自行火炮非线性有限元模型及仿真可视化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的自行火炮非线性有限元法的动力学仿真及其后处理技术是国防“九五”重点预研项目“先进加榴炮系统仿真技术研究”的部分内容,其研究成果主要有以下几个方面:1、提出了自行火炮系统模块化、参数化的仿真建模方法,自行火炮分为后坐部分等六个组成模块,每个模块采用参数化建模,便于修改局部设计参数,提高了建模效率。2、建立了某自行火炮的三维实体模型和全炮有限元模型,求解了各主要部件以及全炮的固有频率,与试验数据相比较符合较好。3、讨论了非线性有限元动力学方程的建立及其解法,提出了用增量逐步迭代法求解非线性有限元动力学方程组,在每一个载荷步内用Newton-Raphson法或修正的Newton-Raphson法进行迭代求解,并分析了解的稳定性和收敛精度。4、应用大幅度转动约束单元、非线性弹簧阻尼单元、三维五节点接触单元分别模拟自行火炮履带板之间的转动约束连接、悬挂非线性振动及负重轮与履带板之间的接触和履带板与地面的接触问题;根据材料非线性理论,提出利用Drucker—Prager材料建立土壤的非线性有限元模型。5、通过求解全炮非线性有限元模型,得到了某自行火炮发射全过程的车体大位移滑动、俯仰运动、炮口扰动等非线性动态响应。比较了在考虑土壤的材料非线性、履带与地面的接触以及不考虑这两种非线性状态下的仿真结果。6、编制了多体动力学数值仿真软件与I-DEAS的数据接口,实现了基于I-DEAS的自行火炮发射动力学仿真可视化。在3D MAX开发环境中,利用纹理、光照等技术进行了自行火炮的真实感建模,通过曲线拟合,模拟火炮各个部件在发射过程中的运动规律,并结合声音和炮口火焰效果,实现了自行火炮发射动力学的多媒体描述。7、基于TCP/IP协议、OpenGL、Client/Server、面向对象等技术,在LAN平台上建立了火炮发射动力学分布式实时仿真系统,为研究虚拟火炮打下了坚实基础。
This paper focuses on launch dynamics of self-propelled gun with nonlinear Finite Element Methods and post-processing technology, based on "the Ninth National Five years project" of defense keystone research task of dynamic simulation technique study. The main results are concluded as followings: I ) A modeling method of modularization and parameterization is presented. The whole system is composed of six modules, each module is based on parameterization modeling, which makes modification easier and modeling efficient higher. II) A 3-D model and finite element model of a self-propelled gun is built. The intrinsic frequencies of all main assemblies and full gun are got, which are consistent with experiment data. III) The construction and solution of nonlinear finite element dynamics equations are analyzed, and the increment iteration method is used to solve them, in which Newton-Raphson or modified Newton-Raphson is adopted, also the stability of solution and convergence precision are discussed. IV) Revolute
    joint element, nonlinear spring-damper element, 3-D 5 points contact element are applied to simulate the revolute restriction between two caterpillar boards, suspension nonlinear vibration, contact between wheels and caterpillar boards, and contact between caterpillar boards and ground are considered respectively. Drucker-Prager material is employed to simulate reinforced concrete. V) The nonlinear dynamic response of vehicle, projectile, and gun barrel is derived by the nonlinear FEM. It is compared simulation results in which material nonlinearity of ground and contact nonlinearity between caterpillar boards and ground are considered with those without the former nonlinear factors. VI) The interface between multi-body simulation system and I-DEAS is developed, and the visual simulation of self-propelled gun is fulfilled based on the I-DEAS platform. Multi-media shows of self-propelled gun are accomplished including curve simulation, texturing, lighting technology voice effect, flame effect, etc. VII) Distr
    ibuted real-time dynamics simulation system for virtual self-propelled gun, which is a solid basis for virtual-reality gun, is set up through LAN, based on TCP/IP protocol, OpenGL, Client/Server, Object Oriented, etc.
引文
1. Xu Jian Lu. Nonlinear normal modes and their superposition in a two degrees of freedom asymmetric system with cubic nonlinearities. Applied Mathematics and Mechanics (English Edition), 1998, 19 (12) : 1167-1177
    2. Yano T. Scale-up effects in nonlinear dynamics of three-phase reactors. Chemical Engineering Science, 1999, 54 (21) : 5259-5263.
    3. Vaidya P. G. Geometry and nonlinear dynamics of pathogenesis. Sadhana-Academy Proceedings in Engineering Sciences, 1999, 24 (1) : 53-71
    4. Liu H. Continuous Poincare-like cell mapping method and its application to nonlinear dynamics analysis of a bearing-rotor system. Tribology International, 1998,31(7) : 369-375
    5. Zhu Chi. Releasing manipulation with learning control. IEEE International Conference on Robotics and Automation, 1999, 4: 2793-2798
    6. Krafft C. Nonlinear dynamics of electron bunches in the presence of dissipative effects. Journal of Plasma Physics, 1999, 61 (2) : 275-293
    7. Woodley R . S . New control scheme applied to the trailer-truck backing-up problem. Intelligent Engineering Systems Through Artificial Neural Networks, 1996, 6: 599-604
    8. Yu Yin. Instability of ship roll with nonlinear heave-roll coupling. Journal of Shanghai Jiaotong University, 2000, 34 (1) : 72-75
    9. Division (Publication) DSC, 1999, 67: 709-717
    10. He Ji Huan. Modified straightforward expansion. Meccanica, 1999, 34 (4) : 287-289Mosley. Experimental non-linear dynamics of a shape memory alloy wire bundle actuator. American Society of Mechanical Engineers, Dynamic Systems and Control
    11. Jiang J. D. Application of correlation dimension in gearbox condition monitoring. Shock and Vibration Digest, 2000, 32 (1) , 22-26
    12. Liu Xuejun . Nonlinear dynamics parameter identification for vehicle side-impact model. Journal of Tsinghua University, 1999, 39 (2) : 106-109
    13. Fettig H. Design and optimization of micromachined flexible joints. Canadian Conference on Electrical and Computer Engineering, 2000, 2: 956-960
    
    
    14. YeeH. C. On spurious behavior of CFD simulations. InternationalJournal for Numerical Methods in Fluids, 1999, 30 (6) : 675-711
    15. Cho Seonho. Design sensitivity analysis and optimization of non-linear transient dynamics. Part Ⅱ-configuration design. International Journal for Numerical Methods in Engineering, 2000, 48 (3) : 375-399
    16. Cho Seonho. Design sensitivity analysis and optimization of non-linear transient dynamics. Part Ⅰ-sizing design. International Journal for Numerical Methods in Engineering, 2000, 48 (3) : 351-373
    17. Crawford John E. Enhanced single degree-of-freedom models for predicting slab responses to blasts. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4062: 740-746
    18. Wang Aijun. FEM numerical simulation of projectiles striking multi-layer transparent material, Engineering Mechanics, 1999, 16 (5) : 58-64
    19. Campbell J. Contact algorithm for Smoothed Particle Hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 2000, 184 (1) : 49-65
    20. Vignjevic R . Penalty approach for contact in smoothed particle hydrodynamics. International Journal of Impact Engineering, 1999, 23(1) : 945-956
    21. Boresi, A. P. A Review of Selected Works on gun Dynamics. AD-A124074, 1983
    22. Mcgrath, S. V. Dynamic Response of a Lightweight Gun Barrel During a Firing-Pressure Transient, DE90010893, 1990
    23. Boresi , A . P . Transient Response of a Gun System Under Repeated Firing. AD-A075943, 1980
    24. Gast, R. G. Prediction of Shot Impact Using Dynamic Analysis and Firing Results for the M1A1 Tank, AD-A295078, 1995
    25. Peterschmidt, J. C. Normal Modes of Vibration of the PHALNX Gun, AD-A272606, 1994
    26. Murdza, C. Weapon Recoil effects on Canted Lightweight Vehicles, AD-A285517, 1994
    27. Simkins, T. E. Dynamics of Precision Gun Weapon, Proceedings of the First Conference on US Army ARADCOM, AD-A039081, 1977
    28. Soifer, M. T. Dynamic Analysis of the 75mm ADMAG Gun System, AD-A123867, 1983
    29. Soifer, M. T. Projectile Motion in a Flexible Gun Tube, AD-A140737, 1984
    
    
    30. Simkins, T. E. Proceedings of the Second US Army Symposium On Gun Dynamics, AD-A062296, 1978
    31. Simkins, T. E. Proceedings of the Fifth US Army Symposium On Gun Dynamics, AD-A186238, 1987
    32. Simkins, T. E. Proceedings of the Fourth US Army Symposium On Gun Dynamics. AD-A162134, AD-A162135, 1985
    33. Simkins, T. E. Proceedings of the Sixth US Army Symposium On Gun Dynamics, AD-A223320, AD-A224793, 1990
    34. Simkins, T. E. Proceedings of the Seventh US Army Symposium On Gun Dynamics, AD-A278075, 1993
    35. Hoyle, J. B. The Development of an Experimental Facility for Studying the Effects of Cradle Design on Barrel Motion, AD-A278075, 1993
    36. Cox, P. A. Muzzle Motion of the M68 105mm Gun, AD-A062296, 1978
    37. Cox, P. A. The Influence of Tube Support Conditions on Muzzle Motions, AD-A119726, 1983
    38. Courant, R. Variational Methods for the Solutions of Problems of Equilibrium and Vibrations, Bull. Am. Math. Soc, 1943, 49: 1-23
    39. Turner, M. J. Stiffness and Deflection Analysis of Complex Structures, J. Aero. Sci, 1956, 23: 805-823
    40. T. H. H. Pian, Variational Formulations of Numerical Methods in Solid Continua, Computer-Aided Engineering, University of Waterloo Press, Waterloo, Canada, 1971
    41. Clough, R. W. The Finite Element Method in Plane Stress Analysis, Pro. 2nd ASME Conference on Electronic Computation, Pittsburgh, Pa. Sept. 1960
    42. Huston R. L. Kane's Equations with Undetermined Multipliers-Application on Constrained Multi-body Systems. J. Applied Mechanics, 1987, 54 (2) : 424-429
    43. Cavin R . K . Hamilton's Principle : Finite-Element Method and Flexible Body Dynamics. AIAA, J. 1977, 15(12)
    44. Haug E. J. Dynamics of Flexible Mechanical Systems Using Vibration and Static Correction Modes. J. of Mech. Trans. Auto, in Design, 1986, Vol. 108 (3)
    45. Huston R. L. Multi-body Dynamics Formulations Via Kane's Equations. AIAA-90-1234-CP: 24-430
    
    
    46. Sadler J . P . On the Analytical Lumped-Mars Model of an Elastic Four-Bar Mechanism. ASME. J. Engineering for Industry, 1975, Vol. 97: 561-565
    47. Sugimoto K . Computational Scheme for Dynamic Analysis of Parallel Manipulators. Trans. ASME. J. MTAD. 1989, 6: 29-33
    48. Gosselin C. The Optimum Kinematic Design of a Spherical Three-Degree of Freedom Parallel Manipulator. Trans. ASME. J. MTAD, 1989, 6: 202-207
    49. Sunada W. On the Dynamic Analysis and Behaviour of Industrial Robotic Manipulators with Elastic Members. J. Mech. Trans, and Auto, in Design, 1984, 105 (3) : 87-101
    50. Low K. H. A Systematic Formulation of Dynamic Equations for Robot Manipulators with Elastic Links. J. of Robotic Systems, 1987, 4 (3) : 435-456
    51. Shchuka A. Tip Control of a Single-Link Flexible Arm Using a Feed forward Technique. Mechanism and Machine Theory, 1989, Vol. 24 (5) : 439-455
    52. Schielen W. Multibody System Handbook. Spring-Verlag, Berlin, 1990
    53. Orlandea N. V. ADAMS Theory and Applications. Third ICTS Course and Seminar on Advance Vehicle System Dynamics, Amlfi Itay, 1986
    54. Hewit J. R. An Approach to Control of Robot Arms with Flexible Transmission Element. Mechanism and Machine Theory, 1989, Vol. 24 (3) : 157-164
    55. Nath P. K. Kineto-Elastodynamic Analysis of Mechanisms by Finite Element. Method Mechanism and Machine Theory, 1980, 15: 179-211
    56. Robot P. Jndd. Dynamics of Non-rigid Articulated Robot Linkages. IEEE. Trans, 1985, AC-30: 499-502
    57. Meirovitch L. On the Modeling of Flexible Multi-body Systems by the Rayleigh-Ritz Method. AIAA-90-1245-CP: 517-526
    58 Ho J. Y. L. Direct Path Method for Flexible Multi-body Spacecraft dynamics. J. Spacecraft, 1977, Vol. 14 (2) : 102-110
    59. Tsuha W. Reduced Order Component models for Flexible Multi-body Dynamics Simulations. AIAA-90-0662: 1-8
    60. Ider S. K. On the Constraint Violations in the Dynamics Simulations of Multi-body System. Trans. ASME. J. DSMC, 1989, Vol. 111: 238-242
    61. Spanos J.H. Selection of Component Modes for Flexible Multi-body Simulation. J. Guidance, Control and Dynamics, 1991, 14 (2) : 278-286
    
    
    62. Skelton R. E. Order Reduction for Models of Space structures Using Modal Cost Analysis. J. Guidance, Control and Dynamics, 1982, 5 (4) : 351-357
    63. Hablani H. B. Modal Identities for Multi-body Elastic Spacecraft. J. Guidance, Control and Dynamics , 1991, 14 (2) : 294-303
    64. Hughes P. C. Modal Identities for Elastic Bodies With Application to Vehicle Dynamics and Control. J. Applied Mechanics, 1980, 47 (1) : 177-184
    65. Hughes P. C. Modal Truncation for Flexible Spacecraft. J. Guidance, Control and Dynamics, 1981, 4 (3) : 381-397
    66. Yim W. Feedback Linearization of Differential-Algebraic Systems and Force and Position Control of Manipulators. Proceeding of the American Control Conference, Califonia, 1993: 2279-2283
    67. Arun K. Banerjee. Block-Diagonal Equations for Multi-body Elasto-dynamics with Geometric Stiffness and Constrains. J. Guidance, Control and Dynamics, 993, 16(6) : 1092-1099
    68. Midha A. A Closed Form Numerical Algorithm for the Periodic Response of High Speed Elastic Linkage. ASME. J. Mechanical Design, 1979, Vol. 101: 154-162
    69. Marco Giovagoni. A Numerical and Experimental Analysis of a Chain of Flexible Bodies. J. Dynamics Systems, Measurement and Control, 1994, Vol. 116
    70. Low K. H. A Lagrangian Formulation of the Dynamic model for Flexible Manipulator Systems. J. . Dynamics Systems, Measurement and Control , 1988, Vol. 110
    71. Meirovith L . Dynamics and Control of Spacecraft with Retargeting Flexible Antennas. J. Guidance, Control and Dynamics, 1990, 13 (3) : 241-244
    72. Midha A. Finite Element Approach to Mathematical Modeling of High Speed Elastic Linkage. Mechanics and Machine Theory, 1978, Vol. 13: 603-618
    73. Wehage R. A. Projection Methods in Flexible Multi-body Dynamics. AD-A261094, 1992
    74. Gorron M . Equivalence of the Driving Elastic Forces in Flexible Multi-body Systems. AD-A300558, 1995
    75. Hwang Y. L. Decoupled Joint-Elastic Coordinate Formulation for the Analysis of Closed-Chain Flexible Multi-body Systems. AD-A290551, 1994
    76. Petzold L. R. Efficient Newton-Type Iteration for the Numerical Solution of Highly Oscillatory Constrained Multi-body Dynamic Systems. AD-A317008, 1996
    
    
    77. Petzold L. R. Numerical Solution of Nonlinear Oscillatory Multi-body Dynamic Systems. AD-A316993, 1996
    78. Yoo W S, Haug E J. Dynamics of articulated structures, part 2. computer implementation and applications. J Struct Mech, 1986, 14(2): 177189
    79. Petzold L. R.. Convergence of the Iterative Methods for Coordinate-Splitting Formulation in Multi-body Dynamics. AD-A317005, 1996
    80. Cooper P. A. Modeling and Simulation of Space Station Freedom Berthing Dynamics and Control. NASA-TM-109151, 1994
    81.孙家广.杨长贵,计算机图形学.新版.北京,清华大学出版社.1995
    82.鲁士文.计算机网络原理与网络技术.北京,机械工业出版社.1996
    83.潘爱民,王国印.Visual C++技术内幕.第四版.北京,清华大学出版社.1999
    84.乔林等.程序设计OpenGL.北京,清华大学出版社.2000
    85.何永.火炮运动与身管振动的耦合关系研究.火炮发射与控制学报.1996,59(1):42~46
    86.何永.火炮总体设计方法研究.南京理工大学博士学位论文.1995
    87.冯康.基于变分原理的差分格式.应用数学与计算数学.1965,2(4):238~262
    88.杨继平.结构振动与振动灵敏度分析.南京理工大学硕士学位论文,1988
    89.王帽成.有限单元法基本原理和数值方法.第2版.北京:清华大学出版社,1997
    90.徐兴,郭乙木,沈永兴.非线性有限元及程序设计.杭州:浙江大学出版社.1993
    91.马吉胜.高炮发射动力学研究与高炮动力学优化设计.南京理工大学博士学位论文.1997
    92.林砺宗.非线性振动分析方法及其在火炮减振研究中的应用.南京理工大学博士学位论文.1991
    93.王晓峰.多重子结构在火炮结构分析中的应用.南京理工大学硕士学位论文.1987
    94.魏孝达.提高火炮密集度的减振措施分析.火炮发射与控制学报.1994,57(3):26~28
    95.杨绍奎.火炮动力分析的子结构法.南京理工大学硕士学位论文,1987
    96.宋天霞.非线性结构有限元计算.武昌,华中理工大学出版设.1996
    97.王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安,西北工业大学出版社.1999
    98.龚尧南,王寿梅.结构分析中的非线性有限元素法.北京,北京航空学院出版社.1986
    99.吴德兴等.结构力学的有限元法.北京,人民交通出版社.1985
    100.蒋友谅.非线性有限元法.北京,北京工业学院出版社.1988
    101.张鸿庆,王鸣.有限元的数学理论.北京,科学出版社1991
    
    
    102.殷有泉.固体力学非线性有限元引论.北京,北京大学出版社.清华大学出版社.1987
    103.康新中.火炮系统动力学.北京,国防工业出版社.1999
    104.张月林.火炮反后坐装置设计.北京,国防工业出版社.1984
    105.赞怀清,洪炳熔.虚拟人实时运动控制研究.计算机工程.2000,26(1):52-55
    106.纪庆革等.分布式虚拟环境系统的异构网络通信设计与实现.计算机工程.1999.25(12):6-8
    107.刘立,陈淑珍.基于C/S模式的远程虚拟仪器测控系统及其实现.计算机工程.1999.25(9):101-102
    108.刘鹏远等.具有真实感的虚拟设备生成技术.计算机工程.1999.25(12):19-20
    109.李健,邓家禵.基于网络的虚拟现实技术.计算机工程与应用.1993.:104-106
    110.汤勇力等.WINDOWS 95下利用DDE客户/服务器实现可视华仿真有限元计算.计算力学学报.1999,16(1):87-92
    111.陈运生.自行火炮动力学分析中的一种广义模态综合法.弹道学报.1997,9(1):31-33
    112.陈运生.动态子结构方法在火炮动力学建模及求解中的应用.火炮发射与控制学报.1997(3):9-13
    113.陈运生.自行火炮Kane方法建模研究.火炮发射与控制学报.1996(1):1-4
    114.杨国来.多柔体系统参数化模型及其在火炮中的应用研究.南京理工大学博士学位论文.1999.6
    115.杨国来.变支撑的炮身自振特性分析.东南大学学报.1997,27(5A):99-102
    116.杨国来.船载火炮系统运动稳定性研究.南京理工大学学报.1999,23(3):12-16
    117.敖勇.柔性多体系统动力学和动态子结构方法及其在自行火炮动力学仿真中的应用.南京理工大学博士论文 1997.11
    118.敖勇.火炮多体系统动力学分析中的一种方法.弹道学报.1998.5(2):21-25
    119.敖勇.模态综合法在求解自行火炮动态特性中的应用.装甲兵工程学院学报.1995.11(2):7-11
    120.毛保全.火炮发射动力学研究的现状和展望.火炮发射与控制学报.1995(4).1-5
    121.毛保全.自行火炮车体参数化建模.兵工学报.1996.18(4):368-371
    122.侯保林.用有限元法建立火炮机构的运动方程.火炮发射与控制学报.1997(4):20~24
    123.火炮发射时的动力分析研究.南京理工大学科研报告.1992.11
    124.自行地炮多体动力学模型.南京理工大学科研报告.1996.5
    125.自行地炮有限元动力学模型.南京理工大学科研报告.1996.5
    
    
    126.自行地炮实验报告.南京理工大学科研报告.1996.5
    127.自行高炮动力学分析研究报告.兵总202所科研报告.1996.5
    128.自行地炮密集度分析.南京理工大学科研报告.1996.5
    129.弹炮耦合动力学模型与内弹道模型.南京理工大学科研报告.1996.5
    130.先进加榴炮系统仿真技术研究.南京理工大学科研报告.1996.5
    131.新155毫米自行加榴炮动力学仿真基础参数计算书.兵器系统工程研究所.1998.5
    132.新155原理样炮动力学实验及测试分析报告.兵总202所科研报告.1999.7
    133.郭锡福.弹丸发射动力学.南京,华东工学院.1989
    134.张识.关于火炮整体非线性振动的有限元法.兵工学报武器分册.1987(3):24-28
    135.张广鹏.考虑结合部的坦克工程车车体结构静特性有限元计算分析.兵工学报.1998,19(1):12-14
    136.黎夫.火炮动力学研究选评.兵工学报武器分册.1987(1):46-52
    137.芮莜亭.弹丸发射过程理论.南京:东南大学出版社.1992
    138.蔡松柏.钢筋混凝土剪力墙结构非线性动力响应的有限元法.世界地震工程.1998,14(2):54-62
    139.朱卫兵.舰载导弹垂直发射装置模态分析与实验.哈尔滨工程大学学报.1998,19(2):39-44
    140.孙侠生.面向设计的航空结构有限元建模技术研究.航空学报.1998,19(4):509-512
    141.龙沂.塔式起重机动态特性研究的现状与发展.建筑机械.1998(10):35-37
    142.张成宝.轿车车身结构分析.上海汽车.1998(9):16-18
    143.贾宏波.车辆典型薄壁梁结构碰撞模拟研究与参数选择.农业机械学报.1998.29(1):24-28
    144.顾永宁.大开口船波浪载荷长期预报和弯扭强度整船有限元分析.中国造船.1998(2):63-76
    145.田启贤.悬索桥非线性结构分析.桥梁建设.1998(2):63-66,76
    146.邹昌平.运用I-DEAS软件对SD-12连轧机连杆进行三维有限元分析.重庆工业管理学院学报.1998.12(5):1-6
    147.侯保林.一种用于弹性机构有限元动力学分析的刚体单元.南京理工大学学报.1998.22(6):501-504
    148.王爱俊.高速碰撞中Lagrange有限元方法及其应用.南京航空航天大学学报.1998,30(6):675-679
    149.魏来生.结构有限元模型的实验结果修正.振动与冲击.1998.17(4):53-57
    150.程建钢.结构动力分析隐式积分并行算法与实现.清华大学学报:自科版.1998,38(11):77-80
    
    
    151.吕东.复杂机构弹性动力分的中的子结构模态综合法研究.长沙电力学院学报:自科版1999,14(1):6
    152.虞春.特征造型与有限元分析的集成化研究.计算机辅助设计与图形学学报1999,11(1)62-65
    153.张翼.胎圈-轮辋接触问题的三维有限元分析.轮胎工业.1999,19(2):83-85
    154.王登祥.轮胎胶料有限元分析的实验基础及计算.轮胎工业.1998,18(12):721-730
    155.Potte.C.使用ANSYS分析让"Maytag"冰箱更人性化.电脑绘图与设计.1998,127(10):40-42
    156.王守信.工程中弹性接触问题的数值计算.河北工业大学学报.1999,28(2):63-67
    157.毕继红.由卷积型变分原理导出的时空有限元法.天津大学学报.1999,32(1):15-18
    158.朱军.空间桁架结构大位移问题的有限元分析方法.造船工业建设.1999(1):21-23
    159.闵建平,陈运生,杨国来.身管柔性对炮口扰动的影响.火炮发射与控制学报.2000.2
    160.闵建平,杨国来.自行火炮行进间射击时的受载研究.弹道学报.2000.12(2):55~59
    161.闵建平,杨国来.行进间发射平顺性研究.南京理工大学学报.2000.24(4):326~329
    162.杨国来,陈运生,闵建平.计及火炮运动的内弹道修正模型.兵工学报.2000,21(4)107~109
    163.楚志远,杨国来,张莉芳,陈运生.船载火炮发射时船体的有限元分析.南京理工大学学报.2000,24(3):257-260
    164.楚志远,杨国来,陈运生.自行火炮非线性有限元动力学仿真方法研究.兵工学报.2001.22(1):4-6
    165.楚志远.自行火炮非线性有限元动力学仿真.南京理工大学博士学位论文.2001
    166.王长武,陈强,杨国来,陈运生.可视化在自行火炮发射动力学仿真中的应用研究.南京理工大学学报.2000,24(4):307-310
    167.王长武,杨国来,陈运生.某迫击炮半自动机发射动力学仿真研究.火炮发射与控制学报.1999增刊
    168.王长武,陈运生,杨国来.虚拟自行火炮分布式实时动力学仿真系统.计算机工程.2001,27(9):35-36
    169.王长武,楚志远,闵建平.自行火炮车体的非线性动态响应.兵工学报.2001,22(4):549-552
    170.王长武,杨国来,闵建平.火炮发射动力学的三维实体仿真.弹道学报.12(3):22-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700