多轴数控机床精度建模与误差补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加工精度是机床最重要的性能指标之一。本课题运用多体系统运动学为核心的精度分析理论体系,对多轴数控机床精度问题进行了系统、全面的分析,并重点在数控机床误差分析、精度建模、误差检定、加工精度预测以及软件误差补偿等领域开展了深入研究,通过机床精度模型,揭示了误差从机床零部件传递到被加工零件的规律,给出了精度预测,并对机床进行了软件误差补偿以提高加工精度。
     多体系统理论在充分利用计算机发展成果的今天,焕发出了新的魅力,在研究多体系统的运动学与动力学问题上显示了很好的通用性、系统性和方便性。多体系统运动学理论应用于有误差运动的精度研究,是其应用领域的新拓展,虽然受到重视是近几年的事,但已显示出强大的生命力。本文对多体系统运动学以及基于该理论的机床精度建模、误差辨识、精度预测及误差补偿的方法作了系统、深入的探讨。
     多体系统理论的精髓是用拓扑结构对多体系统进行高度概括和提炼,用低序体阵列描述多体系统拓扑结构,用特征矩阵表示多体系统中体间的相对位冒和姿态。本文对多体系统理论的这部分内容进行了详细阐述。它是机床运动学分析和建模的基石,本文依此建立起了多轴机床的通用精度模型,还以三轴、五轴机床为例给出了理想运动模型、有误差运动模型和空间误差模型等的具体表达式。
     在建立起机床精度模型之后,开始进行机床误差参数检定。机床误差参数很多,影响加工精度的主要误差参数就有几何误差、热误差、力变形误差等。在系统介绍了已有的误差检定策略之后,为了充分利用激光干涉测量仪检定多轴机床的三个平动轴系统的21项几何误差,本文详细分析了9线辨识法,提出并深入探讨了新的12线辨识法,为了检定回转轴的6项基本误差,详细阐述了基于径向、轴向及回转误差的误差辨识机理,从而很好地解决了多体系统理论应用中的机床误差检定问题。
     误差建模和误差检定完成之后,随即进行机床加工精度预测以及误差补偿。本文提出了轮廓加工误差的指标体系,阐述了位置误差至轮廓误差的映射关系,建立起了机床部件误差至加工误差的映射模型,从而可以实现准确的加工精度预测。
     软件误差补偿的关键是获取补偿误差所需的数控指令,本文阐述了直接计算法和叠加附加指令法,并着重以三轴机床和五轴机床为例,深入研究了基于直接计算法修正理论数控指令的软件误差补偿。
     本文在理论研究的基础上进行了仿真和实验研究,包括机床平动系统误差12线法和9线法检定实验,回转轴6项基本几何误差辨识实验,虚拟加工的加工精度预测仿真,虚拟机床加工软件误差补偿仿真,以及实体机床软件误差补偿实验。
The machining accuracy is one of the most important performance indexes for machine tools. Firstly, this dissertation details the accuracy problems of the multi-axis CNC machine tool based on the precision analysis theory of kinematics for multi-body system(MBS) systemically. Afterward, it lays the strong emphases on the researches of the error analyzing and precision modeling and the studying of the error identifying, machining accuracy predicting, software error compensating and so on. With the precision model of the multi-axis CNC machine tools, their error transferability rules from the parts to the machined workpieces are opened out, their machining accuracy predicted and their errors compensated based on software to increase their machining accuracy.
    Due to taking full advantage of the development results of the computers, the MBS theories have coruscated out of new magic power, showed their good universality, systematization and conveniency for the researches of the kinematics and dynamics of MBS. That the MBS kinematics theories are applied to study the accuracy of nonideal kinematics develops a new usage field of them. Though these researches began to be think much of till in the last few years, they have already displayed their mighty vitality. Thus, this paper makes a systematic and in-depth study on the MBS kinematics theory and the methods of precision modeling, error identification, accuracy prediction, and error compensation based on the studied theory.
    The kernels of MBS theories are that the number arrays of low-order body are used to describe the topological structures which are taken to generalize and refine MBS, and the characteristic matrixes are employed to represent the relative positions and gestures between any two bodies in MBS. These kernels are the foundation of the kinematics analyzing and modeling for machine tools and have been detailed. This paper has established a kind of universal precision model for all multi-axis CNC machine tool according to the proposed MBS kinematics theory. After that, the paper has given the concrete expressions of ideal kinematic model, nonideal kinematic model and volumetric error model for a three-axis machine tool and a five-axis machine tool taken for examples.
    After establishing the precision model of machine tools, the measurement and evaluation of their error parameters have been started. There are many kinds of error parameters in a machine tool to influence its machining accuracy, for example, geometric errors, heat deformation errors and force deformation errors etc.. The recognized strategies
    
    
    of error measurements and evaluations for machine tools are introduced. After that, this paper has detailed nine-line method, but also proposed and probed into a new method defined as twelve-line method for the sake of the making the most of double-frequency laser interferometries to measure and evaluate 21 geometric errors of three-movement-axis system in a multi-axis machine tool. In order to identify 6-freedom errors of turning-axis, this paper has detailed the identification mechanism of these errors according to radial errors, axile errors and turning errors. Based on these researches, the problems of the error measurement and evaluation of machine tools in the application process of MBS theories are resolved perfectly.
    After completed error modeling and error identification, machining accuracy predicting and error compensating can been carried through with that. This paper has put forward of index systems of machining contour errors, expatiated the mapping relation from position errors to contour errors, and established the mapping model from the errors of the components of machine tools to machining errors so that the machining accuracy estimates can be realized accurately.
    A key point of software error compensation is that how to obtain the numerical control instructions to compensate the known errors. This paper has expounded several direct calculation methods and adding additional instruction methods. Taking a three-axis machine tool
引文
[1] Hua Qiu, Yan Li, Yanbin Li. A new method and device for motion accuracy measurement of NC machine tools, Part 1:principle and equipment[J]. International Journal of Machine Tools & Manufacture, 2001,4(41) : 521-534.
    [2] Hua Qiu, Yan Li, Yanbin Li. A new method and device for motion accuracy measurement of NC machine tools, Part 2: device error identification and trajectory measurement of general planar motions[J]. International Journal of Machine Tools & Manufacture, 2001,4(41) : 535-554.
    [3] Guiquan Chen, Jingxia Yuan, Jun Ni. A displacement measurement approach for machine geometric error assessment[J]. International Journal of Machine Tools & Manufacture, 2001, 1(41) :149-161.
    [4] R. Ramesh, M. A. Mannan, A. N. Poo. Error compensation in machine tool-a review Part I :geometric, cutting-force induced and fixture-dependent errors[J]. International Journal of Machine Tools & Manufacture, 2000: 1235-1256.
    [5] R. Ramesh, M. A. Mannan, A. N. Poo. Error compensation in machine tool-a review Part II :thermal errors [J]. International Journal of Machine Tools & Manufacture, 2000:1257-1284.
    [6] Mahbubur Rahman, Jouko Heikkala, Kauko Lappalainen. Modeling, measurement and error compensation of multi-axis machine tools. Part I :theory[J]. International Journal of Machine Tools & Manufacture, 2000,40: 1535-1546.
    [7] Kazuo Yamazaki, Ulrich Mueller, Jiancheng Liu, Jan Braasch. A study on the development of a three dimensional linear system for in-process motion error calibration and compensation of machine tool axes[J], Annals of the CIRP,2000(49) , 1:403-406.
    [8] wen-Yuh Jywe,Chien-Hong. Verification and evaluation method for Volumetric and position errors of CNC Machine tools [J]. International Journal of Machine Tools & Manufacture, 2000(40) , 13:1899-1911.
    [9] D G ford, S R Postlethwaite, J P Allen, M D Blake. Compensation algorithms for the real-time correction of time and spatial errors in a vertical machining[J]. Proceedings of the institution of Mechanical Engineers Part B-Journal Engineering Manufacture, 2000(B3) :221-234.
    [10] Kuang-Chao Fan, Mu-Jung Chen. A 6-degree-of-freedon measurement for the accuracy of X-Y stages[J], Precision Engineering 2000,1:15-23.
    [11] V. G. Badami, S. R. Patterson. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry[J]. Precision Engineering 2000,1:41-49.
    
    
    [12] Jenq Shyong Chen, Tzu WeiKou, Shen Hwa Chiou. Geometric error calibration of multi-axis machines using an auto-alignment laser interferometer [J]. Precision Engineering, 1999, 23(3) : 243-252.
    [13] Shih-Ming Wang, Kornel F. Ehmann. Measurement methods for the position errors of a multi-axis machine-part 1:principles and sensitivity analysis [J]. International Journal of Machine Tools & Manufacture, 1999:951-964.
    [14] Shih-Ming Wang, Kornel F. Ehmann. Measurement methods for the position errors of a multi-axis machine-part 2:applicaton and experimental results [J]. International Journal of Machine Tools & Manufacture, 1999:1485-1505.
    [15] S R Postlethwaite, J P Allen, D G Ford. Machine tool thermal error reduction-an appraisal [J]. Proceedings of the institution of Mechanical Engineers Part B-Journal Engineering Manufacture, 1999(B1) :1-10.
    [16] D G Ford, S R Postlewaite, M D Blake. The identification of non-rigid errors in a vertical machining center[J]. Proceedings of the institution of Mechanical Engineers Part B-Journal Engineering Manufacture, 1999 (B6) : 555-566.
    [17] Error compensation in CNC turning solely from dimensional measurements of previously machined parts[J], Annals of the CIRP, 1999 (48) ,1: 429-432.
    [18] K. C. Fan, M. J. Chen, W. M. Huang. A six-degree-of-freedom measurement system for the motion accuracy of linear stages[J]. Machine Tools & Manufacture, 1998: 155-164.
    [19] Okuyama S, et al. Effect of floating capacity on the measurement error of the CBP method[M]. Advanced in Abrasive technology (II) Yomano Press Ltd. 1998.
    [20] Heui Jae Pank, Young Sam Kim, Joon Hee Moon. A new technique for volumetric error assessment of CNC machine tools incorporating ball Bar measurement and 3D Volumetric error model [J]. International Journal of Machine Tools & Manufacture, 1997:11 : 1583-1596.
    [21] Shuhe Li,Yiqun Zhang, Guoxiong Zhang. A study of pre-compensation for thermal errors of NC machine tools. International Journal of Machine Tools & Manufacture, 1997: 1715-1719.
    [22] V. T. Portman, V. G. Shuster. Layout errors of machine tools [J]. International Journal of Machine Tools & Manufacture, 1997(10) : 1485-1497.
    [23] J M Lai, et al : Modeling and analysis of nonlinear guide way for B measurement and diagnosis . Int , J. Mach. Tools. Manufacturing. 1997,37(5) : 687-707.
    [24] SWHong, et al : An effect method for identification of motion error
    
    sources from circular test result in NC machine. Int. J. Mach. Tools, Manufac. 1997, 37(3) : 327-340
    [25] S. Yang, J. Yuan, J. NI. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network[J]. International Journal of Machine Tools & Manufacture, 1996,36: 527-537.
    [26] Jenq-Shyong Chen. A study of thermally induced machine tool errors in real cutting conditions[J]. International Journal of Machine Tools & Manufacture, 1996: 1401-1411.
    [27] J.S.Chen. Fast calibration and modeling of thermally induced machine tool errors in real machining[J]. International Journal of Machine Tools & Manufacture, 1996: 159-169.
    [28] 丘华.机构用NC工作机械运动精度测量法.日本机械学会论文集,(C),1996,62(593) :320-325.
    [29] 姜明锡等.机构NC工作机械运动测量方法.日本机械学会论文集,(C)1996,62(602) ,4086-4091.
    [30] Hyung-Seok Lee, Seung-Woo Kim. Real-time correction of movement errors of a machine axis by multiple null-balancing using TWYMAN-GREEN interferometry[J]. International Journal of Machine Tools & Manufacture, 1995, 3: 477-486.
    [31] Jenq-Shuong Chen. Computer-aided accuracy enhancement for multi-axis CNC machine tool[J]. International Journal of Machine Tools & Manufacture, 1995,4: 593-605.
    [32] P. S. Huang, J. Ni. On-line error compensation of coordinate measuring machines[J]. International Journal of Machine Tools & Manufacture, 1995,5: 725-738.
    [33] A. K. Srivastava, S.C. Veldhuis, M. A. Elbestawit. Modeling geometric and thermal errors in a five-axis CNC machine tool[J]. International Journal of Machine Tools & Manufacture, 1995, 9: 1321-1337.
    [34] Chih-Hao Lo, Jingxia Yuang, Jun Ni. An application of real-time error compensation on a turing center[J] Machine Tools & Manufacture, 1995, 35(12) : 1669-1682.
    [35] S. C.Veldhuis,M. A. Elbestawi. A Strategy for the Compensation of in Five-Axis Machining[J]. Annals of CIRP, 1995(44) , 1:373-378.
    [36] S. Sartori, G. X. Zhang. Geometric Error Measurement and Compensation of Machine[J]. Annals of CIRP, 1995(44) , 2:599-609.
    [37] M. Weck, P. Mckeown, R. Bonse,U.Herbst. Reduction and Compensation of Thermal error in Machine Tools[J]. Annals of CIRP, 1995(44) , 2:589-598.
    [38] W. G. Weekers, P. H. J. Schellekens. assessment of Dynamic Error of CMMs for Fast Probing[J]. Annals of CIRP, 1995(44) , 1:469-474.
    [39] Qinghu Chen, Shunian Yang, Zhu Li. Surface roughness evaluation by using wavelets analysis[J]. Precision Engineering, 1999 (23) ,3:209-212.
    
    
    [40] S. C. Veldhuis and M. A. Elbestawi, A Strategy for the Compensation of Error in Five-Axis Machining, Annals of the CIRP, 1995(44) , 1:373-377.
    [41] V. S. B. Kiridena, P.M. Ferreira. Kinematic modeling of quasistatic errors of three-axis machining centers[J]. International Journal of Machine Tools & Manufacture, 1994(34) , 1:85-100.
    [42] V. S. B. Kiridena, P.M. Ferreira. Parameter estimation and model verification of first order quasistatic error model for three-axis machining centers [J]. International Journal of Machine Tools & Manufacture, 1994 (34) , 1 : 101-125.
    [43] V. S. B. Kiridena, P. M. Ferreira. Computational approaches to compensating quasistatic errors of three-axis machining centers [J]. International Journal of Machine Tools & Manufacture, 1994(34) , 1 : 127-145.
    [44] John C. Ziegert and Prashant Kalle, Error Compensation in Machine Tools: A Neural Network Approach, Journal of Intelligent Manufacturing, 1994,5:143-151
    [45] P.D. Lin, K. F. Ehmann. Direct volumetric error evaluation for multi-axis machines [J]. International Journal of Machine Tools & Manufacture, 1993(33) , 5:675-693.
    [46] V. Kiridena, P.M. Ferreira. Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools[J]. International Journal of Machine Tools & Manufacture, 1993(33) , 3: 417-437.
    [47] Hatamura Y. , et al, Development of an Intelligent Machining Center Incorporating Active Compensation for Thermal Distortion, Annals of the CIRP, 1993(42) ,1: 549-552.
    [48] J. A. Soons, F. C. Theuws, P. H. Schellenkens. Modeling the errors of multi-axis machines: a general methodology [J]. Precision Engineering , 1992 (Vpl. 14) , 1:5-19.
    [49] Chen J. S. , Yuan J. , Ni J. , Compensation of Non-Rigid Body Kinematics Effect of a machining Center, Transaction of NANRI, 1992(20) , 2:325-329.
    [50] K. Kim, M.K.Kim. Volumetric accuracy analysis based generalized geometric error model in multi-axes machine tools[J]. Mech. Mach. theory, 1991(26) , 2:207-219.
    [51] S. M. Wu, J. Ni. Precision Machining without Precise Machinery[J]. Annals of CIRP, 1989(38) , 1: 533-536.
    [52] A. K. Elshchnawy, I. Ham. Performance improvement of in coordinate measuring machines by error [J]. Manufacturing Systems, 1989 (9) , 2: 151-158.
    [53] D. N. Reshetov, V. T. Portman. Accuracy of machine tools [M]. 1988.
    [54] G. Zhang, R. Ouyang, B. Lu, R. Hocken, R. Veale, A. Donmez. A displacement Method for Machine Geometry Calibration [J]. Annals of CIRP, 1988(37) , 1:515-518.
    
    
    [55] M. Anjanappa, D.K. Anand, J.A. Kirk. Error correction methodologies and control strategies for mumerical control machines[J].Control Method for Manufacturing Process, 1988,7:41-49.
    [56] K.F. eman, B.t. Wu. A generalized geometric error Model for Multi-Axis Machines[J]. Annals of CIRP, 1987(36),1:253-256.
    [57] G. Zhang, C. Wang, Xu. Hu, F. Jing. A Laser Interferometric System for Measuring Arbitrary Angles[J] Annals of CIRP, 1987(36),1:395-398.
    [58] P.M. Ferreira, C.R. Liu. A Contribution to the Analysis and Compensation of the Geometric Error of a Machining Center[J]. Annals of CIRP, 1986(35),1:259-263.
    [59] P.M. Ferreira, C.R. Liu. An Analytical Quadratic Model for the Geometric Errors of a Machine tool[J].Journal of Manufacturing System, 1986(5), 1:51-62.
    [60] Donmez A., A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation, Precision Engineering, 1986(8),4:187-196.
    [61] Z.J. Han, K, Zhou. Improvement of positioning accuracy of rotating table by microcomputer control compensation[J]. M.T.D.R. Conf. Proc.,1986, 26:115-120.
    [62] G. Zhang, R. Hocken. Error Compensation of Coordinate Machines[J]. Annals of CIRP, 1985(34),1:445-448.
    [63] W, Knapp. Test of three-dimension uncertainty of machine tools and measuring machines and its relation to the machine error[J]. Ann. CIRP 1983,32(1):459-464.
    [64] J, B, Bryan .A simple method for testing measuring machine and machine tools, part land 2 [J]. Precision Engineering, 1982(4),2: 61-69.
    [65]Schultschik R..The Components of Volumetric Accuracy[J]. Annals of the CIRP, 1977(26), 1:223-228.
    [66] Hocken R., et al. Three Dimensional Metrology[J]. Annals of the CIRP, 1977 (26), 1: 403-408.
    [67] W.J. Love ,A.J. Scarr. Determination of the volumetric accuracy of multi-axes machine[J]. M.T.D.R. Conf. Proc. 1973,14:307-315.
    [68] D. French, S.H. Humphries. Compensation for backlash and alignment errors in a numerically controlled machine-tool by a digital computer program[J]. M.T.D.R. Conf. Proc. 1967,8:707-726.
    [69] D.L. Leete. Automatic compensation of alignment errors in machine-tool[J]. Int. J. Mach. Tools Des. Res. 1961,1:293-324.
    [60] 张志飞,刘又午,张永丹,长青.加工中心热误差补偿研究[J].制造技术与机床,2001,1:27-19.
    [61] 高赛,曾理江,殷纯永,郑力,叶培青.基于单光束干涉仪的机床主轴热误差实时测量[J]计量学报,2001,1:1-5.
    [62] 杨世锡,胡小平,吴昭同.数控机床径向运动误差的形成机理及补偿方法研究[J].中国机械工程,2001(12),2:179-184.
    
    
    [63]卢碧红,王启义,施志辉,葛研军,江渡.数控车床加工精度预测系统研究[J].组合机床与自动化加工技术,2001,5:7-9,12.
    [64]项伟红,郑力,刘大成,赵大泉.机床主轴热误差建模[J].制造技术与机床,2000,11:12-14.
    [65]赵小松,刘丽冰,章青,刘又午.四轴联动加工中心误差模型及参数辨识[J].机械工程学报,2000(36),10:76-63.
    [66]洪迈生,苏恒,李自军,魏元雷.数控机床的运动精度诊断——评述与对策第一届国际机械工程学术会议(ICME 2000),2000,11.
    [67]朴喜栽,金永三.机床和半导体制造设备的精密测量技术(Ⅰ)——利用机动球杆的三维空间误差评价技术[J].传感器世界,2000,1:1-5.
    [68]朴喜载(韩国).机床和半导体制造设备的精密测量技术——利用机动球杆的三维空间误差评价技术[J].传感器世界.2000,N01:1—5.
    [69]杨庆东.神经网络补偿机床热变形误差的机器学习技术[J].机械工程学报,2000(36),1:92-95,105.
    [70]张铁军,袁哲俊,姚英学,刘明华.虚拟机床加工系统的组件化设计[J].组合机床与自动化加工技术,2000,1:17-19.
    [71]洪迈生,魏元雷,李济顺.一维和多维误差分离技术的统一理论[J].中国机械工程,2000(11)(3):245-247.
    [72]费业泰.精度理论若干问题研究进展与未来[J].中国机械工程,2000(3):255-256
    [73]谭久彬.超精密测量技术与仪器工程研究中的几个热点问题[J].中国机械工程,2000(10)(3):257-261.
    [74]章青,刘又午,赵小松,张志飞.提高大型叶片数控加工精度技术[J].中国机械工程,2000(10),6:631-634.
    [75]赵小松,方沂(yi),章青,刘又午.四轴联动加工中心误差补偿技术的研究[J].中国机械工程,2000,6:637-639.
    [76]刘丽冰,王广彦,刘又午.复杂机械系统运动误差自动建模技术研究[J].中国机械工程,2000(10),6:642-646.
    [77]李圣怡,戴一帆,彭小强.超精密加工机床及其新技术发展[J].国防科技大学学报,2000,2:95-100.
    [78]杨庆东,陈焱.欧共体对机床热变形的研究[J].制造技术与机床,2000,7:19-20.
    [79]杨庆东,C.范丹伯格,P.范赫里克,J.P.克鲁斯.数控机床热误差补偿建模方法[J].制造技术与机床,2000,2:10-12.
    [80]王献平,李圣怡.直线度误差分离方法的误差分析[J],国防科技大学学报,2000,3:100-104.
    [81]杨建国,孙振勇,潘志宏,刘行,姜新国,李勇.加工过程热动态建模与数学模型分析[J].机械设计与制造工程,2000,3(2):4-5,8.
    [82]刘又午.多体动力学的休斯敦方法及其发展[J].中国机械工程,2000,6:601-607.
    [83]张国雄.三坐标测量机的发展趋势[J].中国工程机械工程,2000,1-2(V.11,N.1-2):222-226.
    [84]李小力,周云飞,周济.数控机床位置误差建模与补偿[J].机械设计与制造工
    
    程.1999(3):48-50.
    [85]汪建新,张国雄.超精密车床激光测量误差补偿系统的研制[J].天津大学学报.1999(1):65-68.
    [86]章青,王国锋,刘又午,赵红林,盛伯浩.数控机床误差补偿技术及应用—几何误差补偿技术[J].制造技术与机床,1999,1:30-31,34.
    [87]章青,阵明鹃,赵小松,赵红林,盛伯浩,方沂,张铁诚.数控机床误差补偿技术及应用—测头系统误差分析和补偿技术[J].制造技术与机床,1999,5:32-33.
    [88]章青,刘丽冰,刘又午 赵红林,盛伯浩.数控机床误差补偿技术及应用—提高在线检测精度的补偿技术[J].制造技术与机床,1999,6:50-51.
    [89]杨建国,潘志宏,薛秉源.数控机床几何和热误差综合的运动学建模[J].机械设计与制造,1998,5:31-32.
    [90]刘又午,章青,王国锋.数控机床误差补偿技术及应用发展动态及展望[J].制造技术与机床.1998(12):5-7,21.
    [91]张剑.加工中心精度检验标准的应用[J].制造技术与机床.1998(12):46-48.
    [92]杨国华,潘志宏,薛秉源.数控双主轴车床几何和热误差综合数学模型及实时补偿[J].机械设计与研究,1998,1:44-46.
    [93]黎坚,周艳红,龚海,吕登红.多坐标数控机床通用运动学模型的建立[J].中国机械工程,1999(10)1:4-6.
    [94]刘又午,刘丽冰,赵小松,章青,王树新.数控机床误差补偿技术研究[J].中国机械工程,1998(9),12:48-52.
    [95]董晨松,穆玉海,张国雄.用激光干涉仪测量三坐标测量机的动态特性[J].天津大学学报.1998(5):621-626.
    [96]王清明,卢泽声,梁迎春.亚微米数控车床误差补偿技术研究[J].中国机械工程,1998(9),12:48-52.
    [97]周传宏,孙健利.滚动直线导轨副运动精度研究[J].机械设计,1998(4):32-35.
    [98]陈晓川 张暴暴 刘晓冰 冯辛安.虚拟制造技术研究概况综述[J].机械制造,1998,12:8-10.
    [99]盛伯浩.数控机床误差的综合动态补偿技术[J].制造技术与机床.1997(6):19-21.
    [100]朱建忠,李圣怡,黄凯.超精密机床变分法精度分析及其应用[J].国防科技大学学报,1997,4:36-40.
    [101]章青,姜文兰,刘又午等.加工中心综合空间误差建模技术[J].天津:天津大学学报.1996(3):225-228.
    [102]马锡琪,邓晓京.数控机床三维运动误差的测量技术及其评价方法[J].机械科学与技术,1994(4):97-100.
    [103]袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社.1999,7.
    [104]张国雄.三坐标测量机[M].天津大学出版社,1999,8.
    [105]万德安.激光基准高精度测量技术[M].北京:国防工业出版社.1999,6.
    [106]杨有君.数字控制技术与数控机床[M].北京:机械工业出版社.1999.
    [107]孙晓明.半导体激光干涉理论及应用[M].北京:国防工业出版社.1998.
    [108]理查德摩雷,李泽湘,夏恩卡萨思特里.机器人操作的数学导论[M].北京:机械工业出版社.1998.
    
    
    [109]张琢.激光干涉测试技术及应用[M].北京:机械工业出版社.1998.
    [110]张善锤.直线度平面度测量技术[M].北京:中国计量出版社.1997年9月.
    [111]阎荫棠.几何精度设计与检测[M].北京:机械工业出版社.1996.
    [112]刘健,王晓明.安点规划与形位误差评定[M].大连:大连理工大学出版社.1996.
    [113]王永章.机床的数字控制技术[M].哈尔滨工业大学出版社,1995,7.
    [114]刘文彦,周学平,刘辉.现代测试技术[M].长沙:国防科技大学出版社.1995,10.
    [115]刘贺云,柳世传.精密加工技术[M].武汉:华中理工大学出版社.1991.
    [116]花国梁.精密测量技术[M].北京:中国计量出版社 1990,4.
    [117]王启华.激光实用测量[M].北京:中国铁道出版社.1989,6.
    [118]费业泰,误差理论与数据处理(修订本)[M].机械工业出版社,1987.
    [119]杨志超.误差理论[M].长沙:中南工业大学出版社.1987,9
    [120]贺子康.机床传动精度测量和提高[M].北京:中国计量出版社.1987.
    [121]关信安.双频激光干涉仪[M].北京:中国计量出版社.1987.
    [122]叶琪根.机构精确度[M].陕西:西北电讯工程学院出版社.1986,12.
    [123]肖明亮.误差理论与应用[M].北京:计量出版社.1985,8.
    [124]顾维邦.金属切削机床上、下[M].北京:机械工业出版社.1984.
    [125]周龙声.机床精度检测[M].机械工业出版社,1982.
    [126]天津市《形位误差与测量》编写组.形位公差与测量,天津大学科技出版社,1982.
    [127]毛英泰.误差理论与精度分析[M].北京:国防工业出版社.1982,6.
    [128]曾宪铮.形位误差测量[M].北京:国防工业出版社.1979.
    [129]张志飞.多轴数控机床热误差与几何误差建模及补偿技术的研究[D].天津大学,2000,12.
    [130]王广炎.数控机床误差控制理论及开放式数控系统的研究[D],西安交通大学,2000,4.
    [131]赵小松.四轴联动加工中心误差补偿技术的研究[D].天津大学,1999,12.
    [132]杨建国.数控机床误差综合补偿技术及应用[D],上海交通大学,1998,1.
    [133]朱建忠.精密超精密机床精度分析、建模与精度控制技术研究[D].长沙:国防科技大学 1997,10.
    [134]李书和.数控机床误差补偿技术的研究[D].天津大学,1996,8.
    [135]范晋伟.基于多体系统运动学的数控机床运动建模及软件误差补偿技术的研究[D].天津大学,1996,6.
    [136]张德贤.金属切削机床的热误差及其在线智能补偿[D].华中理工大学,1995,5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700