核电厂正常工况下放射性气态流出物大气弥散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电厂放射性气态流出物对环境的影响问题一直受到各国政府和国际相关机构的高度关注,目前国内外关于核电厂正常运行与事故条件下的大气弥散导则普遍采用的高斯模式,难以适用于复杂地形尤其是具有高大冷却塔的内陆核电厂的大气弥散影响的评价。针对这一问题,以研究不同稳定度天气情况下复杂地形和建筑物流场中核电厂放射性气态流出物大气弥散问题为目的,本文进行了以下一系列工作:
     对核电厂厂区半径2km范围内的大气环境进行三维建模,结合CFD方法,通过数值模拟数值计算方法对核电厂放射性气态流出物大气弥散模型的浓度场进行模拟。基于时均化流场稳态计算对典型大气稳定度下核电厂放射性气态流出物大气弥散特征参数进行分析,所得结果与经典解析理论一致并符合国家核安全导则的要求。
     在上述三维大气热力数值模型的基础上,考虑地形地貌、建筑物对放射性气态流出物大气弥散的影响因素,建立基于秦山二期实际地形的数值模型,分别分析了三类稳定度情况下的大气弥散的浓度场分布,将CFD模拟分析结果和经典高斯模式计算结果与SF6示踪测量实验结果进行对比分析,结论表明CFD数值模拟结果更接近真实测量值。
     在内陆核电厂冷却塔对放射性气态流出物大气弥散影响问题的研究中,建立了一机一塔的数值模型,考虑多组份和大气热力分层影响,分析冷却塔及其热羽对区域流场的影响范围,进而分析其对放射性气态流出物扩散参数的影响,结果表明冷却塔对厂区内大气弥散具有较大的影响,明显降低扩散参数的稳定度级别,增强厂区内的扩散效应。
     本文针对核电厂放射性气态流出物的弥散建立了三维大气热力模型并对其中的各种工况下弥散问题进行数值模拟。研究表明该模型在动力抬升浓和热羽抬升以及烟羽空间度分布等方面的仿真结果均满足国家核安全导则的要求,且比现行的高斯模式估算的浓度场分布结果在一定程度上更接近真实测量数值。为今后开展利用CFD数值模拟方法研究复杂地形和建筑物流场中,尤其是有冷却塔的内陆核电厂区条件下放射性气态流出物大气弥散影响问题的研究奠定了基础。
Influence to the environment of radioactivity gaseous effusion in the nuclear power plant is always under observation of the government and the international organization. Current guide rules of atmospheric dispersion in normal operation and accident condition based on the Gaussian model, which is difficult to use to estimate the dispersion in the situation of complex terrain and structures, especially in the inland nuclear power plant with cooling tower. In response to this situation, aiming at the dispersion in different atmospheric stability and complex terrain, this paper mainly investigates the following sections:
     Build three-dimensional model of site area with 2km radius, and then use the method of numerical simulation to calculate the inner 3D onflow field wth CFD software. In order to study the dispersion parameters of 3D turbulent field in different atmospheric stability, the method of Time-Average flow analysis are used.
     To build reality modelof QINSHAN nuclear power plant, terrain and structures are added on the basic of numerical model as effect factors of dispersion. Concentration field in three classic atmospheric stability are analysed by compareing with the results of Gaussian model and SF6 tracer experiment, which shows that CFD simulation could generate better results than Gaussian model.
     In the study of inland nuclear power plant, numerical model with cooling tower are built, which put three constituent and laminarization of atmospheric thermal into consideration. The dispersion parameters are analysed in this condition, and the results indicate that the cooling tower has serious influence to the dispersion in the region of nuclear power plant.
     In this paper, the study method of dispersion in three-dimensional air thermal numerical model in nuclear power plant are mastered, which lay a foundation of CFD numerical simulation of dispersion in the situation of complex terrain and structures, especially in the inland nuclear power plant with cooling tower.
引文
[1] USNRC. Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Release from Light-Water-Cooled Reactors[S]. Regulatory Guide 1.111, 1977.
    [2] USNRC. Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants[S]. Regulatory Guide 1.111, 1979.
    [3]许铮,胡二邦.高斯模式在滨海核电厂址的有效性检验[D].太原:中北大学,2005.
    [4] Miao Shi-guang,Jiang Weimei. Large Eddy Simulation and Study of the Urban Boundary Layer[J].Advances in Atmospheric Sciences,2004(04):650–661.
    [5] Hargreaves D.M., Wright N.G. On the use of the k-εmodel in commercial CFD software to model the neutral atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007(95):355–369.
    [6] Bert Blocken. CFD simulation of the atmospheric boundary layer: wall function problems[J]. Atmospheric Environment. 2007(41):238–252.
    [7] Quinn A.D., Wilson M., Reynolds A.M., et al. Modelling the dispersion of aerial pollutants from agricultural buildings—an evaluation of computational fluid dynamics (CFD) [J] .Computers and Electronics in Agriculture,2001(30):219–235.
    [8]李敏.大气边界层湍流复杂系统的观测试验分析与层次相似理论的探讨[D].南京:南京大学,2007.
    [9] Hargreaves D.M.. On the use of the k–εmodel in commercial CFD software to model the neutral atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007(95):355–369.
    [10] Dehai Jiang, Weimei Jiang, Hongnian Liu et al. Height and layout on mean wind and turbulent characteristics within and over urban building arrays Wind and Structures[J]. Systematic influence of different building spacing,2009(4):1-14.
    [11] Wang Yongwei, Jiang Weimei. Numerical Study on Development of a multilayer urban canopy model[J]. Acta Meteorological Sinica,2009(67):1013-1024.
    [12]周荣卫.城市边界层结构与精细化数值模拟研究[D].南京:南京大学,2007.
    [13] Li Lei,Zhang Li-jie, Zhang Ning, etal. Application of FLUENT on the fine-scale simulation of thewind field over complex terrain[J]. Plateau Meteorology, 2010(29):621–628.
    [14] Zheng Qiuping Liu Hongnian Cheng Yan. Observational and analytical researches on the impacts of urban development on meteorological environ[J]. Scientia Meteorologica Sinica,2009(2):214-219.
    [15] Wang Chenggang,SunJiannin,JiangWeimei et al.,Comparison and improvement of different calculation schemes on surface turbulent fluxes[J]. Scientia Meteorologica Sinica,2009(29):591-597.
    [16] Miao Shiguang, SunGuiping, Ma Yan. The development of high resolution numerical model system for Qingdao Olympic Sailing Compitition[J]. Journal of Applied Meteorological Science,2009(3):270-279.
    [17]蒋维楣.空气污染气象学[M].南京:南京大学出版社,2003:17–21.
    [18] Meroney Robert N. CFD prediction of cooling tower dirft [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2006(94):463–490.
    [19]胡二邦,潘乃先,陈家宜等.秦山核电二期工程大气弥散试验研究[C].第五届全国风工程及工业空气动力学学术会议,2000(5):114–116.
    [20]姚仁太,高卫华.复杂下垫面扩散的蒙特卡罗模拟[J].安徽大学学报,1998, 24(3):344–349.
    [21]曲静原.欧共体核事故后果评价研究及其程序系统的引进开发[J].辐射防护通讯,1998, 18(5):24–28.
    [22]叶兰翔,马晓林等.实时在线决策支持系统综合大气传输模式[J].辐射防护通讯,1998, 18(5):29–34.
    [23]曹建主,曲静原.核事故后果的计算机评价模式现状与新动向[J].辐射防护通讯,2000,20(5):76–82.
    [24] Graziani G. ATMES-II Technical specification Document: Model Evaluation[J]. Engineering and Industrial Aerodynamics, 1996(9):305–362.
    [25]潘自强,陈竹舟,王志波等.中国核工业三十年辐射环境质量评价[J].辐射防护,1989,9(4):241–247.
    [26]陈晓秋. YEAR30-Y3001用于核工业三十年辐射环境质量评价的计算机程序[M].北京:原子能出版社,1987.
    [27]胡二邦. 600Mwe核电站正常运行工况下气态排出物环境弥散模式,参数与程序,CNIC-01256,CIRP-0021.
    [28]李凯波,刘成安等.放射性物质在大气中输运的方法分析及算例计算[J].高技术通讯,2002(10):75–78.
    [29]李华,邓继勇,王旭辉等.用高斯模式计算大气中放射性核素云团的扩散[J].辐射防护,2004, 24(2):92–93.
    [30] Wang Wei-guo.A non-hydrostatic dispersion modeling system and its application to air pollution assessments over coastal complex terrain[J]. Journal of Engineering and Industrial Aerodynamics, 2000(87):15–43.
    [31]王卫国,蒋维楣,余兴.深圳地区海岸复杂地形下大气输送与扩散模拟[J].环境科学学报,2006(1):76–105.
    [32]王英伟,孙雪.有风条件下点源高斯模式的参数敏感性分析[J].环境科学学报,2008,33(10):178–180.
    [33]于洪彬,蒋维楣.沿岸熏烟扩散的中尺度模拟系统[J].环境科学学报,1994,14(2):191-193.
    [34]吴涧,蒋维楣,王卫国.山谷地形流场和扩散的数值研究[J].高原气象,2001, 20(2):140-147.
    [35]吴涧,蒋维楣,王卫国.山区盆地大气湍流特征与污染扩散的数值试验[J].环境科学学报,2000, 20(5):554-557.
    [36]吴涧,蒋维楣.对流边界层的大涡模拟研究[J].气象科学,1999, 19(1):34-41.
    [37] Sang Jian-guo. Numerical modeling for emergency response of nuclear accident[J].Journal of Wind Engineering and Industrial Aerodynamics , 1999(81):221-235.
    [38] Uchida Takanori, Ohya Yu-ji . Large-eddy simulation of turbulent air flow over complex terrain[J].Journal of Wind Engineering and Industrial Aerodynamics , 2003(91):219-229.
    [39] Young Sun Hyun, Sung-ghim. Numerical study of atmospheric dispersion of a substance released from an industrial complex in the southern coast of Korea[J].Atmospheric Environment, 2001(35):3103-3111.
    [40] Snyder. W H. Fluid modeling of pollutant transport and dispersion in stably stratified flow over complex terrain[J]. Annu. Rev. Fluid Mech, 1985(17):239-266.
    [41]张伯寅,桑建国.层结大气中烟气扩散的实验和数值模拟[J].大气科学,1999,3(1):19-24.
    [42] Liu He-ping, Zhang Boyin, Sang Jian-guo. A laboratory simulation of plume dispersion in stratifiied atmospheres over complex terrain[J]. Journal of Engineering and Industrial Aerodynamics , 2001(89):1-15.
    [43] Daniele Contini, Alan Robins. Water tank measurements of buoyant plume rise and structure in neutral crossflows[J]. Atmospheric Environment , 2001(35):6105-6115.
    [44] HAD 101/02,核电厂厂址选择的大气弥散问题[S].北京:国家核安全局,1987.
    [45] GB 6249-86,核电厂环境辐射防护规定[S].北京:国家核安全局,1986.
    [46] GB/T 13201-91,制定地方大气标准的技术方法[S].北京:国家核安全局,1991.
    [47]徐芙蓉,苗世光.混合层高度变化趋势及其代表值的探讨[J].东华大学学报,2003,8(4):99-102.
    [48]张绮韦.压水反应堆的化学化工问题[M].原子能出版社, 1984.
    [49] Trojan Nuclear Plant Safety Analysis Report[R], Docket-50344-38, vol.11,1973
    [50]臧希年.核电厂系统及设备[M].清华大学出版社,2003.
    [51] MIAO Shi-guang,Jiang Wei-mei. Large Eddy Simulation and Study of the Urban Boundary Layer[J].Advances in Atmospheric Sciences,2004(04):650–661.
    [52]苗世光.对流边界层中高架烟羽扩散的大涡模拟研究[J].中国科技大学学报,2001,10(5):535-542.
    [53]蒋维楣,苗世光.大涡模拟与大气边界层研究—30年回顾与展望[J].自然科学进展,2004,14(1):11-19.
    [54] Hargreaves D.M.. On the use of the k–εmodel in commercial CFD software to model the neutral atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007(95):355–369.
    [55] Bert Blocken. CFD simulation of the atmospheric boundary layer: wall function problems[J]. Atmospheric Environment. 2007(41):238–252
    [56] Quinn A.D.. Modelling the dispersion of aerial pollutants from agricultural buildings—an evaluation of computational fluid dynamics(CFD)[J].Computers and Electronics in Agriculture,2001(30):219–235.
    [57]李华.源于大亚湾核电站气态排出物中的放射性核素浓度计算[J].辐射防护,2007,7(4):233-240.
    [58] Briggs Gary A. Application of two-thirds law to plume rise from industrial-sized sources[J]. Atmospheric Environment,1983(17):10–34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700