农业固体废物堆肥中木质素的微生物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用微生物对农业废物进行堆肥化是当前处理农业废物的一大趋势。堆肥过程中微生物的种类、数量及群落结构是决定该生态体系的物质循环和废物特别是木质素类物质降解能力的重要因素。由于环境微生物的可培养性差,传统的培养技术不适用堆肥微生物群体组成和结构的解析。近年来发展起来的醌指纹法,利用微生物体内广泛存在的类异戊二烯醌作为标记物分析微生物群落,成为环境微生物和微生物生态领域的研究热点。本文详细介绍了醌指纹法整个体系的建立过程,并利用该体系对堆肥过程中的微生物群落及具有木质素降解潜能的微生物群落进行了成功分析。在堆肥过程中MK7(H4)、Q7、Q8含量较多,表明γ-变形菌和放线菌在整个过程中起主要作用,同时堆肥化不同时期的群落变化基本符合传统的研究结果。而在具有木质素降解潜能的微生物群落中,主要醌种为MK7(H2)、MK7(H4)、Q9(H2),表明堆肥化过程中降解木质素的主要是一些真菌和γ-变形菌。降解主要发生在高温期和二次发酵时期。微生物群落多样性指数较小,说明物种都比较单一,同时群落结构随着堆制时间发生巨大变化。
     本文还研究了生物表面活性剂鼠李糖脂对黄孢原毛平革菌、简青霉产木质素降解酶能力的影响。结果表明,鼠李糖脂对酶活性的影响与鼠李糖脂的浓度、投加形式、菌种及酶的种类有关。0.0065%的鼠李糖脂不同程度地促进了黄孢原毛平革菌产LiP酶,MnP酶,简青霉产LiP酶,漆酶,0.013%的鼠李糖脂可以促进黄孢原毛平革菌产LiP酶,简青霉产漆酶,但却明显抑制了另外两种酶的活性;鼠李糖脂可以使简青霉产MnP的高峰期提前,但不能提高酶活性。通过影响产酶能力,鼠李糖脂使两株菌对木质素的降解率均高于对照样。此外,接种鼠李糖脂产生菌——铜绿假单胞菌的效果达到甚至超过添加鼠李糖脂的效果。
It is a current trend to degrade agriculture waste in composting process using different microorganism. The species (composting), biomass (richness) and the community (structure) of microorganism are dominating factors in composting. The traditional cultivating method is falling into disuse since its high deviation. However, the quinine profile analysis can overcome which based on the different kind of isoprenoid quinine in microorganism. This paper illuminated the establishment of the quinine analysis system and successfully using it to characterize the microbial community in compost. The microbial community having the potential to degrade lignin was also investgated. The major quinine species in compost process were MK-7(H4), Q7 and Q8, indicating thatγ-subclass Proteobacteria and actinomycetes are the major microorganism. The results of community changing in different compost period that obtained through the quinine ananlysis accorded with that obtained through traditional cultivation. In the community having the potential of degrading lignin, MK-7(H2), MK-7(H4) and Q9(H2) were found to be the major quinines, which mostly represent some fungi and Proteobacteria. The microbes worked mostly in the high-temperature period and the second fermenting period. Both of the two microbial communities had relatively small diversity of quinine (DQ), which indicated the singleness of the microbial species.
     The effects of biosurfactant rhamnolipid on the enzyme production by Phanerochaete chrysosporium and Penicillium simplicissimum were also studied. Results show that the effects were connected with the concentration of rhamnolipid, adding ways, fungi species and type of enzymes. Rhamnolipid at 0.0065% increased the activities of LiP, MnP by P. chrysosporium, LiP, laccase by P. simplicissimum, while rhamnolipid at 0.013% only stimulated the production of LiP by P. chrysosporium, laccase by P. simplicissimum, but restrained the other two enzymes’activities. However, rhamnolipid only made the highest MnP of P. simplicissimum coming ahead of which of the control, with no change of MnP activity. All the degradation rate of lignin which with rhamnolipid was higher than that of the control, and inoculation of Pseudomonas aeruginosa showed the same or even better stimulative effect comparing with those rhamnolipid was added.
引文
[1]曾光明,黄国和,袁兴中等.堆肥环境生物与控制.北京:科学出版社,2006:1-559
    [2]余群,董红敏,张肇鲲.国内外堆肥技术研究进展(综述).安徽农业大学学报,2003,30(1):109-112
    [3] Haug R T.The Practical Handbook of Compost Engineering.Boca Raton:Lewis Publishers,1993:2-7
    [4] Manser A R,Keeling A A.Practical Handbook of Processing and Recycling Municipal Waste.Boca Raton:Lewis Publishers,1996:56-61
    [5]李国学,张福锁.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,2000:22-25
    [6] Pavlostathis S G,Misra G,Prytula M.Anaerobic processes.Water Environment Res,1995,67(4):459-470
    [7]芈振明,高忠爱,祁梦兰等.固体废物的处理与处置.北京:高等教育出版社,1996:245-249
    [8] Senesi N,Miano T M,Brunetti G.Humic–like substances in organic amendments and effects on native soil humic substance.Holland:Elsevier Science,1996:531-593
    [9] Leeuw J W,Largeau C.A review of macromolecular organic compounds that comprise living organisms and their role in kerogen,coal,and petroleum formation.In:Engel M H,Macko S A.Organic geochemistry.New York:Plenum,1993:23-72
    [10] Adler E . Lignin chemistry-Past , present and future . Wood science and technology,1977,11(2):169-218
    [11] Ronald B C.The uptake and catabolism of lignin-related aromatic compounds and their regulation in microorganisms.Florida:CRC, 1980:21-60
    [12]冯瑞华,彭平安,宋建中等.Pahokee泥炭腐殖酸的电喷雾质谱特征研究.地球与环境,2005,33(1):43-54
    [13] Elegir G,Daina S,Zoia L,et al.Laccase mediator system:Oxidation of recalcitrant lignin model structures present in residual kraft lignin.Enzyme and Microbial Technology,2005,37(3):340-346
    [14] Tuomela M,Vikman M,Hatakka A,et al.Biodegradation of lignin in a compost environment:a review.Bioresource Technology,2000,72(2):169-183
    [15] Hernández M,Hernández-Coronado M J,Montiel M D,et al.Pyrolysis/gas chromatography/mass spectrometry as a useful technique to evaluate the ligninolytic action of streptomycetes on wheat straw.Journal of Analytical and Applied Pyrolysis,2001,58(59):539-551
    [16] Falcón M A,Rodríguez A,Carnicero A,et al.Isolation of microorganisms with lignin transformation potential from soil of tenerife island.Soil Biology & Biochemistry, 1995,27(2):121-126
    [17] Carol A C.Bacterial Associations with Decaying Wood:a Review.International Biodeter- toration & Biodegradation,1996,37(1):101-107
    [18] Zacchi L,Burla G,Zuolong D,et al.Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase.Journal of Biotechnology,2000,78(2):185-192
    [19] Shingo K,Masanori A,Noriko O,et al.Degradation of a non-phenolic L-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole. FEMS Microbiology Letters,1999,170(1):51-57
    [20]席北斗,刘鸿亮,孟伟等.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究,2003,16,(2):58-64
    [21] Reddy G V,Babu P R,Komaraiah P,et al.Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P . ostreatus and P . sajorcaju) . Process Biochemistry,2003,38(10):1457-1462
    [22] Tuomela M,Oivanen1 P,Hatakka A.Degradation of synthetic 14C-lignin by various white-rot fungi in soil.Soil Biology & Biochemistry,2002,34(11):1613-1620
    [23]陈石根,周润琪.酶学.上海:复旦大学出版社,2001:12-25
    [24] Kamoda S,Saburi Y.Structural and enzymatical comparison of lignostilbene-α,β-dioxygenase isozymes,I,II,and III,from Pseudomonas paucimobilis TMY1009.Biosci Biotech Biochem,1993,57(1):931-934
    [25] Borneman W S,Hartley R D,Morrison W H,et al.Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation.Appl Microbiol Biotechnol,1990,33(3):345-351
    [26]席北斗,刘鸿亮,白庆中等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3(3):19-23
    [27] Zhao J,de Koker T H,Janse,Bernard J H.Comparative studies of lignin peroxidases and manganese-dependent peroxidases produced by selected white rot fungi in solid media.FEMS Microbiology Letters,1996,145(3):393-399
    [28] Ejechi B O,Obuekwe C O,Ogbimi A O.Microchemical Studies of Wood Degradation by Brown Rot and White Rot Fungi in Two Tropical Timbers.International Biodeterioration and Biodegradation,1996,38(2):119-122
    [29] Kenneth E H.Extracellular free radical biochemistry of ligninolytic fungi. New Journal of Chemistry,1996,20(2):195-198
    [30]张晶,黄民生,徐亚同.白腐真菌木质素降解酶的研究及应用进展.净水技术,2004,23(1):19-21
    [31] Pérez J,Muńoz-Dorado T,de la R J,et al.Biodegradation and biological treatments of cellulose,hemicellulose and lignin:an overview.Int Microbiol,2002,5(2):53-63
    [32]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展.重庆教育学院学报,2001,14(3):64-67
    [33] Cullen D.Recent advances on the molecular genetics of liniolytic fungi.Journal of Biotechnology,1997,53(3):273-289
    [34] Schoemaker H E.On the chemistry of lignin degradation.Recueil des Travaux Chimiques des Pays-Bas,1990,109(3):255-272
    [35]谢益民,胡周建,伍红等.β-O-4型木质素模型化合物的合成及其在GIF型仿酶降解体系中的变化(II).林业化学与工业,2004,24(1):1-6
    [36] Hatcher P G, Nammy M A, Minnard S C, et al. Comparison of two thermochemolysis methods for the analysis of lignin in decomposing wood:the CuO oxidation method and the method of thermochemolysis with TMAH [J].Organic Geochemistry,1995,23(2):881-888
    [37] Amir S,Hafidi M,Lemee L,et al.Structural characterization of humic acids,extracted from sewage sludge during composting,by thermochemolysis-gas chromatography-mass spectrometry.Process Biochemistry,2006,41(4):410-422
    [38] Vane C H,Abbott G D,Head I M.The effect of fungal decay (Agaricus bisporus) on wheat straw lignin using pyrolysis–GC–MS in the presence of tetramethylammonium hydroxide (TMAH).Journal of Analytical and Applied Pyrolysis,2001,60(9):69-78
    [39] Veeken A,Nierop K,de W V,et al.Characterisation of NaOH-extracted humic acids during composting of a biowaste.Bioresource technology,2000,72(5):33-41
    [40] Bourbonnais R,Paice M G.Oxidation of non-phenolic substrates,an expanded role for laccase in lignin biodegradation.FEBS Letters,1990,267(9):99-102
    [41] Filley T R.,Hatcher P G,Shortle W C,et al.The application of 13C-labbled tetramenthylammonium hydroxide (13C-TMAH) thermochemolysis to the study of fungal degradation of wood.Organic Geochemistry,2000,31(8):181-198
    [42] Umezawa T,Higuchi T.Cleavages of aromatic ring andβ-O-4 bond of synthetic lignin (DHP) by lignin peroxidase.FEB 06647,1989,242(2):325-329
    [43] Umezawa T,Shimada M,Higuchi T,et al.Aromatic ring cleavage ofβ-O-4 lignin substructure model dimers by lignin peroxidase of Phanerochaete chrysosporium.FEBS Letters,1986,205(2):287-292
    [44] Umezawa T,Higuchi T.Aromatic ring cleavage ofβ-O-4 lignin model dimers without prior demeth(ox)ylation by lignin peroxidase. FEBS Letters,1986,205(2):293-298
    [45] Umezawa T and Higuchi T.Formation of a muconate in aromatic ring cleavage of aβ-O-4 lignin substructure model by lignin peroxidase.Agricultural and biological chemistry,1987,51(3):2281-2284
    [46] Umezawa T,Higuchi T.Mechanism of aromatic ring cleavage ofβ-O-4 lignin substructure models by lignin peroxidase.FEBS Letters,1987,218(2):255-260
    [47] Shimada M,Hattori T,Umezawa T,et al.Regiospecific oxygenations during ring cleavage of a secondary metabolite,3,4-dimethoxybenzyl alcohol catalysed by lignin peroxidase.FEBS Letters,1987,221(2):327-331
    [48] Sachs S,Bubner M,Schmeide K,et al.Carbon-13 NMR spectroscopic studies on chemically modified and unmodified synthetic and natural humic acids.Talanta, 2002,57(11):999-1009
    [49] Leisola M S A,Schmidt B,Thanei-Wyss U,et al.Aromatic ring cleavage of veratryl alcohol by Phanerochaete chrysosporium.FEBS Letters,1985,189(2):267-270
    [50]王海磊,李宗义.三种重要木质素降解酶研究进展.生物学杂志,2003,20(5):9-12
    [51]郁红艳,曾光明,牛承岗等.细菌降解木质素的研究进展.环境科学与技术,2005,28(2):104-109
    [52] Kuba T,Heijnen J J.Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in atwo-sludge system.Water research,1996,30(7):1702-1710
    [53]郝晓地,汪慧贞,钱易等.欧洲城市污水处理技术新概念-可持续生物除磷脱氮工艺(上).给水排水,2002,28(6):6-11
    [54] Mino T.Microbiology and biochemistry of the enhanced biological phosphate removal process.Water research,1997,32(2):3193-3207
    [55] Hu HY,Fujie K,Nakagome H,et al.Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones.Water Res,1999,33(15):3263-3270
    [56] Pan XL,Deng W,Zhang DY.Application of biomarker PL FA to groundwater microbial ecology study and the problems.Sci Geogra Sin, 2003,23 (6):740-745
    [57] Hiraishi A,Yamanaka Y,Narihiro T.Seasonal microbial community dynamics in a flowerpot2using personal composting system for disposal of household biowaste.J Gen A ppl Microbiol,2000,46 (3):133-146
    [58] Liu ZP,Yang HF.Advance in molecular microbial ecology.Chi n J A ppl Envi ron Biol,1999,5 (Suppl):43-48
    [59] Tang JC,Kanamori T,Inoue Y,et al.Changes in microbial community structure in thermophilic composting process of manure detected by quinone profile method.ProBiochem,2004,39 (12):1999-2006
    [60] Johnsen K,Nielsen P.Diversity of pseudomonas strains isolated with King’s Band Gould’S1 agar determined by repetitive extragenic palindrome Polymerase chain reactio,16SrDNA squencing and fourier transform infrared spectroscopy characterization.FEMS Microbiol Lett,1999,173(6):155-162
    [61] SrheimR,Torsvik VL,GoksyrJ.Phonotypical divergences between populations of soil bacteria isolated on different media.MicrobiolEcol,1989,17(1):181-192
    [62] FgriA,Torsvik VL,Goks yrJ.Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique.Soil Biol Biochem,1977,9(2):105-112
    [63] Amann RI,Ludwig W,Schleifer KH.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiol Rev,1995,59(4):143-169
    [64] Gland JL,Mills AL.Classification and characterization of heterotrophic microbial community-level sole-carbon-source utilization . Appl Environ Microbial,1991,57(3):2351 - 2359
    [65] Konopka A,Oliver L,Turco RF.The use of carbon substrate utilization patternsin environmental and ecological microbiology.Microb Ecol,1998,35(2):103-115
    [66] Bochner B R.Sleuthingoutbacterialidentities.Nature,1989,339(11):157-158
    [67] HeuerH,SmallaK.Evaluation of community level catabolic profiling using Biolog GN microplates to study microbial community changes in potato phyllosphere.J Microbiol Methods,1997,32(2):49-61
    [68] Haack S K,Garchow H,Klug M J,et al.Analysis of factors affecting the accuracy,reproducibility and interpretation of microbial community carbon source utilization patterns.Appl Environ Microb,1995,61(1):1458-1468
    [69] Frosteg ard A,Tunlid A,Baath E.Microbial biomass measured as total lipid phosphate in soils of different organic content.Journal of Microbiological Methods,1991,14(2):151-163
    [70]钟文辉,蔡祖聪.土壤微生物多样性研究方法.应用生态学报,2004,15(5):899-904
    [71] Lechevalier M P.Lipids in bacterial taxononmy.Fla:CRC,1989:455-561
    [72] Schmidt IK,RuessL,BaathE,etal.Soil Biology & Biochemistry,2002,32(2):709-720
    [73] Kelly JJ,Haggblom M,Tate RL.Soil Biology and Biochemistry,1999,31(1):1455-1465
    [74] Lei F,VanderGheynst JS.The effect of microbial inoculation and pH on microbialcommunity structure changes during composting . Process Biochemistry,2000,35(3):923-929.
    [75] Maire N,Borcard D,Laczko E,et al.Organic matter cycling in grassland soils of the Swiss Jura mountains:Biodiversity and strategies of the living communities.Soil Biology and Biochemistry,1999,31(2):1281-1293
    [76] Saiki R K.Enzymatic amplification ofβ-globulin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.Science,1985,230(9):1350-1354
    [77]胡稳奇.多聚酶链式反应技术(PCR)的发展及其应用.生物学通报,1992,3(2):11-15
    [78] Steffan,A J,R M.Polymerase chain reactions applications in environmental microbiology,Microbiol,1991,45(2):137-140
    [79] Erlich H A . PCR Technology : Principles and Applications for DNA Amplification.New York:Stockton,1989:139-143
    [80] Mullis K B. Process for amplifying, detecting, and/or-cloning nucleic acid sequences.Methods Environ,1987,155(1):335-337
    [81]唐景春,Kataya Arata.醌类图谱分析在环境微生物生态测定中的应用.应用与环境生物学报,2004,10(4):530-536
    [82] Katayama A, Funasaka K, Fujie K. Changes in the respiratory quinone profile of a soil treated with pesticides.Biol Fert Soils,2001,33 (6):454-459
    [83] Katayama A , Fujie K . Characterization of soil microbiota with quinone profile.New York:Marcel Dekker,2000:303-347
    [84] Simpson A J,Salloum M J,Kingery W L,et al.Improvements in the two dimensional nuclear magnetic resonance spectroscopy of humic substances.Journal of environmental quality,2002,31(2):388-392
    [85] Hu HY,Fujie K,Nakagome H,et al.Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones.Water Res,1999,33(15):3263-3270
    [86] Tang JC,Kanamori T,Inoue Y,et al.Changes in microbial community structure in thermophilic composting process of manure detected by quinone profile method.ProBiochem,2004,39(12) :1999- 2006
    [87] Lee TJ,Kawaharasaki M,Matsumura M,et al.Microbial community structures of activated sludges dominated with polyphosphate2accumulating bacteria and glycogen2accumulating bacteria.Envi ron Technol,2002,23 (7):747-755
    [88] Lin CK,Katayama Y,Hosomi M,et al.The characteristics of the bacterial community structure and population dynamics for phosphorus removal in SBR activated sludge processes.Water Res,2003,37 (12):2944-2952
    [89] Hanada S,Liu WT,Shintani T,et al.Tetrasphaera elongata sp nov.,a polyphosphate-accumulating bacterium isolated from activated sludge.Int J Syst Evol Micr,2002,52(2):883-887
    [90] Lin CK,Katayama Y,Hosomi M,et al.The relationship between isoprenoid quinone and phosphorus removal activity.Water Res,2000,34 (14):3607-3613
    [91] Hiraishi A,Ueda Y,Ishihara J.Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal.A ppl Envi ron Microb,1998,64 ( 3):992-998
    [92] Sudiana IM,Mino T,Satoh H,et al.Morphology,insitu characterization with rDNA targetted probes and respiratory quinine profiles of enhanced biological phosphorus removal sludge.Water SciTechnol,1998,38 (8~9):69-76
    [93] Katayama A,Hu HY,Nozawa M,et al.Long term changes in microbialcommunity structure in soils subjected to different fertilizing practices revealed by quinone profile analysis.Soil Sci Plant Nutr,1998,44 (4):559-569
    [94] Fujie K,Hu HY,Tanaka H,et al.Analysis of respiratory quinones in soil for characterization of microbiota.Soil Sci Plant Nutr,1998,44 (3) :393-404
    [95] Hiraishi A,Iwasaki M,Kawagishi T,et al.Significance of Lipoquinone as quantitative biomarkers of bacterial populations in the environment.Microbes Envi ron,2003,18(1):89-93
    [96] Hiraishi A,Kato K.Quinone profiles in lake sediments:Implications for microbial diversity and community structures.J Gen A ppl Microbiol,1999,45 (5):221-227
    [97] Kunihiro T,Hu HY,Lim BR,et al.Analysis of the differences in microbial community structures between suspended and sessile microorganisms in rivers based on quinone profile.J Gen A ppl Microbiol,2002,48 (1):35-41
    [98] Hiraishi A,Umezawa T,Yamamoto H,et al.Changes in quinone profiles of hot spring microbial mats with a thermal gradient.A ppl Envi ron Microb,1999,65 (1):198-205
    [99] Tang JC,Inoue Y,Yasuta T,et al.Chemical and microbial properties of various compost products.Soil Sci Plant Nutr,2003,49 (2):273-280
    [100] Katayama A,Hu HY,Nozawa M,et al.Changes in the microbial community structure in soils treated with a mixture of glucose and peptone with reference to the respiratory quinone profile.Soil Sci Plant Nutr,2002,48 (6):841-846
    [101] Finstein M S.Microbial ecosystems responsible for anaerobic digestion and composting.Journal WPCE,1980,52(11):2675-2685
    [102] Haug,R T. Engineering principles of sludge composting.Water Pollut Control Fed,1979,51(3):2189-2206
    [103] Pardo A G . Effect of surfactants on cellulase production by Nectria catalinensis.Current Microbiology,1996,33(1):275-278
    [104] Reese E T,Manguire A.Surfactants as stimulants of enzyme production bymicroorganisms.Appl Microbiol,1969,17(2):242-245
    [105] Ahuja S K,Ferreira G M,Moreira A R.Production of an endoglucanase by the shipworm bacterium,Teredinobacter turnirae.IndMicrobiol Biotechnol,2004,31(1):41-47
    [106] Zeng G M,Shi J G,Yuan X Z,et al.Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated fromcompost.Enzyme and Microbial Technology,2006,39(3):1451-1456
    [107]黄丹莲,曾光明,黄国和等.白腐菌固态发酵条件最优化及其降解植物生物质的研究.环境科学学报,2005,25(2):232-237
    [108]郁红艳,曾光明,黄国和等.简青霉Penicillium simplicissimum木质素降解能力.环境科学,2005,26(2):167-171
    [109] Fu H Y,Zeng G M,Zhong H,et al.Effects of rhamnolipid on degradation of granular organic substrate from kitchen waste by a Pseudomonas aeruginosa strain.Colloids and Surfaces B:Biointerfaces,2007,58:91-97
    [110] Tang L,Zeng G M,Wang H,et al.Amperometric detection of lignin- degrading peroxidase activities from Phanerochaete chrysosporium.Enzyme and Microbial Technology,2005,36(2):960-966
    [111] Wariishi H,Valli K,Gold H.Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium.J Biol Chem ,1992,267(11):23688-23695
    [112] Boer C G,Obici L,Marques C G,et al.Decolorization of synthetic dyes by solid state culturesof Lentinula (Lentinus) edodes producing manganese peroxidaseas the main ligninolytic enzyme.Bioresource Technology,2004,94(3):107-112
    [113]王地,刘期松.长白山地区真菌降解木质素的研究.微生物学报,1990,30(4):296-304
    [114]钟华,曾光明,黄国和等.鼠李糖脂发酵液强化蔬菜基质好氧降解研究.环境科学与技术,2005,28(1):9-11
    [115] Doong R A,Lei W G.Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas puti da in the presence of surfactant.Journal of Hazardous Materials,2003,B96(1):15-27
    [116] Kim I S,Park J S,Kim K W.Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry.Applied Geochemistry,2001,16(1):1419-1428
    [117] Nayyar S P,Sabatini D A.Surfactant adsolubilization and modified admicellar sorption nonpolar, polar and ionizable organic contaminants. Environ Sci Technol,1994,28(2):1874-1881
    [118] Ana poula.The effects of surfactant s on the solid substrate fermentation of potato starch (Aspergillus oryzae,Bacillus subtilis).USA:Mcgill University,1999:169-175
    [119] Eriksson T,Bêrjesson J,Tjerneld F.Mechanism of surfactant effect inenzymatic hydrolysis of lignocellulose.Enzyme Microb Tech,2002,31(2):353-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700