农田管理措施对红壤稻田土壤养分及杂草种群的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以长期定位试验为依托,通过对田间杂草调查及水稻整个生育期田间土壤采样分析,探讨了长期不同农田管理措施对稻田杂草种群组成及其生物多样性的影响,研究了水稻不同生育期农田管理措施下土壤养分含量的差异,及不同农田管理措施下土壤养分动态变化规律,分析了不同农田管理措施对水稻产量的影响。研究主要结果如下:
     1.水稻整个生育期,不同种植制度下冬泡处理土壤pH值和速效养分含量最高。冬泡处理土壤pH值在5.11-5.55之间,冬油菜处理和冬绿肥处理分别在4.93-5.44和4.91-5.40之间;冬油菜处理土壤碱解N含量最低,早稻成熟期与晚稻成熟期较冬泡处理低28.1 mg/kg和21.8 mg/kg;冬绿肥处理土壤速效P含量最低,早稻移栽前与晚稻成熟期较冬泡处理低4.3 mg/kg和2.7 mg/kg;而土壤速效K含量冬油菜处理和冬绿肥处理都较低。不同施肥措施下单施化肥土壤pH值与速效P含量最高,土壤碱解N、速效K含量最低,高量有机肥处理土壤碱解N、速效K含量最高,但速效P含量却最低。早稻成熟期与晚稻成熟期,化肥处理土壤速效P含量较高量有机肥处理高14.8mg/kg和5.4 mg/kg,而土壤碱解N含量较高量有机肥处理低31.0 mg/kg和41.3 mg/kg,土壤速效K含量低27.8 mg/kg和29.0 mg/kg。不同地下水位间土壤pH值和速效养分含量均没有差异。
     2.水稻整个生育期,不同农田管理措施下土壤pH值、碱解N、速效P及速效K变化趋势均基本一致。早稻移栽前到早稻返青期,土壤pH值与速效养分均有明显升高。早稻返青期到早稻分蘖期,土壤pH值明显降低,早稻成熟期到晚稻分蘖期,土壤pH值都有明显上升趋势,而早稻分蘖期到成熟期及晚稻分蘖期到成熟期,田间土壤pH值变化幅度不大。早稻返青期到分蘖期,土壤碱解N含量明显降低,早稻分蘖期到成熟期及晚稻分蘖期到成熟期,土壤碱解N含量变化幅度不大。早稻返青期到成熟期,土壤速效P含量先降后升,早稻成熟期到晚稻齐穗期,土壤速效P含量有较大幅度的降低。早稻返青期到齐穗期及晚稻分蘖期到齐穗期,土壤速效K含量呈降低趋势,早稻齐穗期到成熟期,土壤速效K含量降低幅度较小,而晚稻齐穗期到成熟期有所增加。
     3.不同种植制度下冬泡处理早稻及晚稻产量分别为5031kg/hm~2和6568 kg/hm~2,较冬油菜和冬绿肥处理低。不同施肥处理下早稻产量没有差异,晚稻产量以化肥处理最低,为6481 kg/hm~2,而高量有机肥处理和常量有机肥处理没有差异。不同地下水位间早稻和晚稻产量都没有差异。
     4.不同农田管理措施下田间杂草密度及优势杂草种类发生了变化。早稻田间不同种植制度及施肥措施下杂草的三种生物多样性指数(物种丰富度指数、均匀度指数、物种多样性指数)都存在差异,晚稻田间不同施肥措施下高量有机肥和化肥处理间物种多样性指数存在差异。而不同地下水位间早稻、晚稻田间三种生物多样性指数均无差异。
     5.种植制度对早稻田间杂草种群组成影响最大,施肥措施对晚稻田间杂草种群组成影响最大,地下水位对早稻、晚稻田间杂草种群组成影响均为最小。
Based on a long-term experiment, the influence of different agricultural practices on the weed community composition and biodiversity, changes of soil available nutrient in different growth stage of rice and soil available nutrient change trends, and rice yields under different agricultural practices were studied in rice-cropping ecosystems. The result showed as the follows:
     1. During different growth stage of rice, the soil pH and soil available nutrient content were highest under rice-rice-winter flooded fallow cropping system among three cropping systems, its soil pH was 5.11 to 5.55, while 4.93 to 5.44, 4.91 to 5.40 under rice-rice-rape and rice-rice-green manure cropping systems, respectively. The soil available N content was the lowest under rice-rice-rape cropping system, the decreased amount of 28.1 mg/kg and 21.8 mg/kg were observed in the maturity stage of early rice and maturity stage of late rice, compared with rice-rice- winter flooded fallow cropping system. The soil available P content was the lowest under rice-rice-green manure cropping system, compared with rice-rice- winter flooded fallow cropping system, it reduced by 4.3 mg/kg and 2.7 mg/kg before the early rice transplants and in maturity stage of late rice. However, the soil available K content under rice-rice-rape and rice-rice-green manure cropping systems was lower than rice-rice-winter flooded fallow cropping system. In the treatment of chemic fertilizer, the soil pH and soil available P content were the highest under different fertilization systems, while the soil available N and K content were the lowest; the soil available N and K content were the highest under high rate applying of organic manure, however, the soil available P content was the lowest. Under the treatment of chemic fertilizer, the soil available P content was high by 14.8 mg/kg and 5.4 mg/kg, the soil available N content was low by 31.0 mg/kg and 41.3 mg/kg, and the soil available K content was low by 27.8 mg/kg and 29.0 mg/kg compared with high rate applying of organic manure, respectively. Between higher and lower groundwater table, the different of the soil pH and soil available nutrient content was not found.
     2. During different growth stage of rice, their changed tendency was all similar about soil pH and soil available nutrient content under different agricultural practices. The soil pH and soil available nutrient content was increased from the early rice transplants to recovery stage of early rice. The soil pH was reduced from recovery stage to tillering stage of early rice, and increased from the maturity stage of early rice to tillering stage of late rice. From the tillering stage to maturity stage of early rice and from tillering stage to maturity stage of late rice, the remarkable different of soil pH was not observed. There was reduced trend of soil available N content from recovery stage to tillering stage of early rice, and no obvious change from tillering stage to maturity stage of early rice and tillering stage to maturity stage of late rice. The changed rule of soil available P showed reduced-increased trend from recovery stage to maturity stage of early rice, while there was obviously reduced trend from maturity stage of early rice to heading stage of late rice. The soil available K content gradually reduced from recovery stage to heading stage of early rice and from tillering stage to heading stage of late rice, no obvious change from heading stage to maturity stage of early rice, and a little increment was found from heading stage to maturity stage of late rice.
     3. The rice yield was lower under rice-rice-winter flooded fallow cropping system than other two cropping systems, and its yield of early rice and late rice were 5031kg/hm~2and 6568 kg/nm~2 under rice-rice-winter flooded fallow cropping system, respective. There was not different of early rice yield among three fertilization systems, however, the late rice yield was lower under the treatment of chemic fertilizer than other two fertilization systems, the late rice yield was 6481 kg/hm~2 under the treatment of chemic fertilizer. The groundwater table did not affected the rice yield.
     4. The agricultural practices obviously affected the weed density and preponderant weed. The evidently different of three weed biodiversity indexes (Margalef's D_(MG), Shannon's E, Shannon's H') was observed in early rice crops among different cropping systems and fertilization systems. Between the treatment of high rate organic manure and chemic fertilizer, the only different of Shannon's H' was found. The groundwater table did not affected the three weed biodiversity indexes.
     5. The cropping systems was the most important factor that caused the weed community composition during early rice among agricultural practices, on the other hand, the fertilization systems caused the weed community composition change in late rice crops. The influence of the different groundwater table was lowest during the rice growth.
引文
[1]马克平等.生物多样性研究的现状及发展趋势[M].中国科技出版社,1994:1-13.
    [2]欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报,1999,19(5):607-613.
    [3]赵荣钦,黄爱民,秦明周.农田生态系统服务功能及其评价方法研究[J].农业系统科学与综合研究,2003,19(4):267-270.
    [4]郭中伟.农田生态系统中的生物多样性[J].科技导报,1998,4:18-21.
    [5]吕昭智,田长彦.棉田间作红花对棉田天敌的影响[J].干旱区研究,2000,17(增):117-119.
    [6]尤民生,刘雨芳,侯有明.农田生物多样性与害虫综合治理[J].生态学报,2004,24(1):117-122.
    [7]Russell,E.P.1989.Enemies hypothesis:A review of the effect of vegetational diversity on predatory insects and parasitiods[J].Environ Entomol,18(4):590-599.
    [8]詹小国,王平.基于RS和GIS的三峡库区水土流失动态监测研究[J].长江科学院院报,2001,18(2):41-44.
    [9]张克林,程秀英.秸秆覆盖的水土保持生态环境效应[J].水利科技与经济,2005,11(7):434-435.
    [10]王再祥.山区土壤侵蚀的危害及防治措施[J].山西水土保持科技,2006,2:23-24.
    [11]王兴祥,张桃林,张斌.红壤旱坡地农田生态系统养分循环和平衡[J].生态学报,1999,19(3):335-341.
    [12]邱江平.蚯蚓与环境保护[J].贵州科学,2000,18(1):116-133.
    [13]戈峰,刘向辉,江炳缜.蚯蚓对金属元素的富集作用分析[J].农业环境保护,2002,21(1):16-18.
    [14]郭水良,黄朝表,边缘等.金华市郊杂草对土壤重金属元素的吸收与富集作用(Ⅰ)-6种金属元素的含量分析[J].上海交通大学学报(农业科学版),2002,20(1):22-29.
    [15]WEISSENHOPN,I.,LEYVAL,C.,BELGY,G.ed at.1995.Arbuscularmy mycorrhizal contribution to heavy metal uptake by maize(Zea mays L.) in pot culture with contaminated soil[J].Mycorrhiza,5(4):245-251.
    [16]崔玉针,牛明芬.蚯蚓粪对土壤的培肥作用及草莓产量和品质的影响[J].土壤通报,1998,29(4):157.
    [17]吕振宇,马永良.蚯蚓粪有机肥对土壤肥力与甘蓝生长、品质的影响[J].中国农学通报,2005,21(12):236-240.
    [18]黄琴.作物秸杆还田对土壤养分含量的影响[J].石河子大学学报(自然科学版),2006,24(3):277-279.
    [19]李俊峰,王梦亮.光合细菌对农田生态系统的影响[J].山西农业科学,2002,30(1):52-56.
    [20]陈欣,唐建军,王兆骞.农业生态系统中生物多样性的功能-兼论其保护途径与今后研究方向[J].农村生态环境,2002,18(1):38-41.
    [21]Donald,C.M.1963.Competition among crops and pasture plants[M].Adv.Agron.,15:1-118.
    [22]Puricelli,E.,Tuesca,D.2005.Weed density and diversity under glyphosate-resistant crop sequences[J].Crop Protection,24(6):533-542.
    [23]Odette,L.S.,Quentin,O.N.2000.Changes in the arable flora of central southern England since the 1960s[J].Biological Conservation,93:1-8.
    [24]Olesena,J.E.,Hansenb,P.K.,Berntsena,J.2004.Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties[J].Field Crops Research,89: 263-280.
    [25]陈欣,王兆骞.农业生态系统杂草多样性保持的生态学功能[J].生态学杂志,2000,19(4):50-52.
    [26]Elsen,T.,and Stobbelaar,D.J.2000.Species diversity as a task for organic agriculture in Europe[J].Agriculture,Ecosystems and Environment,77:101-109.
    [27]Marshall,E.J.P.,Brown,V.K.,Boatman,N.D.2003.The role of weeds in supporting biological diversity within crop fields[J].Weed Res.,43:77-89.
    [28]Grice,A.C.2004.Weeds and the monitoring of biodiversity in Australian rangelands[J],Austral.Ecol.29:51-58.
    [29]Asteraki,E.J.,Hart,B.J.,Ings,T.C.2004.Factors influencing the plant and invertebrate diversity of arable field margins[J].Agriculture,Ecosystems and Environment,102:219-231.
    [30]Benjamin,F.T.,Ian,J.R.,Gerfishb,J.2004.Effects of plant diversity on invasion of weed species in experimental pasture communities[J].Basic and Applied Ecology,5:543-550.
    [31]张福锁.植物营养生态生理学和遗传学[M].北京:中国科学技术出版社,1993,365-394.
    [32]Saraswat,V.N.,and Mishra,J.S.1996.Recent developments in weed control research in wheat[J].Plant Protection Quarterly,11(3):114-121.
    [33]Tamado,T.,and Milberg,P.2000.Weed flora in arable fields of eastern Ethiopia with emphasis on the occurrence of Parthenium hysterophorus[J].Weed Research Oxford,40(6):507-521.
    [34]Hyvonen,T.and Salonen,J.2002.Weed species diversity and community composition in cropping practices at two intensity levels - a six-year experiment[J].Plant Ecology,159:73-81.
    [35]Wilson,P.J.1991."The Wild-Flower Project":the conservation of endangered plants of arable fields[J].Pesticide Outlook,2(2):30-34.
    [36]Pawar,L.D.,Yaduraju,N.T.,and Ahuja,K.N.1998.Population dynamics of weeds and their growth in tall and dwarf wheat as influenced by sub-optimal levels of irrigation and nitrogen[J].Indian Journal of Ecology.25(2):146-154.
    [37]尹力初,蔡祖聪.长期不同施肥对玉米田间杂草生物多样性的影响[J].土壤通报,2005,36(2):220-222.
    [38]尹力初,蔡祖聪.长期定位施肥小麦田间杂草生物多样性的变化研究[J].中国生态农业学报,2005,13(3):57-59.
    [39]张学友,金丽华等.氮磷钾对杂草生长影响的研究[J].西北农林科技大学学报,2003,31(2):109-111
    [40]Das,N.R.,and Bhanja,N.1995.Weed flora of rainfed no-tillage relay crops(grasspea,lentil,mustard and linseed) under NPK-fertilizers,after transplanted kharif rice[J].World Weeds,2(1):45-52
    [41]Anderson,R.L.,Tanaka,D.L.,Black,A.L.,and Schweizer,E.E.1998.Weed community and species response to crop rotation,tillage,and nitrogen fertility[J].Weed Technology,12(3):531-536
    L42]庞良玉,曾祥忠,吕世华.不同种植制度对水旱轮作田杂草生长的影响[J].耕作与栽培,1998,5:58-60.
    [43]王淑彬,黄国勤,刘隆旺.稻田水旱轮作(第二年度)对农田杂草的影响[J].江西农业大学学报,2002,24(1):20-23.
    [44]黄国勤等.稻田轮作系统的生态学分析[J].土壤学报,2006,43(1):69-78.
    [45]Zanin,G.,Otto,S.,Riello,L.,and Borin,M.1997.Ecological interpretation of weed flora dynamics under different tillage systems.Agriculture[J].Ecosystems and Environment,66(3):177-188.
    [46]Covarelli,G.1997.Weed control in wheat[J].Informatore Fitopatologico,47(3):23-37.
    [47]Dessaint,E,Chadoef,R.,and Barralis,G.1990.Studies of the dynamics of a weed community:Ⅲ.Long-term influence of cultivation techniques on the species composition of the seedbank[J].Weed Research Oxford,30(5):319-330.
    [48]Khalak,A.,and Kumaraswarny,A.S.1993.Weed bio-mass in relation to irrigation and mulching,and economics of mulching potato crop under conditions of acute water scarcity[J].Journal of the Indian Potato Association,20(3-4):185-189.
    [49]Reisinger,P.1992.Relationship between soil properties and weed flora[J].Aeta Ovariensis,34(2):17-23.
    [50]Blackshaw,R.E.,Lamey,F.J.,Lindwall,C.W.,Watson,P.R.,and Derksen,D.A.2001.Tillage intensity and crop rotation affect weed community dynamics in a winter wheat cropping system[J].Canadian Journal of Plant Science,81(4):805-813.
    [51]Champion,G.T.,Froud,R.J.,and Holland,J.M.1995.The impact of integrated farming systems on the arable weed flora.Brighton crop protection conference:weeds.Proceedings of an international conference,Brighton,UK,20-23 November 1995.British Crop Protection Council;Farnham;UK 1:365-366.
    [52]Singh,O.P.,Malik,H.P.,and Ahrnad,R.A.1999.Effect of weed control treatments and nitrogen levels on the growth and yield of forage sorghum[J].Indian Journal of Weed Science,1988,20(2):29-34.
    [53]Swanton,C.J.,Anil,S.,Roy,R.C.,and Ball,C.R.Effect of tillage systems,N,and cover crop on the composition of weed flora[J].Weed Science,47(4):454-461.
    [54]Ball,D.A.,and Miller,S.D.1993.Cropping history,tillage and herbicide effects on weed flora composition in irrigated corn[J].Agronomy Journal,85(4):817-821.
    [55]Mulugeta,D.,and Stoltenberg,D.E.1997.Increased weed emergence and seed bank depletion by soil disturbance in a no-tillage system[J].Weed Science,45(2):234-241.
    [56]刘杏兰,高宗,刘存寿等.有机-无机肥配施的增产效应及对土壤肥力影响的定位研究[J].土壤学报,1996,33(2):138-147.
    [57]陈防,鲁剑巍,万运帆等.长期施钾对作物增产及土壤钾素含量及形态的影响[J].土壤学报,2000,37(2):233-241.
    [58]黄卫峰.绿肥蚕豆压青对水稻产量和土壤肥力的影响[J].上海农业科技,2004,4:91-92.
    [59]郑德明,闫志顺,姜益娟等.油葵绿肥对土壤养分及物理性质的影响[J].土壤肥料,2004,1:39.
    [60]高菊生,徐明岗,王伯仁.长期有机无机肥配施对土壤肥力及水稻产量的影响[J].中国农学通报,2005,21(8):211-215.
    [61]蔡燕飞,章家恩,张杨珠.稻作制度对红壤性水稻土有机质特征的影响[J].土壤,2006,38(4):396-399.
    [62]胡奉壁,胡祥托,李林.稻田不同复种制度土壤肥力演变规律的定位监测研究[J].湖南农业科学,2001,4:27-29.
    [63]卢萍,单玉华,杨林章.绿肥轮作还田对稻田土壤溶液氮素变化及水稻产量的影响[J].土壤,2006,38(3):270-275.
    [64]樊军,郝明德,王永功.旱地长期轮作施肥对土壤肥力影响的定位研究[J].水土保持研究,2003,10(1):31-36.
    [65]李亚龙,崔远来,李远华.基于ORYZA2000的稻田水量平衡及地下水埋深对水稻灌溉的影响[J].灌溉排水学报,2006,25(1):45-48.
    [66]向万胜,李卫红,童成立.丘岗稻田地下水位动态及对土壤氮磷有效性的影响[J].生态学报, 2002,22(4):513-519.
    [67]黄运湘,张杨珠,刘鹏.稻作制与有机肥及地下水位对水稻土硫素状况的影响Ⅰ.全硫和有效硫含量[J].湖南农业大学学报(自然科学版),2001,27(3):205-208.
    [68]徐道一,易善锋.生物多样性及其理论意义[J].地球科学进展,1993,9(3):76-78.
    [69]张耀辉.生物多样性及生态平衡原理的探讨[J].农业环境保护,1998,17(5):235-236.
    [70]高健.生物多样性的功能[J].盐城工学院学报,2001,14(4):53-55.
    [71]张全国,张大勇.生物多样性与生态系统功能:进展与争论[J].生物多样性,2002,10(1):49-60.
    [72]迟继胜,李杰,黄丽芬,等.长期定位施肥对作物产量及土壤理化性质的影响[J].辽宁农业科学,2006,(2):20-30.
    [73]魏守辉,强胜,马波,等.不同作物轮作制度对土壤杂草种子库特征的影响[J].生态学杂志,2005,24(4):385-389.
    [74]汪强,樊小林,Klaus D,等.不同水分条件下水稻根系生长与产量变化关系研究[J].中国农学通报,2006,22(11):106-111.
    [75]张桂兰,宝德俊,王英,等.长期施用化肥对作物产量和土壤性质的影响[J].土壤通报,1999,30(2):64-67.
    [76]王慎强,蒋其鳌,钦绳武,等.长期施用有机肥与化肥对潮土土壤化学及生物学性质的影响[J].中国生态农业学报,2001,9(1):67-69.
    [77]王慎强,李欣,徐富安,等.长期施用化肥与有机肥对潮土土壤物理性质的影响[J].中国生态农业学报,2001,9(2):77-78.
    [78]曾希伯,关光复.稻田不同耕作制下有机质和氮磷钾的变化研究[J].生态学报,1999,19(1):90-95.
    [79]谢立华,涂运昌,汤宗娜,等.油菜对红壤性水稻土的生物培肥作用[J].热带亚热带土壤科学,1997,6(3):211-213.
    [80]冯跃华,韩钢钢,赵田径,等.不同稻作制与有机肥及地下水位对水稻土有机磷含量的影响[J].贵州科学,2007,25:451-457.
    [81]崔文华,卢亚东.化肥和有机肥对作物产量和土壤养分影响的研究[J].土壤通报,1993,24(6):270-272.
    [82]张杨珠,袁正平,蕉永兰,等.稻作制、绿肥和地下水位对水稻土钾素状况的影响[J].湖南农学院学报,1992,13(3):547-555.
    [83]王正文,祝廷成.松嫩草地水淹干扰后的种子库特征及其与植被关系[J].生态学报,2002,22(9):1392-1398.
    [84]张军林,慕小倩,李晓玲,等.伴生杂草对小麦化感作用的研究初报[J].生态农业科学,2006,229(7):458-461.
    [85]俞晓平,胡萃,Heong,K.L.非稻田生境与稻飞虱卵期主要寄生蜂的关系[J].浙江农业大学学报,1996,22(2):115-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700