feng G.A survey on analysis and design of model-based fuzzy control systems.IEEE Transactions on Fuzzy Systems,2006,14(5):676-697.
    [39]Passino K M and Yurkovich S.Fuzzy control.Beijing:Tsinghua University Press,Calif.:Addison-Wesley,2001.
    [40]Das T and Kar I N.Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots.IEEE Transactions on Control System Technology,2006,14(3):501-510.
    [41]何玉彬,李新忠.神经网络控制技术及其应用.北京:科学出版社,2000.
    [42]张化光,孟祥萍。智能控制基础理论及应用。北京:机械工业出版社,2005.
    [43]Shin D H and Kim Y.Nonlinear discrete-time reconfigurable flight control law using neural networks.IEEE Transactions on Control System Technology,2006,14(3):408-422.
    [44]Xu J X and Tan Y.Nonlinear adaptive wavelet control using constructive wavelet networks.IEEE Transactions on Neural Networks,2007,18(1):115-127.
    [45]Landsberger S E.Design and construction of a cable-controlled parallel link manipulator.Cambridge,MA,USA:Massachusetts Institute of Technology,1984:81-88.
    [46]Tanaka M,Seguchi Y,and Shimada S.Kineto-statics of skycam-type wire transport system.Proceedings of USA-Japan Symposium on Flexible Automation,Crossing Bridges:Advances in Flexible Automation and Robotics Minneapolis,Minnesota,ASME,1988:689-694.
    [47]Albus J S,Bostelman R V,and Dagalakis N G.The NIST Robocrane.Journal of Robotics System,1993,10(5):709-724.
    [48]Williams Ⅱ R L,Gallina P,and Vadia J.Planar translational cable-direct-driven robots.Journal of Robotic Systems,2003,20(3):107-120.
    [49]Oh S R and Agrawal S K.A reference governor based controller for a cable robot under input constraints.IEEE Transactions on Control Systems Technology,2005,13(4):639-645.
    [50]Arai T and Osumi H.Three wire suspension robot.The Industrial Robot,1992,19(4):17-22.
    [51]Kawamura S,Kino H,and Choe W.High speed manipulation by using parallel wire driven robots.International Journal of ROBOTICA,Cambridge University Press,2000,18:13-21.
    [52]Kino H and Setoguchi T.Development of a serial-link structural robot supported by wire cable drive actuators.Proceedings of IEEE/RSJ Intelligent Robots and Systems(IROS2003),TPⅡ-3-2,Las Vegas,USA,October,2003.
    [53]Ming A and Higuchi T.Study on multiple degree of freedom positioning mechanisms using wires(Part 2):development of a planar completely restrained positioning mechanism.International Journal of the Japan Society for Precision Engineering,1994,28(3):235-242.
    [54]Ming A,Kajitani M,and Higuchi T.On the design of wire parallel mechanism.International Journal of the Japan Society for Precision Engineering,1995,29(4):337-342.
    [55]Kawamura S,Kino H,and Choe W.High speed manipulation by using parallel wire driven robots.International Journal of ROBOTICA,Cambridge University Press,2000,18:13-21.
    [56] Takeda Y and Funabashi H. Kinematic synthesis of spatial in-parallel wire-driven mechanism with six degrees of freedom with high force transmissibility. Proceedings of the ASME-DETC2000, Baltimore, Maryland, 2000.
    [57] Kino H and Kawamura S. Development of a serial link structure / parallel wire system for a force display. Proceedings of IEEE International Conference on Robotics and Automation, Washington D.C., May, MPI-6.3,2002.
    [58] Yamamoto M, Yanai N, and Mohri A. trajectory control of incompletely restrained parallel-wire-suspended mechanism based on inverse dynamics. IEEE Transactions on Robotics, 2004, 20(5): 840-850.
    [59] Takemura F, Maeda K, and Tadokoro S. Attitude stability of a cable driven balloon robot. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October 9-15,2006.
    [60] Maier T and Woernle C. Kinematic control of cable suspension robots. In: Proceedings of NATO-ASI Workshop on Computational Methods in Mechanisms, Varna, Bulgaria, 1997: 421 -430, NATO.
    [61] Hiller M, Fang S Q, and Mielczarek S. Design, analysis and realization of tendon-based parallel manipulators. Proceedings of the 10th German-Japanese Seminar on Nonlinear Problems in Dynamical Systems-Theory and Applications, Hakui, Ishikawa, Japan, October 2002.
    [62] Heyden T and Woernle C. Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator. Multibody System Dynamics, 2006, 16: 155-177.
    [63] Melchiorri C and Vassura G Development and application of wire-actuated haptic interfaces. Journal of Robotics Systems, 2001,18(12): 755-768.
    [64] Ottaviano E, Ceccarelli M, and De Ciantis M. A 4-4 cable-based parallel manipulator for an application in hospital environment. Proceedings of the 15th Mediterranean Conference on Control & Automation Athens, Greece, July 27-29, 2007.
    [65] Gouttefarde M and Gosselin C M. Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms. IEEE Transactions on Robotics, 2006, 22(3): 434-445.
    [66] Dewdney P, Nahon M, and Veidt B. The large adaptive reflector: a giant radio telescope with an aero twist. Canadian Aeronautics and Space Journal, 2002, 48 (4): 239-250.
    [67]Behzadipour S and Khajepour A.Time-optimal trajectory planning in cable-based manipulators,IEEE Transactions on Robotics,2006,22(3):559-563.
    [68]Lafourcade P and Llibre M.First steps toward a sketch-based design methodology for wire-driven manipulators.In:Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics.Kobe,2003.
    [69]Gouttefarde M and Gosselin C M.Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms.IEEE Transactions on Robotics,2006,22(3):434-445.
    [70]Jeong J W,Kim S H,and Kwak Y K.Kinematics and workspace analysis of a parallel wire mechanism for measuring a robot pose.Mechanism and Machine Theory,1999,34(6):825-841.
    [71]隋春平,张波,赵明.一种3自由度并联柔索驱动柔性操作臂的建模与控制.机械工程学报,2005,41(6):60-65.
    [72]Kozak K,Zhou Q,and Wang J S.Static analysis of cable-driven manipulators with non-negligible cable mass.IEEE Transactions on Robotics,2006,22(3):425-433.
    [73]Su Y X and Duan B Y.Mechatronics design of stiffness enhancement of the feed supporting system for the square-kilometer array.IEEE/ASME Transaction on Mechatronics,2003,8(4):1-6.
    [74]Qiu Y Y,Duan B Y,and Wei Q.Optimal distribution of the cable tensions and structural vibration control of the cable-cabin flexible structure.Structural Engineering and Mechanics,2002,14(1):39-56.
    [75]金栋平,文浩,胡海岩.绳索系统的建模、动力学和控制,力学进展,2004,34(3):304-313.
    [76]张家梁,吕恬生,王均功等.斜拉桥爬缆机构的研制.中国机械工程,2001,12(12):1348-1351.
    [77]郑亚青,刘雄伟。6自由度绳牵引并联机构的运动轨迹规划.机械工程学报,2005,41(2):77-81.
    [78]郑亚青,刘雄伟.绳牵引并联机构拉力分布优化.机械工程学报,2005,41(9):140-145.
    [79]陈伟海,陈泉柱,张建斌等.线驱动拟人臂机器人逆向运动学分析.机械工程学报,2007,43(4):12-20.
    [1]Buchholdt H A.Introduction to cable roof structures.Cambridge:The University Press,1985.
    [2]Pellegrino S.A class of tensegrity domes.International Journal of Space Structures,1992,7(2):127-142.
    [3]沈世钊.大跨度张拉结构风致动力响应研究进展.同济大学学报,2002,30(5):533-538.
    [4]魏建东,刘忠玉.具有滑移式散索鞍的悬索桥主缆架设分析.计算力学学报,2005,22(6):755-761.
    [5]张其林.索和膜结构.上海:同济大学出版社,2002.
    [6]沈世钊。大跨空间结构的发展-回顾与展望。土木工程学报,1998,31(3):5-14.
    [7]Forster B.Cable and membrane roofs-a historical survey.Structural Engineering Review,1994,6(3-4):145-174.
    [8]Saitoh M.Role of string:aesthetics and technology of tension structures.Kobe:IABSE Symposium,1998:699-710.
    [9]沈世钊,徐崇宝,赵臣。悬索结构设计.北京:中国建筑工业出版社,1997.
    [10]Landsberger S E and Sheridan T B.Parallel link manipulators.U.S.Patent 4,666,362,USA,May,1987.
    [11]Albus J,Bostelman R,and Dagalakis N.The NIST robocrane.Journal of Robotic System,1993,10(5):709-724.
    [12]Barrette G and Gosselin C M.Kinematic analysis and of planar parallel mechanisms actuated with cables.Proceedings of ASME Design Engineering Technical Conference,391-399.
    [13]Oh S R,Mankala K et al.A dual-stage planar cable robot:dynamic modeling and design of a robust controller with positive inputs.Journal of Mechanical Design,2005,127:612-620.
    [14]Heyden T and Woernle C.Dynamics and flatness-based control of a kinematically tmdetermined cable suspension manipulator.Multibody System Dynamic,2006,16:155-177.
    [15]保宏.大型射电望远镜馈源指向系统的控制、优化与实验[博士论文].西 安:西安电子科技大学,2005.
    [16]李嘉,陈恳,董怡等。并联柔性铰机器人的静刚度研究.清华大学学报,1999,39(8):16-20.
    [17]李育文,张华,杨建新等。6-UPS并联机床静刚度的有限元分析和实验研究.中国机械工程,2004,15(2):112-114.
    [18]刘红军,姜春英,房立金等.并联刨床刚度分析及实验研究。机器人,2006,28(1):10-13.
    [19]路志浩,陈以一.一般情况下小垂度索的刚度方程及其应用.力学季刊,2000,21(2):254-261.
    [20]Gunnar.Numerical analyses of cable roof structures[thesis].royal institute of technology department structural engineering,Stockholm,Sweden,1999.
    [21]Gosselin C M.Stiffness mapping for parallel manipulators.IEEE Transactions On Robotics and Automation,1990,6(3):377-382.
    [22]Gosselin C M and Zhang D.Stiffness analysis of parallel mechanisms using a lumped model.International Journal of Robotics and Automation,2002,17(1):17-27.
    [23]Simaan N and Shoharn M.Geometric interpretation of the derivatives of parallel robots' Jacobian matrix with application to stiffness control.Journal of Mechanical Design,2003,125(3):33-42.
    [24]Verhoeven R,Hiller M,and Tadoroko S.Workspace,stiffness,singularities and classification of tendon driven Stewart platforms.In:Proc.6th Int.Symposium on Advances in Robot Kinematics,Strobl/Salzburg,Austria,1998:105-114.
    [25]Dagalakis N G;Albus J S et al.Stiffness study of a parallel link robot crane for shipbuilding applications.Journal of Offshore Mechanics and Arctic Engineering,1989,111(3):183-193.
    [26]Kawamura S,Kino H,and Won C.High-speed manipulation by using parallel wire-driven robots.Robotica,2000,18(1):13-21.
    [27]沈世钊。大跨空间结构理论研究和工程实践.中国工程科学,2001,3(3):34-41。
    [28]Gunnar T.Numerical Analysis of Cable Roof Structures:[Licentiate Thesis].Stockholm:Royal Institute of Technology,1999.
    [29]Boonyapinyo V,Yamada H,and Miyata T.Wind-induced nonlinear lateral-torsional buckling of cable-stayed bridges.J Struct Engng ASCE,1994, 120:486-506.
    [30]胡松,何艳丽,王肇民.大挠度索结构的非线性有限元分析.工程力学,2004,17(2):36-43.
    [31]段宝岩。天线结构分析、优化与测量.西安:西安电子科技大学出版社,1998.
    [32]O'Brien T and Francis A J.Cable movements under two-dimensional loads.J.Struct.Div.ASCE,1964,90:89-123.
    [33]Peyrot A H and Goulois A M.Analysis of flexible transmission lines.J Struct Div ASCE,1978,104:763-779.
    [34]Jayaraman H B and Knudson W C.A Curved Element for the Analysis of Cable Structures.Computers and Structures,1981,14(3):325-333.
    [35]Irvine H M.Cable structures.Dover Publication,.New York,1992.
    [36]Russel J C and Lardner T J.Statics experiments on an elastic eatenary.Journal of the Engineering Mechanics,ASCE,1997,123(12):1322-1324.
    [37]Wang C Y and Watson L T.The elastic catenary.Journal of Mechanical Science,1982,24(6):349-357.
    [38]杜敬利.超大型天线馈源索支撑系统与索网主动主反射面的力学分析与优化设计[博士论文]。西安:西安电子科技大学,2006.
    [39]Raid K.Some modeling aspects in the nonlinear finite element analysis of cable supported bridges.Computers and Structures,1999,71:397-412.
    [40]Leonhardt F and Schlaich J.Structural design of roofs over the sports arenas for the 1972 Olympic Games:Some problems of prestressed cable net structures.The Structural Engineer,1972,50(3):113-119.
    [41]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999。
    [42]沈祖炎,赵宪忠,陈以一等.大型空间结构整体模型静力试验的若干关键技术.土木工程学报,2001,34(4):102-106。
    [43]Duan B Y,Qiu Y Y,Zhang F S,Bao H,and Zi B.A Method to Enhance the Stiffness of the Feed Cable-suspended Structure and Its Effect on the Electronic Performance.The Second Asia International Symposium on Mechatronics,12-15December,2006,Hong Kong,China.
    [1]Anupoju C M,Su C Y,and Oya M.Adaptive motion tracking control of uncertain nonholonomic mechanical systems including actuator dynamics.IEE Proceedings.D,Control Theory and Applications,2005,152(5):575-580.
    [2]李辉,张策,宋轶民等.可控压力机的动力学建模和仿真。机械工程学报,2005,41(3):180-184.
    [3]许晓峰。电机及拖动.北京:高等教育出版社,2005。
    [4]陈伯时.电力拖动自动控制系统-运动控制系统.北京:机械工业出版社,2003.
    [5]胡佑德,曾乐生,马东升。伺服系统原理与设计.北京:北京理工大学出版社,1993.
    [6]胡跃明.非线性控制系统理论与应用.北京:国防工业出版社,2002.
    [7]Khalil H K著,朱义胜,董辉等译.非线性系统(第三版).北京:电子工业出版社,2005.
    [8]Itlds U.Control systems of variable structures,Wiley,NY,1976.
    [9]Young K D,Utldn V I,and Ozgtiner U.A control engineer's guide to sliding mode control.IEEE Transactions on Control Systems Technology,1999,7(3):328-342.
    [10]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996。
    [11]Shyu K and Shieh H J.A switching surface sliding-mode speed control for induction motor drives.IEEE Transactions on Power Electronics,1996,11(6):660-667.
    [12]Wang W J and Chang K Y.Varible structure based covariance assignment for stochastic multivariable model reference system.Automatica,2000,36(2):141-146.
    [13]王瑞明,蒋静坪.基于适应性遗传算法的滑模控制感应电机伺服驱动系统研究.中国电机工程学报,2005,25(17):136-141.
    [14]王丰尧.滑模变结构控制.北京:机械工业出版社,1995。
    [15]张昌凡,王耀南,何静.永磁同步伺服电机的变结构智能控制.中国电机工程学报,2002,22(7):13-17.
    [16]Liu D T,Yi J Q,Zhao D B et al.Adaptive sliding mode fuzzy control for a two-dimensional overhead crane.Mechatronics,2005,15(5):505-522.
    [17]Ofoli A R and Rubaai A.Real-time implementation of a fuzzy logic controller for switch-mode power-stage DC-DC converters.IEEE Transactions on Industry Applications,2006,42(6):1367-1374.
    [18]Simoes M G,Bose B K,and Spiegel R J.Design and performance evaluation of a fuzzy logic based variable speed wind generation system.IEEE Transactions on.Industry Applications,1997,33:956-965.
    [19]Huang S and Huang K.An adaptive fuzzy sliding-mode controller for servomechanism disturbance rejection.IEEE Transactions on Industrial Electronics,2001,48(4):845-852.
    [20]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [21]Tao C W,Taur J S,and Chan M L.Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties.IEEE Transactions on Systems,Man,Cybemetics,B,Cybernetics,2004,34(1):255-262.
    [22]Huang S -J and Chen H -Y.Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control.Mechatronics,2006,16(10):607-622.
    [23]Bose B K著,王聪等译.现代电力电子学与交流传动。北京:机械工业出版社,2005.
    [24]路甬祥,胡大纮.电液比例控制技术.北京:机械工业出版社,1988,
    [25]Kamopp D.Computer simulation of stick-slip friction in mechanical dynamic systems.ASME Journal of Dynamic System,Measurement,and control,1985,107:100-103.
    [26]Armstrong B,Dupont P,and Canudas De Wit C.A survey of models,analysis tools and compensation methods for the control of machines with friction.Automatica,1994,30(7):1083-1138.
    [27]Canudas De Wit C,Olsson H et al.A new model for control of systems with friction.IEEE Transactions on Automatic Control,1995,40(3):419-425.
    [28]王英,熊振华,丁汉.基于状态观测的自适应摩擦力补偿的高精度控制。自然科学进展,2005,15(9):1100-1105.
    [29]王延龙,孙廷玉,谢书明。分阶段模糊滑模控制在交流伺服系统中的应用.沈阳工业大学学报,2005,27(3):291-294.
    [1]何广平,范春辉,张乐等.双稳态平面并联机构.机械工程学报,2006,42(12):95-100.
    [2]汪劲松,关立文,王立平等.并联机器人机构构型创新设计研究.机械工程学报,2004,40(11):7-12.
    [3]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997.
    [4]Craig J J.Introduction to robotics-mechanics & control.Beijing:China machine press,Addison-wesley publishing company,2005.
    [5]熊有伦,丁汉,刘思沧.机器人学.北京:机械工业出版社,1993.
    [6]Rosenthal D E.An order n formulation for robotic systems.Journal of Astronautical Sciences,1990,38(4):511-529.
    [7]Rosen A and Edelstein E.Investigation of a new formulation of the lagrange method for constrained dynamic systems.ASME Journal of Applied Mechanics,1997,64(1):116-122.
    [8]Vibet C.Dynamics modeling of lagrangian mechanisms from inertia matrix elements.Computer Methods in Applied Mechanics and Engineering,1995,123(2):317-326.
    [9]Jain A and Rodriguez G.Diagonalized lagrangian robot systems.IEEE Transactions on Robotics and Automation,1995,11(4):517-584.
    [10]Niku S B著,孙富春,朱纪洪等译.机器人学导论:分析、系统及应用.北京:电子工业出版社,2004。
    [11]Roberts R G.,Graham R,and Lippitt T.On the inverse kinematics,statics,and fault tolerance of cable-suspended robots.Journal of Robotic Systems,1998,15(10):581-597.
    [12]Shiang W J,Cannon D,and Gorman J.Dynamic analysis of the cable array robotic crane.Proceedings of IEEE International conference on Robotics &Automation.Detroit,Michigan,1999,2495-2500.
    [13]Motoji Y,Noritaka Y,and Akira M.Trajectory control of incompletely restrained parallel wire-suspended mechanism based on inverse dynamics.IEEE Transactions on Robotics,2004,20(5):840-850.
    [14]Yanai N,Yamamoto M,and Mohri A.Anti-sway control for wire-suspended mechanism based on dynamics compensation.Proceedings of the 2002 IEEE International Conference on Robotics and Automation,Washington,DC,USA,2002.
    [15]Ma O and Diao X.Dynamics analysis of a cable-driven parallel manipulator for hardware-in-the-loop dynamic simulation.Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Monterey,California,USA,24-28,2005.
    [16]Heyden T and Woernle C.Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator.Multibody System Dynamics,2006,16:155-177.
    [17]Oh S R and Agrawal S K.Cable suspended planar robots with redundant cables:controllers with positive tensions.IEEE Transactions on Robotics,2005,21(3):457-465.
    [18]Kino H,Yahiro T,Yakemura F et al.Robust PD control using adaptive compensation for completely restrained parallel-wire driven robots:Translational systems using the minimum number of wires under zero-gravity condition.IEEE Transactions on Robotics,2007,23(4):803-812.
    [19]蔡自兴.机器入学.北京:清华大学出版社,2000。
    [20]Guo Q D and Liu Y.Local structurization kinematic decoupling of six-leg virtual-axis NC machine tool.IEEE/ASME Transactions on Mechatronics,2002,17(4):515-518.
    [21]Jorge A著,宋伟刚译.机器人机械系统原理理论、方法和算法.北京:机械工业出版社,2004.
    [22]Su Y X and Duan B Y.The application of the Stewart platform in large spherical radio telescope.Journal of Robotic Systems,2000,17(7):375-383.
    [23]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999。
    [24]保宏,杜敬利,段宝岩.大型射电望远镜馈源支撑系统静刚度分析.机械工程学报,2006,42(7):119-125.
    [25]孙欣.大射电望远镜悬索式馈源支撑系统的非线性静力学、运动学和动力学理论及方法的研究[博士学位论文]。西安:西安电子科技大学,2001。
    [26]段宝岩.天线结构分析、优化与测量.西安:西安电子科技大学出版社,1998.
    [27]Ahmadi-Kashani K.Development of cable elements and their applications in the analysis of cable structures.Manchester:University of Manchester Institute of Science and Technology,1983.
    [1]Williams Ⅱ R L,Gallina P,and Vadia J.Planar translational cable-direct-driven robots.Journal of Robotic Systems,2003,20(3):107-120.
    [2]Fang S Q and Franitza D.Motion control of a tendon-based parallel manipulator using optimal tension distribution.IEEE Transactions on Mechatronics,2004,9(3):561-568.
    [3]Motoji Y,Noritaka Y,and Akira M.Trajectory control of incompletely restrained parallel wire-suspended mechanism based on inverse dynamics.IEEE Transactions on Robotics,2004,20(5):840-850.
    [4]Oh S R and Agrawal S K.A reference governor based controller for a cable robot under input constraints.IEEE Transactions on Control Systems Technology,2005,13(4):639-645.
    [5]Heyden T and Woernle C.Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator.Multibody System Dynamics,2006,16:155-177.
    [6]Isidori A著,王奔,庄圣贤译.非线性控制系统.北京:电子工业出版社,2005.
    [7]Slotine J E and Li W P著,程代展译.应用非线性控制.北京:机械工业出版社,2006.
    [8]冯纯伯.非线性控制系统分析与设计.南京:东南大学出版社,1990。
    [9]Charles C N,Sami S A,and Zhou Z L et al.Adaptive control of a Stewart platform-based manipulator.Journal of Robotic Systems,1993,10(5):657-687.
    [i0]Zhu W H and DE SCHUTTER J.Adaptive contxol of mixed rigid/fiexible joint manipulators based on virtual decomposition.IEEE Transactions on Robotics and Automatics,1999,15(2):310-317.
    [11]Lin H M and Mclnroy J E.Adaptive sinusoidal disturbance cancellation for precise pointing of Stewart platform.IEEE Transactions on Control Systems Technology,2003,11(2):267-272.
    [12]Craig JJ。机器人学导论(英文版,第三版).北京:机械工业出版社,2005.
    [13]王立新.自适应模糊系统与控制-设计与稳定性分析.北京:国防工业出版社,1995.
    [14]Zadeh LA.Fuzzy sets.Inform.Control,1965,8(3):338-353.
    [15]Mamdani E H and Assilian S.Applications of fuzzy algorithms for control of simple dynamic plant.In Proc.Inst.Elect.Eng.,1974,121:1585-1588.
    [16]Procky T J and Mamdani E H.A linguistic self-organizing process controller.Automatica,1979,15(1):15-30.
    [17]Lee C C.Fuzzy logic in control systems:Fuzzy logic controller.IEEE Transactions on Systems,Man,Cybernetics,1990,20:404-434.
    [18]Cho H J,Cho K B,and Wang B H.Fuzzy-PID hybrid control:automatic rule generation using genetic algorithms.Fuzzy sets and systems,1997,92(3):305-316.
    [19]Li W,Chang X G,Wahl F M et al.Hybrid fuzzy P+ID control of manipulators under uncertainty.Mechatronics,1999,9(4):301-315.
    [20]Lin C L,Hung H Z,Chen Y Y et al.Development of an integrated fuzzy-logic-based missile guidance law against high speed target.IEEE Transactions on Fuzzy Systems,2004,12(6):766-779.
    [21]诸静.模糊控制理论与系统原理.北京:机械工业出版社,2005.
    [22]Hwang J P and Kim E.Robust tracking control of an electrically driven robot:adaptive fuzzy logic approach.IEEE Transactions on Fuzzy Systems,2006,14(2):232-247.
    [23]Ohtake H,Tanaka K,and Wang H O.Switching fuzzy controller design based on switching lyapunov function for a class of nonlinear systems.IEEE Transactions on Systems,Man,Cybernetics,2006,36(1):13-23.
    [24]Lian K Y and Liou J J.Output tracking control for fuzzy systems via output feedback design.IEEE Transactions on Fuzzy Systems,2006,14(5):628-639.
    [25]佟绍成。非线性系统的自适应模糊控制.北京:科学出版社,2006.
    [26]王伟,张晶淘,柴天佑。PID参数先进整定方法综述.自动化学报,2000,26(3):347-355.
    [27]蔡自兴,徐光佑.人工智能及其应用。北京:清华大学出版社,2004.
    [28]Xu J X,Hang C,and Liu C.Parallel structure and tuning of a fuzzy PID controller.Automatica,2000,36(5):673-684.
    [29]Wu Z Q and Mizumoto M.PID type fuzzy controller and parameters adaptive method.Fuzzy sets and systems,1996,78(1):23-35.
    [30]张玉魁.大型射电望远镜控制软件系统研究[硕士学位论文]。西安:西安电子科技大学,2002.
    [31]佘海波.大射电望远镜悬索馈源支撑系统的控制硬件设计与实现[硕士学位论文].西安:西安电子科技大学,2002。
    [32]张吉礼。模糊-神经网络控制原理与工程应用.哈尔滨:哈尔滨工业大学出版社,2004.
    [33]Passino K M and Yurkovich S.Fuzzy control.Beijing:Tsinghua University Press,Calif.:Addison-Wesley,2001.
    [34]陆佑方。柔性多体系统动力学.北京:高等教育出版社,1996.
    [35]王之宏.风荷载的模拟研究。建筑结构学报.1994,15(1):44-52。
    [36]王肇民.高耸结构振动控制.上海:同济大学出版社,1997.
    [37]Qiu YY,Duan B Y,and Wei Q.Optimal distribution of the cable tensions and structural vibration control of the cable-cabin flexible structure.Structural Engineering and Mechanics,2002,14(1):39-56.
    [38]李士勇。模糊控制·神经控制和智能控制论。哈尔滨:哈尔滨工业大学出版社,2002.
    [39]Wang L X.Adaptive fuzzy systems and control.New York:Prentice-Hall Press,1994.
    [40]Feng G.A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems,2006,14(5):676-697.
    [41]Qiao W Z and Mizumoto M.PID type fuzzy controller and parameters adaptive method.Fuzzy sets and systems,1996,78(1):23-35.
    [42]James S,Carvajar C,and Chen G R.Fuzzy PID Controller:Design,performance evaluation,and stability analysis.Information Sciences,2000,123(3):249-270.
    [43]李平,王慧,钱积新等.模糊控制中的积分作用.模糊系统与数学,1993,7(1):12-19.
    [44]Braae M and Rutherford D A.Theoretical and linguistic aspects of the fuzzy logic controller.Automatica,1977,15:553-577.
    [45]徐承伟.关于Fuzzy调节器的积分作用。 自动化学报,1984,11:198-201.
    [46]淳于怀太.模糊控制器与积分控制器混合应用的研究.化工自动化及仪表,1986,5:1-5.
    [47]Procky T J and Mamdani E H A linguistic self-organizing process controller Automatica,1979,15(1):15-30.
    [48]龙升照,汪培庄.Fuzzy控制规则的自调整问题.模糊数学,1982,3:105-112.
    [49]李东辉.Fuzzy控制规则自调整和Fuzzy控制系统寻优及其仿真研究.模糊数学,1986,3:53-61.
    [50]Maeda M and Murakami S.A self-tuning fuzzy controller.Fuzzy Sets and Systems,1992,51:29-40.
    [51]Tonshoff H K and Walter A.Self-tuning fuzzy-controller for process control in internal grinding.Fuzzy Sets and Systems,1994,63:359-373.
    [52]He S Z.Design of an on-line rule-adaptive fuzzy control system.IEEE.International Conference on Fuzzy Systems,San Diego,USA,1992,83-91.
    [53]Linkens D A and Nie J.Constructing rule-based for multivariable fuzzy control by self-learning.Part Ⅰ:System structure and self-learning.International Journal of System Science,1993,24(1):111-127.
    [54]Raju G V S.Adaptive hierarchical fuzzy controller.IEEE Transaction on Systems,Man,and Cybernetics,1993,23(4):973-980.
    [55]Lin W S and Tsai C H.Self-organizing fuzzy control of multi-variable systems using learning vector quantization network.Fuzzy Sets and Systems,2001,124:197-212.
    [56]Seraji H.A new class of nonlinear PID controllers with robotic applications.Journal of Robotic Systems,1998,15(3):161-181.
    [57]杨志永,黄田,倪雁冰。3-HSS并联机床动力学建模及鲁棒轨迹跟踪控制。机械工程学报,2004,40(11):75-81.
    [1]陈学生,陈在礼,孔民秀.并联机器人研究的进展与现状.机器人,2002,24(5):464-470.
    [2]Guo Q D,Liu Y,and Liu Y.Local structurization kinematic decoupling of six-leg virtual-axis NC machine tool.IEEE Transactions on Mechatronics,2002,7(4):515-518.
    [3]Tanikawa T and Arai T.Development of a micro-manipulation system having a two-fingered micro-hand.IEEE Transactions on Robotics and Automation,1999,15(1):152-162.
    [4]Gregorio R.Translational parallel manipulators:new proposals.Journal of Robotic Systems,2002,19(12):595-603.
    [5]魏世民,周小光,廖启征.六轴并联机床运动精度的标定研究.中国机械工程,2003,14(23):1981-1985。
    [6]王伟,谢海波.一种基于固有频率分析的液压6自由度并联机构参数优化方法.机械工程学报,2006,42(3):77-82。
    [7]Jin Y,Chen I M,and Ying G.Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation.IEEE Transactions on Robotics,2006,22(3):545-550.
    [8]Do W Q D and Yang D C H.Inverse dynamic analysis and simulation of a platform type of robot.Journal of Robotic Systems,1988,5(3):209-227.
    [9]Dasgupta B and Mruthyunjaya T S.Force redundancy in parallel manipulators:theoretical and practical issues.Mechanism and Machine Theory,1998,33(6):727-742.
    [10]仇原鹰。大射电望远镜馈源支撑与指向跟踪系统的力学模型分析及实验研究[博士学位论文]。西安:西安电子科技大学,2002.
    [11]Liu M J,Li C X,and Liu H F.Dynamics analysis of the Gough-Stewart platform manipulator.IEEE Transactions on Robotics and Automation,2000,116(1):94-98.
    [12]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997。
    [13]Khalil W and Guegan S.Inverse and direct dynamic modeling of Gough-Stewart robots.IEEE Transactions on Robotics,2004,20(4):754-761.
    [14]Gao X S and Lei D L.Generalized Stewart-Gough platforms and their direct kinematics.IEEE Transactions on Robotics,2005,21(2):141-151.
    [15]Dwivedy S K and Eberhard P.Dynamic analysis of flexible manipulators,a literature review.Mechanism and Machine Theory,2006,41:749-777.
    [16]徐东光,董彦良,吴盛林等.液压驱动Stewart平台非线性自适应控制器设计.机械工程学报,2007,43(3):223-234.
    [17]Xiu D X.Trajectory control of a new class of CNC machine tools,Ph.D.Thesis,Department of Mechanical Engineering,Florida Altantic University,1999.
    [18]Simaan N and Shoham M.Geometric interpretation of the derivatives of parallel robots' Jacobian matrix with application to stiffness control.Journal of Mechanical Design,2003,125(1):33-42.
    [19]Lin H M and McInroy J E.Adaptive sinusoidal disturbance cancellation for precise pointing of Stewart platform.IEEE Transactions on Control Systems Technology,2003,11(2):267-272.
    [20]Lee S H and Song J B.Position control of a Stewart platform using inverse dynamics control with approximate dynamics.Mechatronics,2003,13:605-619.
    [21]苏玉鑫.大射电望远镜精调Stewart平台的优化、分析与控制[博士学位论文].西安:西安电子科技大学,2002。
    [22]Su Y X,Duan B Y,Zheng C H et al.Disturbance-rejection high-precision motion control of a Stewart platform.IEEE Transactions on Control Systems Technology,2004,12(3):364-374.
    [23]McInry J E.Modeling and design of flexure jointed Stewart platforms for control purpose.IEEE/ASME Transactions on Mechatronics,2002,7(1):95-99.
    [24]Cheng Y,Ren G X,and Dai S L.Vibration control of Gough-Stewart platform on flexible suspension.IEEE Transactions on Robotics and Automation,2003,19(3):489-493.
    [25]Lin L C and Tsay M U.Modeling and control of micropositioning systems using Stewart platforms.Journal of Robotic Systems,2000,17(1):17-52.
    [26]Ting Y,Chen Y S,and Jar H C.Modeling and control for a Gough-Stewart platform CNC machine.Journal of Robotic Systems,2004,21(11):609-623.
    [27]王伟,张晶淘,柴天佑.PID参数先进整定方法综述。 自动化学报,2000,26(3):347-355.
    [28]蔡自兴,徐光佑。人工智能及其应用.北京:清华大学出版社,2004.
    [29]孙增圻,张再兴,邓志东。智能控制理论与技术.北京:清华大学出版社,2002.
    [30]刘金琨.先进PID控制及其MATLAB仿真(第二版)。北京:电子工业出版社,2004.
    [31]舒怀林。PID神经元网络及其控制系统.北京:国防工业出版社,2006.
    [32]Dasgupta B and Mruthyunjaya T S.A Newton-Euler formulation for the inverse dynamics of the Stewart platform.Mechanism and Machine Theory,1998,33(8):1135-1152.
    [33]洪嘉振,蒋丽忠.动力刚化与多体系统刚-柔耦合动力学。计算力学学报,1999,16(3):295-301.
    [34]Nguyen C C,Antrazi S S,and Zhen L Z.Adaptive control of a Stewart platform based manipulator.Journal of Robotic Systems,1993,10(5):657-687.
    [35]夏元清,黄一,许可康等.大射电望远镜FAST馈源舱位姿控制.控制与决策,2004,(2):195-198.
    [36]柴天佑.多变量自适应解耦控制及应用.北京:科学技术出版社,2001.
    [37]舒怀林.PID神经网络多变量控制系统分析。 自动化学报,1999,25(1):105-111.
    [38]Shu H L and Pi Y G.PID neural networks for time-delay systems.Computer &Chemical Eenineering.2000,24(7):859-862.
    [39]约翰-克拉克.机器人学导论(英文版,第3版).北京:机械工业出版社,2005。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700