人体运动协调规律及其参数化描述
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体运动协调规律的研究对于探讨人体运动机理和与人脑活动的关系有重要意义,可应用于临床诊断,康复工程,人机工程学,体育科学以及仿生机构的控制和制造等许多领域。目前对于人体运动协调规律的描述仅限于轨迹拓扑结构分析和关节角度的固定比例变化,尚不能对人体运动协调规律进行有效的量化描述。本论文针对该问题,对人体运动协调规律进行了研究,主要包括以下几个方面:
    1.将Fitts定律推广到二维极坐标下,并以此为基础建立了矢状面内的人体运动质量评定方法,定义了上肢运动的难度指标、执行度指标和下肢运动的对称性指标,提出了一套能反映运动质量各方面情况且具有普遍意义的运动质量评价指标。为运动功能和运动协调能力的宏观特性的描述与评定提供了科学、客观评价的依据。
    2.利用三角函数和指数函数,建立了人体关节角度之间协调元的函数描述方法。通过函数参数矩阵对人体运动协调规律和协调元进行了量化描述,为揭示人体运动控制机理提供了手段。
    3.利用运动质量评定指标和函数描述方法对人体上肢触点运动进行了运动质量评定和关节角度的函数拟合。指出了触点运动中上肢终端轨迹的不变性,探讨了终端轨迹和运动质量的影响因素,定义了上肢关节角度间的功能协调元。
    4.利用对称性指标和函数描述方法对人体下肢在不同条件下的正常步态进行了对称性分析和关节角度的函数拟合并进行了比较。探讨了不同路况和不同步态模式下的步态特征及其影响因素,定义了下肢关节角度之间的功能协调元。
    5.利用对称性指标对人体下肢特殊步态进行了步态特征和步态对称性的比较分析。探讨了非对称步态的特征及其影响因素。
    本文的研究结果为量化描述人体运动协调规律提供了有效手段,为人体运动机理的进一步研究提供了方法和思路。
    本文的工作得到了国家自然科学基金(No. 59905015)和国家95科技攻关项目(No. 96-920-20-14)的资助。
Coordination analysis of human movements is of great significance in studies of human behavior mechanism and relationship with the brain. It can be widely used in clinical diagnoses, rehabilitation engineering, ergonomics, gymnastic science, bionic system control and manufacturing. However, the current researches in human coordination are limited to topological analysis and fixed joint velocity ratios, and coordination of human movements has not been described in a quantitative and very effective way. To solve this problem, the research work has been done in this dissertation includes the following aspects:
    1. Fitts' Law was extended to two-dimensional polar coordinate system, and based on this, a method on human movement quality evaluation was proposed. Indices of gait symmetry, indices of difficulty and indices of performance for human upper limbs were defined and combined with other indices to form a set of systematic indices of movement quality evaluation. It provided scientific and objective bases for description and evaluation of human movement function and coordination.
    2. A function description method of synergies among the human joints was proposed by using trigonometric and exponential functions. The function parameter matrices were used to quantify the coordination and synergies in human movements, which is useful for the analysis of human movement control mechanism.
    3. Based on the evaluation indices and the function description method, the pointing movement quality of human upper limb was evaluated and the joints angles were fitted. The invariance of upper limb terminal was shown in the result and the affecting factors were discussed. Function synergy among the upper limb joints angles was defined by using the fitting parameter matrix.
    4. Based on the indices of gait symmetry and the function description method, the symmetry of normal gaits in different conditions was analyzed and the joints angles were fitted. The gait features in different terrains or different gait patterns
    
    were analyzed and compared, and the affecting factors discussed. Function synergy among the lower limb joints angles was defined by using the fitting parameter matrix.
    5. Indices of gait symmetry were used to analyze and compare the gait features and symmetry of special human gaits, such as spanning hurdle gait and stiff knee gait. The features and the affecting factors of asymmetry gait were discussed and the motion compensation and motion equivalence were indicated in the results and discussions.
    The results of the investigation not only provided an effective and quantitative description of the human movement coordination, but also provided the method and clue for the human movement mechanism analysis.
    The research work is supported by NSFC (No.59905015) and the Ministry of Science and Technology (No.96-920-20-14).
引文
[1] Fung Y. C. Biomechanics: Mechanical Properties of Living Tissues (second edition). New York: Springer-Verlag, 1992
    [2] 丁海曙,容观澳,王广志. 人体运动信息检测与处理. 北京:宇航出版社,1992
    [3] 燕铁斌,窦祖林. 实用瘫痪康复. 北京:人民卫生出版社,1999
    [4] 张德远. 生物制造与仿生制造的必要性与发展趋势. “仿生机械学与仿生制造”研讨会论文集,北京,1999. 8-10
    [5] Errede L.A., Osada Yoshihito, Tiers George V.D. Molecular Interpretations of Chemo-Mechanical Responses in Polymer-Liquid Systems J. of Intelligent Material Systems and Structures, 1993, 4(2): 161-168
    [6] 张培玉. 人体-假肢系统全步态周期动力学模型与假肢性能的研究:[博士学位论文]. 北京: 清华大学精密仪器与机械学系,1998
    [7] Buckley M.A., Yardley A., Johnson G.R., et al.. Dynamics of the upper limb during performance of the tasks of everyday living- a review of the current knowledge base. Proc Instn Mech Engrs Part H, 1996, 210: 241-247
    [8] Morrey B.F., Askew L.J., An K.N., et al.. A biomechanical study of normal functional elbow motion. J. Bone Jt Surg., 1981, 63A(6):872-877
    [9] Packer T.L., Peat M., Wyss U., et al.. Examining the elbow during functional activities. Occupational Therapy J. Res., 1990, 10(6):323-333
    [10] Safaee-Rad R., Shwedyk E., Quanbury A.O., et al.. Normal functional range of upper limb joints during performance of three feeding activities. Arch. Phys. Med. Rehabil., 1990, 71: 505-509
    [11] Cooper J.E., Shweddyk E., Quanbury A.O., et al.. Elbow joint restriction: effect on functional upper limb motion during performance of three feeding activities. Arch. Phys. Med. Rehabil., 1993, 74: 805-809
    [12] Romilly D.P., Anglin C., Gosine R.G., et al.. A functional task analysis and motion simulation for the development of a powered upper-limb orthosis. IEEE Trans. On Rehabi. Engng, 1994, 2(3):119-128
    [13] Rao S.S., Bontrager E.L., Gronley J.K., et al.. Three-dimensional kinematics of wheelchair propulsion. IEEE Trans. Rehab. Engng, 1996, 4(3): 152-160
    [14] Van der Helm F.C.T, Veeger H.E.J. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion. J. Biomechanics, 1996, 29(1): 39-52
    
    
    [15] Anglin C., Wyss U.P. Arm motion and load analysis of sit-to-stand, stand-to-sit, cane walking and lifting. Clin. Biomechanics, 2000, 15: 441-448
    [16] Mochon Simon, McMahon Thomas A. Ballistic Walking. J. Biomechanics, 1980, 13(1): 49-57
    [17] Beckett R., Chong K. An evaluation of the kinematics of gait by minium energy. J. Biomechanics, 1968, 1: 147-159
    [18] 董玉振. 人体步行动力学及下肢假肢的研究: [博士学位论文]. 北京: 清华大学精密仪器与机械学系,1995
    [19] Murray M.P., Drought A.B., Kory K.C. Walking patterns of normal men. J. Bone. Jt. Surg., 1964, 46A(2): 335-360
    [20] Cappozzo A., Leo T., Pedotti A. A general computing method for the analysis of human locomotion. J Biomechanics, 1975, 8: 307-320
    [21] Siegler S., Seliktar R., Hyman W. Simulation of human gait with the aid of a simple mechanical model. J. Biomechanics, 1982, 15(6): 415-425
    [22] McMahon T.A. Mechanics of locomotion. International J. Robotics Research, 1984, 3(2): 4-28
    [23] Pandy M.G., Berme N. A numerical method for simulating the dynamics of human walking. J. Biomechanics, 1988, 21: 1043-1051
    [24] Devita P. Effects of asymmetric load carrying on the biomechanics of walking. J. Biomechanics, 1991, 24(12): 1119-1129
    [25] Amirouche F.M.L., Ider S.K., Trimble J. Analytical method for the analysis and simulation of human locomotion. Trans. of ASME J. Biomech. Eng., 1990, 112: 379-386
    [26] 朱长虹. 含肌骨特性的人体下肢运动动力学模型的初步研究: [硕士学位论文]. 北京: 清华大学精密仪器与机械学系,1998
    [27] Audu M.L., Davy D.T. The influence of muscle model complexity in musculoskeletal motion modeling. ASME J. Biomechanical Eng., 1985, 107: 147-157
    [28] Pandy M.G., Zajac F.E., Sim E., et al.. An optimal control model for maximum-height human jumping. J. Biomechanics, 1990, 23(12): 1185-1198
    [29] Yamaguchi G.T. Performing whole-body simulations of gait with 3D, dynamic musculoskeletal models. Multiple muscle systems: Biomechanics and movement organization. New York: Springer-Verlag, 1990, 663-679
    [30] Collins J.J. The redundant nature of locomotor optimization laws. J. Biomechanics, 1995, 28: 251-267
    [31] Riener R., Quintern J., Schmidt G. Biomechanical model of the human knee evaluated by
    
    neuromuscular stimulation. J. Biomechanics, 1996, 29(9): 1157-1167
    [32] Buchanan T.S., Shreeve D.A. An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks. ASME J. Biomech. Eng., 1996, 118: 565-574
    [33] Piazza S.J., Delp S.L. The influence of muscles on knee flexion during the swing phase of gait. J. Biomechanics, 1996, 29: 723-733
    [34] 廖克. 人体三维运动图像检测试验平台的研究: [硕士学位论文]. 北京: 清华大学精密仪器与机械学系,2001
    [35] 王季军. 人体运动信息检测系统研制与食指触点运动质量评价: [硕士学位论文]. 北京: 清华大学精密仪器与机械学系,1998
    [36] Flash T. The organization of human arm trajectory control. Multiple muscle systems: Biomechanics and movement organization. New York: Springer-Verlag, 1990, 282-301
    [37] Sporns O., Edelman G. M. Solving Bernstein's problem: a proposal for the development of coordinated movement by selection. Child development, 1993, 64: 960-981
    [38] Bernstein N. The coordination and regulation of movement . London: Pergamon Press, 1967
    [39] Saltzman E. Levels of sensorimotor representation. J. Mathematical Biology, 1978, 20: 91-163
    [40] Yang N.F., Jin D.W., Zhang M., et al.. A function description for the human upper limb pointing movements performance. Proceeding of 23rd annual international conference of the IEEE-EMBS, 2001
    [41] Soechting J.F., Laquaniti F. Invariant characteristics of a pointing movement in man. J. Neuroscience, 1981, 1: 710-720
    [42] Nashner L.M., McCollum G. The organization of human postural movements: A formal basis and experimental synthesis. Behavioral and brain sciences, 1985, 8: 135-172
    [43] Laquaniti F., Soechting J.F., Terzuolo S.A. Path constraints on point-to-point arm movements in three-dimensional space. Neuroscience, 1986, 17: 313-324
    [44] Winter D.A. Kinematic and kinetic patterns in human gait: Variability and compensating effects. Human Movement Science, 1984, 3: 51-76
    [45] Mah C.D., Hulliger M., Lee R.G., et al.. Quantitative analysis of human movement synergies: constructive pattern analysis for gait. J. motor behavior, 1994, 26(2): 83-102
    [46] Li L., van den Bogert E.C.H., Caldwell G.E., et al.. Coordination patterns of walking and running at similar speed and stride frequency. Human movement science, 1999, 18: 67-85
    [47] 中华共和国卫生部医政司. 中国康复医学诊疗规范(上册). 北京:华夏出版社,1998
    
    
    [48] 刘永斌,闫宁. 行走功能定量评定方法研究. 中国康复理论与实践,1996,2(4): 154-158
    [49] 杨年峰,黄昌华,王人成,等. 食指触点的运动质量评价. 现代康复,2000,4(5): 656-658
    [50] Fitts P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol., 1954, 47:381-391
    [51] Schmidt R.A., Lee T.D. Motor control and learning: a behavioral emphasis (third edition). U.S.A.: Human Knietics, 1999. 171-203
    [52] Anglin C., Wyss U.P. Review of arm motion analyses. Proc Instn Mech Engrs Part H, 2000, 214: 541-555
    [53] Cutkoskey M.R., Howe R.D. Human grasp choice and robotic grasp analysis. Dextrous robot hand. Berlin: Spring-Verlag, 1990. 5-31
    [54] Kang S.B. Ikeuchi K. Toward automatic robot instruction from perception - recognizing a grasp from observation. IEEE Trans. on Robotics and Automatics, 1993, 9(4): 432-443
    [55] Kang S.B., Ikeuchi K. Toward automatic robot instruction from perception - mapping human grasps to manipulator grasps. IEEE Trans. on Robotics and Automatics, 1997, 13(1): 81-95
    [56] Veeger H.E.J., Van der Helm F.C.T., Rozendal R.H. Orientation of the scapula in a simulated wheelchair push. Clin. Biomechanics, 1993, 8(2): 81-90
    [57] Rao S.S., Bontrager E.L., Gronley J.K., et al.. Three-dimensional kinematics of wheelchair propulsion. IEEE Trans. Rehab. Engng, 1996, 4(3): 152-160
    [58] Davis J.L., Growney E.S., Johnson M.E., et al.. Three-dimensional kinematics of the shoulder complex during wheelchair propulsion: a technical report. J. Rehabil. Res. Dev. 1998, 35(1):61-72
    [59] Hay J.G., Reid J. G. Anatomy, mechanics, and human motion (second edition). U.S.A.: Prentice-Hall, 1988
    [60] 高霞,王茂斌. 一种新的脑卒中感觉运动功能评定表- Lindmark 觉运动功能评定表. 中国康复医学杂志,1994, 9(4): 167-169
    [61] Johnson LM, Randall MJ, et al.. Development of a Clinical Assessment of Quality of Movement for Unilateral Upper-limb Function. Dev. Med. & Child Neu., 1994, 36: 965-973.
    [62] Ghika J, Wiegner AW, Fang JJ, et al.. Portable System for Quantifying Motor Abnormalities in Parkinson's Disease. IEEE Trans. Biomed. Eng. , 1993, 40(3): 276-283
    [63] Fischer C.A., Kondraske G.V. A new approach to human motion quality measurement. Proceedings of the 19th international conference-IEEE/EMBS, 1997
    [64] Kondraske G.V. An angular motion Fitts' Law for human performance modeling and
    
    prediction. Proceeding of the 17th international conference of the IEEE-EMBS, 1995
    [65] Phillips C.A., Repperger D.W., Chelette T.L. The acceleration time constant: comparison of normal and spastic upper extremity movement. Proceedings of the 17th international conference-IEEE/EMBS, 1995
    [66] Whittle M.W. Gait analysis: an introduction (second edition). U.K.: Reed Educational and professional publishing, 1997
    [67] Yang N.F., Huang C.H., Wang R.C., et al.. Description of the synergies in human gait by a function method. The 2001 annual fall meeting of the BMES, 2001
    [68] Schmidt R., Disselhorst-Klug C., Silny J., et al.. A marker-based measurement procedure for unconstrained wrist and elbow motions. J. Biomechanics, 1999, 32(6): 615-621
    [69] 蒋尔雄,赵风光. 数值逼近. 上海:复旦大学出版社,1995
    [70] 朱庆峰. 人体起步过程特征的研究: [硕士学位论文]. 北京: 清华大学精密仪器与机械学系,2001
    [71] Novacheck T.F. The biomechanics of running. Gait and posture, 1998, 7: 77-95
    [72] 张瑞红. 具有路况识别功能的智能膝上假肢系统的研究:[博士学位论文]. 北京: 清华大学精密仪器与机械学系,2000
    [73] 蒋知俭. 医学统计学. 北京:人民卫生出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700