城市生活垃圾好氧堆肥实验及嗜热微生物群落研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧堆肥是依靠自然界广泛分布的细菌、真菌、放线菌等微生物,在分解有机质的过程中产生热量使得堆体温度升高,促进堆体中各类物质分解的过程,是自然界微生物降解过程的强化,微生物是堆肥处理系统中的主有功能生物,而堆肥的高温期更是堆肥过程中有机质等物质迅速降解的阶段,因此充分了解该阶段中有机质等的降解情况和微生物
     变化情况以及两者之间的关系,能为改进堆肥处理工艺、提高堆肥处理效率提供理论依据。本实验采用传统的培养方法对高温期微生物群落进行计数,同时利用扩增链式反应-变性梯度凝胶电泳技术(PCR-DGGE)对微生物进行了研究。
     本实验分别采用园林垃圾和餐厨垃圾作为堆肥原料,进行了20d好氧堆肥,堆体经历了中温阶段、高温阶段和降温阶段三个过程,堆体高温期(≥50℃)持续了10d和8d,堆肥后期pH值基本维持在7.5~8.0之间,保持了一个微碱性环境。堆肥前后整个过程中含水量减少率分别为38.5%和40.5%,有机质减少率分别为46.3%和44.6%,而高温期有机质减少率分别占总减少量占58.3%和48.0%,高温阶段堆肥有机质的降解力度较其他阶段要大。堆体最终C/N比均接近20,基本满足堆肥稳定时C/N比的变化要求,综合各个指标推断,两个堆体在对置20d的时候基本达到稳定。堆体中纤维素降解量分别达到45.0%和41.0%,半纤维素降解量分别达到33.9%和32.3%,而两堆体木质素降解量仅达到27.0%左右;两堆体高温期纤维素的降解量分别占到了总降解量的49..0%和48.0%,半纤维素的降解分别占总降解量的68.0%和54.0%,木质素的降解分别占总降解量的65.0%和52.0%,这些数据说明在堆肥过程中,纤维素和半纤维素降解幅度较大,木质素降解幅度较小,但总体来说高温期仍是纤维素、半纤维素和木质素高速降解的一个阶段。
     使用传统的培养方法和PCR-DGGE技术对好氧堆肥高温期嗜热细菌、嗜热真菌和嗜热放线菌群落结构进行了研究。分别对两堆体高温期样品进行稀释平板混菌培养,细菌总数、真菌总数和放线菌总数分别呈“升高-降低”、“降低-升高”和“升高-降低-升高”的趋势,这与高温期有机质降解率呈“下降-上升-下降-上升”的变化规律有着密切的关系。同时提取高温期样品总DNA,分别使用细菌引物对(GC-341F/907R)、真菌引物对(GC-NS7/NS8)和放线菌引物对(F243/GC-R513)从总DNA中成功扩增得到目标产物,长度分别为630bp、340bp和270bp,再对目标产物进行DGGE分离。DGGE图谱显示,两堆体高温期嗜热细菌较真菌、放线菌种类要多,但优势菌种没有真菌明显;嗜热真菌优势菌明显,但整体菌群种类不多;嗜热放线菌优势菌不及同时期嗜热真菌明显,但菌群种类比嗜热细菌少、比嗜热真菌多,这与传统培养方法获得的结果一致。DGGE图谱聚类分析结果表明,堆肥高温期对于嗜热细菌也分成两个阶段,但是没有找到统一且确切的分段规律;而高温期嗜热真菌以升温时56℃为界,嗜热放线菌以58℃为界,分成两个变化阶段,每阶段内部聚类关系较近,阶段间关系较远;低于分界温度,部分菌种不能适应高温环境而逐渐消失,高于分界温度,能适应56℃或58℃以上温度环境的菌种迅速生长.温度对高温期各类嗜热微生物种群具有明显的筛选作用。
     通过将DGGE图中条带切胶测序,获得与条带序列同源性序列,再建立系统发育树可知,得到的与芽孢杆菌属亲缘关系较近的嗜热细菌,与青霉菌、曲霉菌等有较近亲缘关系的嗜热真菌,与链酶菌和诺卡氏菌等有较近亲缘关系的嗜热放线菌,都是与降解纤维素、半纤维素和木质素有关的微生物,这些微生物是堆肥高温期有机质降解的主要作用微生物。
Aerobic composting is the natural process of the strengthening of microbial degradation and relies on the widely distributed nature of the bacteria,fungi,actinomycetes. Microorganisms are key organisms in the composting systems. Moreover,the thermophilic phases is a key stage with a quick degradation of organic materials. Studying the changes of microbial communities and the degradation of the organic materials in composting system is of great importance for technique improvement and efficiency enhancement. In this paper , a culture - dependent approach and molecular thechnologies polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were chosen to study the succession profiles of thermophilic microorganisms communities during the thermophilic composting phases.
     In this paper,two aerobic composting were separately processed with garden waste and kitchen trash for 20 days going through mesophilic phase,thermophilic phase and cooling phase. And the thermophilic period of the two composting (≥50℃) lasted 10d and 8d respectively. The final pH value maintained at 7.5~8.0 in a tiny alkalescence environment. The reduce rate of water content and organic materials were 38.5% and 40.5%,46.3% and 44.6%, While in the thermophilic phases the reduce rate of degradation of organic materials taked up 58.3% and 48.0%. The final C/N ratio was close to 20. Considering all the indicators,we inferred that the two composting piles satisfied with the demand of composting stabilization. Besides,the degradation percentage of cellulose,hemicellulose and lignin of the two piles were 45.0% and 41.0%,33.9% and 32.3% and both of 27.0%,respectively. And the degradation rate of the three indicators in thermophilic phases accounting for the total degradation quantity were 49.0% and 48.0%,68.0% and 54.0%,65.0% and 52.0%. All the datas showed that the degradation of cellulose and hemicellulose were bigger than that of lignin.
     The mixed bacteria,fungi and actinomycetes in samples during thermophilic phases of two piles were cultured by plate count,and the result was that the total population of bacteria,fungi and actinomycetes showed a wave-like curve,i.e“up-down”,“down-up”and“up-down- up”,which showed close relationship with the degradation of organic materials with a change of“down-up-down-up”. And the total microbial DNA was extracted from samples by method of Protein K-CTAB. PCR amplifications were performed with primers GC-341F and 907R targeting the V3 region of bacteria 16 S rRNA,GC-NS7 and NS8 targrting the V8-V9 region of fungal 18S rRNA and primers F243 and GC-R513 targeting the V3 region of 16S rRNA genes of actinomycetes. And the PCR products were separated by DGGE for a segment of 630bp,340bp and 270bp,respectively. The results of culture-dependent approach and DGGE profiles showed that the population of the thermophilic bacteria were more than that of fungi and actinomycetes during thermophilic phase in the two piles,while the predominant kinds of the themophilic actinomycetes were less than that of fungi and bacteria. A total of 28 DGGE single bands were isolated from the profiles by cloning. The obtained sequences of these clones showed similarity to some known organisms in a range of 91% to 100%. The clones identified as Bacillus spp.,Aspergillus spp., Penicillium spp., Stretomyces spp. and Nocardioides spp. are characterized as cellulose and lignin-degrading bacteria,fungi and actinomycetes. The bacteria,fungi and actinomycetes composition for different composting materials processes similarly. This study would be beneficial for definituding the thermophilic microorganisms of thermophilic phases in aerobic composting. The clustering analysis indicated that themophilic fungi and actinomycetes in high temperature stages of composting can be divided into two phases,the dividing lines were temperature of 56℃and 58℃,when heating up,respectively. But there was no exact rules for the changes of thermophilic bacteria. The clustering relation in phrases were close to each other,while between phrases was distant. Temperature played a great role in sieving thermophilic fungi and actinomycetes of high temperature stage in composting.
引文
[1]张乐观,朱新峰.我国生活垃圾的处理现状及发展趋势.工业安全与环保,2006,32(9):37-39
    [2]马诗院,马建华.我国城市生活垃圾分类收集现状及对策.环境卫生工程,2007,15(1):12-14
    [3]杜吴鹏,高庆先,张恩琛等.中国城市生活垃圾处理及趋势分析.环境科学研究,2006,19(6):115-120
    [4]中国环境保护产业协会城市生活垃圾处理委员会.我国城市生活垃圾处理行业2007年发展综述.中国环保产业,2008,(5):14-17
    [5]徐海云,周宏春.城市生活垃圾处理现状与对策建议.经济研究参考,2008,(25):15-19
    [6]赵由才.生活垃圾资源化原理与技术.北京:化学工业出版社,2002,140
    [7]陈世和,张所明.城市垃圾堆肥原理与工艺.上海:复旦大学出版社,1990,112-160
    [8]罗宇煊,张甲耀,马瑛.有害废物堆肥技术及堆肥生态系统研究进展.上海环境科学,1999,18(10):478-480
    [9] Beffa T,Blanc M,Lyon P F,et al.Isolation of Thermus strains from hot composts(60 to 80℃).Applied and Environmental Microbiology,1996,(62):1723-1727
    [10] Morten K,Erland B.Microbial community dynamics during compostin g of straw material studied using phospholipids fatty acid analysis.FEMS Microbiology Ecology,1998,(27):9-20
    [11] Komelia S,Ute W,Holger H,et al.Analysis of Biolog substrate utilization pattern by microbial communities.Appllied Environmantal Microbiology, 1998,64(4):1220-1225
    [12] Van Heerden J,Ehlers M M,Cloete T E.Biolog for the determination of microbial of microbial diversity in activated sludge systems.Water Science Technology,2001,43(1):83-90
    [13] James B G,Gregory J G, Troy D J,et al.Community analysis by Bioblog:curve integration for statistical analysis of activated sluge microbial habitats.Journal Microbiology Methods,1996,27(22):183-197
    [14] Waksman S A , Cordon T C . Hulpoi N Influence of temperature upon the microbiological population and decomposition processes in composts of stable manure. Soil Science,1939,(47): 83-114
    [15] Thambirajah J J, Kuthubutheen A J.Composting of palmpress fibre.Biology Wastes, 1989,(27):257-269
    [16]章家恩,蔡燕飞.土壤微生物多样性实验研究方法概述.土壤,2004,36(4):346-350
    [17] Muyzer G,de Waal E C,Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.Appllied Environmental Microbiology, 1993,(9):695-700
    [18] Cahyani V R,Watanabe A and Matsuya K.Succession of microbiota estimated by phospholipid fatty acid analysis and changes in organic constituents during the composting process of rice straw.Soil Science Plant Nutr,2002,(48):735-743
    [19] Bolta S V,Mihelic R,Lobnik F,et al.Microbial community structure during composting with and without mass inocula.Compost Sci Util,2003,(11):6-15
    [20] Steger K,Jarvis A,Smars S.Comparison of signature lipid methods to determine microbial community structure in compost. Journal of Microbiology Methods,2003,(55):371-382
    [21] Dees P M and Ghiorse W C.Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA.FEMS Microbiol Ecol,2001,(35): 207-216
    [22] Peters S,Koschinsky S and Schwieger F.Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes.Appllied Environmental Microbiology,2000,(66):930-936
    [23] Tebbe C C . Microbial genomes : DNA - based research uncovers composting microorganisms.Biocycle,2002,(43):24-27
    [24] Blanc M,Marilley L and Beffa T.Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular 16S rDNA methods.FEMS Microbiology Ecology,1999,(28):141-149
    [25] Alfreider A,Peters S and Tebbe C C.Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci Util,2002,(10):303-312
    [26] Pan X J,SANO Y,ITO T.Atmospheric acetic acid pulping of rice straw 76: Behavior of ash and aihce in rice straw during atmosphesic acetic acid pulping and bleaching.Holxforaching,1999,53(1):49-55
    [27] SUN R C,TOMKINSON T.In encyclopedia of separation science.London:AcademicPress,2000,4568-4574
    [28]曹健,郭德宪,曾实等.一株里氏木霉产纤维素酶的条件及酶系的优化.郑州工程学院学报,2003,24(1):10-15
    [29]陈坚.环境生物技术.北京:中国轻工业出版社,2000,42-67
    [30]王建龙,文湘华.现代环境生物技术.北京:清华大学出版社,2001,265-273
    [31]高培基,曲音波,汪天虹等.微生物降解纤维素机制的分子生物学研究进展.纤维素科学与技术,1995,3(2):1-19
    [32]阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学,1995,7(5):22-25
    [33] Amano Y,Kanda T.New Insights into Cellulose Degradation by Cellulases and Related Enzymes.Trends in Glycoscience and Glycotechnology,2002,(14):27-34
    [34] Tuomela M,Vikman M,Hatakka A,et al.Biodegradation of lignin in a compost environment:a review.Bioresource Technology,2000,72(2):169-183
    [35]郁红艳,曾光明,胡天觉等.真菌降解木质素研究进展及在好氧堆肥中的研究展望.中国生物工程杂志,2003,23(10):57-61
    [36]蒋挺大.木质素.北京:化学工业出版社,2001,16-18
    [37] Falcón M A,Rodríguez A,Carnicero A,et al.Isolation of microorganisms with lignin transformation potential from soil of tenerife island.Soil Biology and Biochemistry,1995,27(2):121-126
    [38] Carol A C.Bacterial Associations with Decaying Wood: a Review.International Biodetertoration and Biodegradation,1996,37(1):101-107
    [39] Zacchi L,Burla G,Zuolong D,et al.Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase.Journal of Biotechnology,2000,78(2):185-192
    [40] Shingo K,Masanori A,Noriko O,et al.Degradation of a non-phenolic L-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole.FEMS Microbiology Letters,1999,170(1):51-57
    [41]席北斗,刘鸿亮,孟伟等.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究,2003,16(2):58-64
    [42] Reddy G V,Babu P R,Komaraiah P,et al.Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species(P. ostreatus and P. sajorcaju).Process Biochemistry,2003,38(10):1457-1462
    [43] Tuomela M,Oivanen1 P,Hatakka A.Degradation of synthetic 14C-lignin by variouswhite-rot fungi in soil.Soil Biology and Biochemistry,2002,34(11): 1613-1620
    [44]陈石根,周润琪.酶学.上海:复旦大学出版社,2001,12-25
    [45] Kamoda S,Saburi Y.Structural and enzymatical comparison of lignostilbene-α,β-dioxygenase isozymes , I , II , and III , from Pseudomonas paucimobilis TMY1009.Bioscience and Biotechnology and Biochemical,1993,(57):931-934
    [46] Borneman W S,Hartley R D,Morrison W H,et al.Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation.Applied Microbiology Biotechnology,1990,33(3):345-351
    [47]席北斗,刘鸿亮,白庆中等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3(3):19-23
    [48] Zhao J,De Koker T H,Janse B J H.Comparative studies of lignin peroxidases and manganese-dependent peroxidases produced by selected white rot fungi in solid media.FEMS Microbiology Letters,1996,145(3):393-399
    [49] Ejechi B O,Obuekwe C O,Ogbimi A O.Microchemical Studies of Wood Degradation by Brown Rot and White Rot Fungi in Two Tropical Timbers . International Biodeterioration and Biodegradation,1996,38(2):119-122
    [50] Kenneth E H.Extracellular free radical biochemistry of ligninolytic fungi.New Journal of Chemistry,1996,20(2):195-198
    [51]张晶,黄民生,徐亚同.白腐真菌木质素降解酶的研究及应用进展.净水技术,2004,23(1):19-21
    [52] Pérez J,Muńoz-Dorado J,Dela R T,et al.Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview.International microbiology,2002,5(2):53-63
    [53]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展.重庆教育学院学报,2001,14(3):64-67
    [54] Cullen D.Recent advances on the molecular genetics of liniolytic fungi.Journal of Biotechnology,1997,53(3):273–289
    [55] Sun R C,Lawther I M,Banks W B.Isolation and characterization of hemicellulose B and cellulose from pressure refined wheat straw.Industrial Crops and Products,1998,(7):121-128
    [56] Cahyani V R,Matsuya K,Asakawa S,et al.Succession and phylogene tic composition of bacterial communities responsible for the composti ng process of rice straw estimated by PCR-DGGE analysis.Soil Sci Pla nt Nutr,2003,(49):619-630
    [57]王光玉,陈雷,宣世伟等.生活垃圾好氧堆肥微生物接种的初步研究.环境科学与技术,2005,28(2):20-21,50
    [58]黄得扬,陆文静,王洪涛.有机固体废物堆肥化处理的微生物学机理研究.环境污染治理技术与设备,2004,5(1):12-18,71
    [59]国家环境保护总局污染控制司.城市固体废物管理与处理处置技术.北京:中国石化出版社.2001,243,246-247
    [60] Nogueira W A,Nogueira F N,Devens D C.Temperature and pH control in composing of coffee and agricultural wastes.Wat Sci Tech,1999,40(1):113-119
    [61] Smars S,Gustafsson L,Beck-Friis B,et al.Improvement of the composting time for household waste during an initial low pH phase by mesophilic temperature control.Bioresource Technology,2002,(84):237-241
    [62] Miller F C,Finstein M S. Materials balance in the composting of wastewater sludge as affected by process control. Journal Water Pollution Control Fed,1985,(57):122-127
    [63] Kulcu R,Yaldiz O.Determination of aeration rate and kinetics of composting some agricultural wastes.Bioresource Technology,2004,(93):49-57
    [64]杨朝晖,肖勇,曾光明等.用于分子生态学研究的堆肥DNA提取方法.环境科学,2006,27(8):1613-1618
    [65] Yang Zh H, Xiao Y, Zeng G M, et al.Comparison of methods for total community DNA extraction and purification from compost . Applied Microbiology and Biotechnology,2007,74(4):918-925
    [66]刘有胜,杨朝晖,曾光明等.PCR-DGGE技术对城市餐厨垃圾堆肥中细菌种群结构分析.环境科学学报,2007,27(7):1151-1156
    [67]杨朝晖,刘有胜,曾光明等.厨余垃圾高温堆肥中嗜热细菌种群结构分析.中国环境科学,2007,27(6):733-737
    [68] Ishii K, Fukui M, Takii S, et al.Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis.Journal of Applied Microbiology,2000,89(5):768-777
    [69] Ferris M J, Muyaer G, Ward D M.Denaturing gradient gel electrophor esis Profiles of 16S r RNA - defined population inhabiting a hot spring microbial mat community.Applied and Environmental Microbiology,1996,(62): 340-346
    [70] Kjellerup B V, Veeh R H, Sumithraratne P, et al.Monitoring of microbi al souring in chemically treated produced-water biofilm syste ms using molecular techniques.J Ind Microbiol Biotechnol,2005,(32):163-170
    [71] Muyzer G,Brinkhoff T,Ulrich N,et al. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology.Molecular Microbial Ecology M anual,1998,(344): 1-27
    [72] Yoshida N,Yagi K,Sato D,et al. Bacterial communities in petroleum oil instockpiles.Journal of Bioscience and Bioengineering,2005,99(2):143-149
    [73] Dees P M,Ghiorse W C.2000.Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA.FEMS microbiology Ecology,35(2):207-216
    [74] White T J,Burns T,Lee S,et al. Amplication and direct sequencing of fungal ribosomal genes for phylogenetics.California:Academic Press,1990,315-322
    [75] Heuer H,Krsek M,Baker P,et al.Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and Gel-Electrophoretic separation in denaturing gradient.Appl Environ Microbiol,1997,63(8):3233-3241
    [76] Zhou J Z , Bruns M A , Tiedje J M . DNA recovery from soils of diverse composition.Applied and Environmental Microbiology,1996,62(2):316-322
    [77] Konstantinov S R,Zhu W Y,Williams B A,et al.Effect of fermentable carbohydrates on piglet facial bacterial communities as revealed by 16S ribosomal DNA.FEMS Microbiology Ecology,2003,43(2):225-235
    [78] Peters S,Koschinsky S,Schiwieger F,et al.Succession of microbial communities during hot composting as detected by PCR-single strand conformation polymorphism based genetic profiles of small subunit rRNA genes.Appl Environ Microbiol,2000,66(3):930-936
    [79]张晶,张惠文,李新宇等.土壤真菌多样性及分子生态学研究进展.应用生态学报, 2004,15(10):1958-1962
    [80]刘志恒,姜成林.放线菌现代生物学与生物技术.北京:高等教育出版社,2004,210-218
    [81]邓桂兰,彭超英,卢峰.利用微生物和酶降解粗纤维的研究.饲料工业,2004,25(11):48-51
    [82]杨虹,李道棠,朱章玉.温嗜粪菌的选育和猪粪发酵研究.上海环境科学,1999, 18(4):170-172
    [83]韩如旸,闵航,陈美慈等.嗜热厌氧纤维素降解细菌的分离、鉴定及其系统发育分析.微生物学报,2002,42(2):138-144
    [84] Xi B D,Liu H L,Bai Q Z,et al.Study on current status of lignin and cellulose biodegradation in composting process.Techniques and Equipment for Environmental Pollution Control,2002,3(3):19-23
    [85] Tuomela M,Vikman M,Hatakka A,et al.Biodegradation of lignin in a compost environment:a review.Bioresource Technology,2000,(72):169-183
    [86]连宾,刘丛强.嗜热真菌的生物转化功能与经济价值.地球与环境,2004,32(2):49-54
    [87] Godden B,Ball A S,Helvenstein P,et al.Towards elucidation of the lignin degradation pathway in actinomycetes.Journal Gene Microbiol,1992,(138):2441-2448
    [88] Vita R C,Kazuo M,Susumu A,et al.Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated by PCR-DGGE analysis.Biol Fertil Soils,2004,(40):334-344
    [89]席北斗,刘鸿亮,白庆中等.堆肥中纤维素和木质素的生物降解研究现状.环境污染与治理技术与设备,2002,3(3):19-23
    [90] Eichner C A,Erb R W,Timmis K N,et al.Thermal gradient electrophoresis analysis of bioprotection from pollutant shock in the activated sludge microbial community.Appllied Environmental Microbiology,1999,(65):102-109
    [91] LaMontagne M G,Michel F C,Holder P A,et al.Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community ananlysis.Journal of Microbiology Methods,2002,49(3):255-264
    [92] Rolleke S,Gurtner C,Drewello U,et al.Analysis of bacterial communities on historical glass by denaturing gradient alectrophoresis of PCR-amplified gene fragments coding for 16S rRNA.Journal of Microbiology Methods1999,(36):107-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700