壁面薄膜流的热质传递和稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体薄膜流以其高传热传质系数、结构简单且动力消耗小等独特优点,已作为一项高效传热传质技术在传统工业和高新技术领域中得到了广泛的应用。现已成为国际传热传质科学与工程界的一个十分活跃的研究领域,其潜在的技术应用领域将非常广泛。正是由于实际应用的重要性,深入了解液体薄膜的水动力特性和传热传质规律,研究其破断过程、机理和控制条件,已成为近年来富有挑战性的研究课题。
    本文针对在蒸发和冷凝条件下薄液膜流动的稳定性、在气液界面切应力协同下层流饱和蒸发降膜的传热特性和过冷液膜的永久破断特性进行了较为系统的理论研究、对过冷液膜的传热和破断特性进行了实验研究。主要包括以下内容:
    1. 在蒸发和冷凝条件下薄液膜流动稳定性的理论研究。从理论上推导沿倾斜壁面下降的,在蒸发、等温和冷凝状态下普遍适用的二维降落液膜表面波时域和空间演化方程。获取表征液膜稳定特征的中性稳定性曲线、扰动的时间和空间增长率、临界波数、最大波数、波速的变化趋势;分析雷诺数、倾角、热毛细力、表面张力、流体物性以及蒸发、等温或冷凝状态对液膜时域和空间稳定性的影响。对驻波的有关特性,如稳定性和波速进行讨论,并分析上述诸多因素的影响。
    2. 在气液界面切应力协同下的层流饱和蒸发降膜传热特性的理论研究。从理论上建立在同向或反向切应力作用下层流饱和蒸发液膜流动和传热特性的物理模型,推导其液膜厚度和传热系数的表达式,分析液膜厚度和传热系数沿流动方向上的变化趋势,深入探讨界面切应力、界面对流换热强度和雷诺数等因素的影响,揭示层流饱和蒸发液膜的传热机理。
    3. 在气液界面切应力协同下的受热过冷液膜永久破断特性的理论研究。从理论上建立对有界面切应力作用下受热液膜的永久破断力平衡模型,分别在重力驱动、重力和切应力驱动、切应力驱动下推导临界破断液膜厚度与最小润湿量和接触角、流体温度、气液界面切应力、壁面热流密度间的理论关系式,分析其变化趋势和各种因素的影响,探讨液膜发生永久破断现象的机理,并对力平衡模型中各个力的相对大小进行讨论。
    自行设计和建立实验台,通过采集实验件管壁温度、出入口水温和气体流速等数据,深入研究垂直降落过冷液膜在有、无同向或反向切应力协同下的传热特性和永久破断特性,提出新的关于传热特性和破断特性的实验
    
    4. 关联式,并与文献进行比较;在切应力协同下,分析不同方向和不同切应力大小对液膜传热和破断特性的影响规律及程度,并与常规换热和破断情形及理论计算结果进行分析和比较。
The concept of a thin liquid film draining down an inclined wall has been widely used in traditional industries and hi-tech fields because it can enhance heat and mass transfer rates without incurring a lot of flow resistance and power consumption. The researches on liquid films are very stirring in international heat and mass transfer and engineering fields. Due to the importance and universality of application, it is extremely necessary to investigate the properties and mechanisms of the hydrodynamics, flow stability, heat and mass transfer and breakdown.
    The flow stability of the evaporating and condensing film and the heat transfer and breakdown with the interfacial shear stress are carried out in theory, and the characteristics of the heat transfer and breakdown are also conducted in experiment. The main contents of the present paper include:
    1. The theoretical investigation of the flow stability of the evaporating and condensing film. The universal linear temporal and spatial evolution formulations expressed in the film thickness are established with the collocation method for the evaporating or condensing and isothermal liquid films draining down an inclined wall. The neutral stability curves and the character parameters are given, including the temporal and spatial growth rate, the critical wave number, the maximum wave number and the wave celerity. And the effects on stability of the Reynolds number, the inclination angle, the thermocapillarity, the surface tension, the liquid property and the evaporation or condensation conditions are discussed in detail. The characteristics of the stationary wave are presented in this paper, including its stability and wave celerity.
    2. The theoretical investigation of the heat transfer character of the laminar saturated falling film under with interfacial shear stress. The physical models of the hydrodynamics and heat transfer are set up for the laminar saturated falling film under countercurrent and cocurrent interfacial shear stress, and the theoretical correlations of the film thickness and heat transfer coefficient are derived. The local film thickness and heat transfer coefficient on streamwise are showed, and the effects on hydrodynamics and heat transfer of the interfacial shear stress, the intensity of interfacial convection heat transfer and the Reynolds number are explained.
    3. The theoretical investigation of the permanent breakdown of the subcooling
    
    films with interfacial shear stress. The force balance model is founded for the permanent breakdown of the subcooling films with interfacial shear stress under the sensible heating condition. The relations of the critical film thickness and minimum wetting rate with the contact angle, the film temperature, the interfacial shear and heat flux are illustrated under driving by the gravity, the gravity and the interfacial shear, and the interfacial shear, respectively. The effects of the above factors on permanent breakdown are explained, and the mechanism of the breakdown is discussed.
    4. The experimental investigation of the heat transfer and breakdown of the subcooling film with or without interfacial shear stress. By designing and founding the experimental apparatus and collecting the data of the tube temperatures, the inlet and outlet water temperatures and the air velocity, the properties of the heat transfer and breakdown with or without countercurrent or cocurrent interfacial shear stress are studied under the sensible heating condition, and the correlations of the heat transfer and critical heat flux are established and compared with the previous references. The effects of the Reynolds number, the Prantl number and the interfacial shear stress are discussed and compared with the conventional heat transfer and breakdown and theoretical results.
引文
[1] 科利尔(Coller, J. G.)著, 魏先英等译. 对流沸腾和凝结. 北京:科学出版社,1982.
    [2] 齐复东, 贾树本, 马义伟, 电站凝汽设备和冷却系统, 水利电力出版社, 1990.
    [3] E.U.施林耐尔 主编, 马庆芳, 马重芳主译. 换热器设计手册, 第二卷, 流体力学与传热学. 机械工业出版社, 1989.
    [4] W. M.罗森诺等主编, 李荫亭等译. 传热学手册, 下册. 科学出版社, 1985.
    [5] Ligrani, P. M., Gong, R. J., Cuthrell, M. and Lee, J. S., Bulk flow pulsations and film cooling---I Injectant behavior. Int. J. Heat Mass Transfer, 39(11): 2271-2282, 1996.
    [6] Kim, B., Heat and mass transfer in a falling film absorber of ammonia-water absorption system. Heat transfer engineering, 19(3): 53-63, 1998.
    [7] Alhusseini, A. A., Tuzla, K. and Chen, J. C., Falling film evaporation of single component liquids. Int. J. Heat Mass Transfer, 41(12): 1623-1632, 1998.
    [8] 赵颖, GCMS325- I型高压膜式除氧器的设计. 东北电力技术. 2: 45-48, 2000.
    [9] 于新颖, 苏萍, 除氧器改造技术经济性分析, 热力发电. 4: 6-8, 2000.
    [10] 唐明支, 黄涛, 锅炉烟气五水膜脱硫除尘技术探讨. 锅炉技术. 32 (3): 22-24, 2001.
    [11] 阎维平,洁净煤发电技术,中国电力出版社,2002. 2.
    [12] 希特斯洛尼主编, 鲁钟琪等译. 多相流动和传热手册. 北京, 机械工业出版社, 1993. 8.
    [13] 刘植主编, 化工原理. 北京, 中国电力出版社, 1997. 5.
    [14] Grossman, G., Simultaneous heat and mass transfer in film absorption under laminar flow. Int. J. Heat Mass Transfer. 26(3): 357-371, 1983.
    [15] Yan, W. M., Evaporative cooling of liquid film in turbulent mixed convection channel flows. Int. J. Heat Mass Transfer, 41(23): 3719-3729, 1998.
    [16] Gian Piero Celata, Francesco, D'Annibale, Andrea Chiaradia, Maurizio Cumo., Upflow turbulent mixed convection heat transfer in vertical pipes. Int. J. Heat Mass Transfer. 41(24): 4037-4054, 1998.
    [17] Chen, Weibo., Richard, N. and Christensen., Inlet subcooling effect on heat and mass transfer characteristics in a laminar film flow. Int. J. Heat Mass Transfer, 43(2): 167-177, 2000.
    [18] 陈济东 主编, 大亚湾核电站系统及运行, 上、下册,原子能出版社, 189-217, 1920-1979,1994.
    [19] W. 里西等著, 张禄庆, 连培生等译. 核电厂, 原子能出版社, 3-28, 321-326, 1996.
    胡宗军, 吴铭岚, 蒸汽冷却及其在先进热力联合循环中的应用. 燃气轮机技术, 11(3):
    
    [20] 27-34, 1998.
    [21] 于达仁, 刘金福, 徐基豫, 面向21世纪的燃气轮机技术的发展. 燃气轮机技术, 14(1): 14-21, 2001.
    [22] Nomoto, H., Koga, A., Ito, S., Fukuyama, Y., Otomo, F., Shibuya, S., Sato, M., Kobayashi, Y. and Matsuzaki, H., The advanced cooling technology for the 1500 class Gas turbine: Steam-cooled vanes and air-cooled blades. Trans. ASME, J. Engineering for Gas Turbines and Power.119: 624-632, 1997.
    [23] Garg, V. K., Heat transfer on a film-cooled rotating blade using different turbulence models. Int. J. Heat and Mass Transfer, 42(5): 789-802, 1999.
    [24] Schulz, A., Infrared thermography as applied to film cooling of gas turbine components. Measurement Science Technology, 11: 948-956, 2000.
    [25] Valenti, M., Keeping it cool: more air in, more power out: air cooling gives gas turbines a boost. Mechanical Engineering, 8: 48-52, 2001.
    [26] Sarkar, S., Das, K. and Basu, D., Film cooling on a turbine guide vane: a numerical analysis with a multigrid technique. Porc. Instn. Mech. Engrs. 215(A1): 39-53, 2001.
    [27] Nusselt, N., Die Oberflachenkondensation des Wasserdampfes, Zeit. Ver. D. Ing. 60: 541-569, 1916.
    [28] Br?tz, W., Chem. Ing. Tech. 26: 470-478, 1954.
    [29] Brauer, H., Str?mungs und W?rmeübergang bei Rieselfilmen, Ver Deut. Ing., Forschungsheft, 457, 1956.
    [30] Ganchev, B. G., Koglov, V. M. and Lozovetskiy, V. V., A study of heat transfer to a falling fluid film at a vertical surface. Heat Transfer-Soviet Research, 4:102-110, 1972.
    [31] Gimbutis, G. J., Heat Transfer in Film Heat Exchangers, Proceedings of the 14th International Congress of Refrigeration, Moscow, 2: 1-7, 1975.
    [32] Takahama, H., and Kato, S., Longitudinal Flow Characteristics of Vertically Falling Liquid Films without Concurrent Gas Flow. Int. J. Multiphase Flow. 6(2): 203-215, 1980.
    [33] Hirshburg, R. I. and Florschuetz, L. W., Laminar Wavy-Film Flow: Part I, Hydrodynamic Analysis. Trans. ASME. J. Heat Transfer. 104: 452-458, 1982.
    [34] Karapantsios, T. D., Paras, S. V. and Karabelas, A. J., Statistical Characteristics of Free Falling Films at High Reynolds Numbers. Int. J. Multiphase Flow. 15(1): 1-21, 1989.
    [35] Lyu, T. H. and Mudawwar, I., Statistical Investigation of the Relationship between Interfacial Waviness and Sensible Heat Transfer to a Falling Liquid Film. Int. J. Heat Mass Transfer, 34(6): 1451-1464, 1991.
    
    
    [36] H?rk?nen, M., Aula, A. and Aittom?ki, A., Heat Transfer and Hydro-dynamics of Falling Films. Acta Polytechnica Scandinavica Mechanical Engineering Series No.115, HELSINKI, 1994.
    [37] Jiang, Z. And Yan, W., Experimental Studies on Surface Wave Characteristics of Free-Falling Liquid Films. Heat Transfer Science and Technology 1996, Proceedings of the 4th International Symposium on Heat Transfer, Edited by Wang B., Higher Education Press, Beijing, 200-205, 1996.
    [38] Jiang, Z., Yan, W. and Tao, Z., Experimental Studies on Heat Transfer to Non-Newtonian Power-law Fluid Falling Film Flow. Proceeding of the International Symposium on Multiphase Flow. Edited by Chen X., Ge M., International Academic Publishers, Beijing, 356-361, 1997.
    [39] Karimi, G. and Kwaji, M., Flow characteristics and circulatory motion in wavy falling films with and without counter-current gas flow. Int. J. Multiphase Flow, 25(10): 1305-1319, 1999.
    [40] Yu, L. Q., Wasden, F. K., Dukler, A. E. and Balakotaiah, V., Nonlinear Evolution of Waves on Falling Films at High Reynolds Numbers. Phys. Fluid, 7(8): 1186-1902, 1995.
    [41] Kapitza, P. L., 1964 Wave Flow of Thin Layers of a Viscous Fluid layers. Zh. Eksp. Teor. Fiz. 18(1): 3-28, 1948.
    [42] Maron, D. M., Brauner, N. and Dukler, A. E., Interfacial Structure of Thin Falling Films: Piecewise Modeling of the Waves, Physico-Chem. Hydrodynam. 6(1): 87-90, 1985.
    [43] Kheshgi, H. S. and Scriven, L. E., Disturbed Film Flow on a Vertical Plate,Phys. Fluids, 30: 990, 1987.
    [44] Wasden, F. K. and Dukler, A. E., Insights into Hydrodynamics of Free Falling Wavy Films, AIChE J. 35(2): 187-195, 1989.
    [45] Yang, R. and Wood, B. D., A Numerical Solution of the Motion on a Falling Liquid Film, Canadian Journal of Chemical Engineering, 69(6): 723-728, 1991.
    [46] Fang, M., Nosoko, T. and Nagata, T., A Numerical Study of the Hydrodynamics of a Falling Liquid Film by the Integral Method, 3rd International Symposium on Multiphase Flow and Heat Transfer, Edited by Chen X., Xi'an Jiaotong University Press, Xi'an, 191-198, 1994.
    [47] Stuhlr?ger, E., Flow Dynamics and Heat Transfer of a Condensate Film on a Vertical Wall --I. Numerical Analysis and Flow Dynamics, Int. J. Heat Mass Transfer, 36(6): 1667-1686, 1993.
    [48] Stuhlr?ger, E., Flow Dynamics and Heat Transfer of a Condensate Film on a Vertical Wall --II. Flow Dynamics and Heat Transfer, Int. J. Heat Mass Transfer, 38(15): 2715-2722, 1995.
    Jayanti, S.,and Hewitt, G. F., Hydrodynamics and Heat Transfer of Wavy Thin Film Flow, Int.
    
    [49] J. Heat Mass Transfer, 40(1): 179-190, 1997.
    [50] Jayanti, S. and Hewitt, G. F., Hydrodynamics and Heat Transfer in Wavy Annular Gas-Liquid Flow: Computational Fluid Dynamics Study, Int. J. Heat Mass Transfer, 40(10): 2445-2460, 1997.
    [51] Miyara, A., Numerical Analysis on Heat Transfer of Falling Liquid Films with Interfacial Waves, Heat Transfer 1998, Proceedings of 11th IHTC, Kyongju, Korea, 57-62, 1998.
    [52] Yih, C. S., Stability of parallel laminar with a free surface. Quart. Appl. Math. 13: 434-439, 1955.
    [53] Benjamin, T. B., Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2: 554-574, 1957.
    [54] Yih, C. S., Stability of liquid flow down an inclined plane. Phys. Fluids. 6: 321-335, 1963.
    [55] Benney, D. J., Long waves on liquid films. J. Math. Phys. 45: 150-155, 1966.
    [56] Whitaker, S., Effect of surface active agents on the stability of falling liquid films. Ind. Eng. Chem. Fundam. 3: 132-136, 1964.
    [57] Lee, J., Kapitza's method of film flow description. Chem. Engng. Sci., 24: 1309-1320, 1969.
    [58] Krantz, W. B. and Goren, S. L., Stability of thin liquid films flowing down a plane. Ind. Eng. Chem. Fundam. 10: 91-101, 1971.
    [59] Kapitza, P. L. and Kapitza, S. P., 1964 Wave Flow of Thin liquid Layers of Fluid. Zh. Eksp. Teor. Fiz. 19: 105-120, 1949.
    [60] Shkadov, V. Ya., Some problems of the theory of wave flows of thin viscous liquid films. Izv. Akad. Nauk SSSR, Mekh Zhidk. i Gaza 2: 20-25, 1968.
    [61] Krylov, V. S., Vorotilin, V. P. and Levich, V. G., To the theory of wave flow of thin liquid films. Teor. Osnovy Khim. Tekhnol, 3: 499, 1969.
    [62] Nguyen, L.T. and Balakotaiah, V., Modeling and experimental studies of wave evolution on free falling viscous films. Phys. Fluids. 12(7): 2236-2256, 2000.
    [63] Alekseenko, S. V., Nakoryakov, V. E. and Pokusaev, B. G., Wave formation on vertical falling liquid films. Int. J. Multiphase Flow. 11(5): 607-627, 1985.
    [64] Takeshi, O., Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number, Phys. Fluids. 11(11): 327-3269, 1999.
    [65] Maron, D. M., Zijl, W. and Aboudi, J., Hydrodynamic and transfer characteristics in free interface film due to time-dependent disturbance at the entry. Int. J. Heat Mass Transfer. 23(9): 927-941, 1980.
    Brauner, N., Maron, D. M. and Zijl, W., Interfacial collocation equations of thin liquid film:
    
    [66] stability analysis. Chem. Engng. Sci. 42(8): 2025-2035, 1987.
    [67] Trifonov, Yu.Ya. and Tsvelodub, O. Yu., Nonlinear waves on the surface of a falling liquid film. Part 1. Waves of the first family and stability. J. Fluid Mech. 229: 531-544, 1991.
    [68] Chang, H. C., Demekhin, E. A. and Kopelevich, D. I. Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250: 433-480, 1993.
    [69] Strobel, W. J. and Whitaker, S., The effect of surfactants on the flow characteristics of falling liquid films. AIChE. J. 15: 527-535, 1969.
    [70] Nakoryakov, V. E., Pokusaev, B. G., Alekseenko, S. V. and Orlov, V. V., Instantaneous velocity profiles in a wave liquid film. JEP. 33: 33, 1977
    [71] Pierson, F. W. and Whitaker, S., Some theoretical and experimental observation of wave structure of falling liquid films. Ind. Eng. Chem. Fundam., 16: 401-408, 1977.
    [72] 蒋章焰,陶正文,阎维平, 垂直表面自由降膜表面波的非线性演化. 华北电力大学学报,26(1): 13-17, 1999.
    [73] Joo, S. W., Davis, S. H. and Bankoff, S. G., Long-wave instabilities of heated films: two-dimensional theory of uniform layers. J. Fluid Mech. 230: 117-146, 1991.
    [74] Chang, H. C., Evolution of nonlinear waves on vertically falling films-a normal form analysis. Chem. Engng. Sci. 42: 515-533, 1987.
    [75] Cheng, P.J., Lai, H. Y. and Chen, C. K., Stability analysis of thin viscoelastic liquid film flowing down on a vertical wall. J. Physics D (Applied Physics). 33: 1674-1682, 2000.
    [76] 王补宣,张金涛,彭晓峰, 壁薄液膜流动稳定性的分析. 工程热物理学报, 20(4):457-461, 1997.
    [77] Wang, B. X., Zhang, J. T. and Peng, X. F., Thermal non-equilibrium effect on stabilities of falling liquid film, Int. J. Heat Mass Transfer. 42(15): 2863-2868, 1999.
    [78] Zhang, J. T., Peng, X. F. and Peterson, G. P., Experimental investigation on the hydrodynamics of falling liquid film flow by nonlinear description procedure. Int. J. Heat Mass Transfer, 43(20): 3847-3852, 2000.
    [79] Bankoff, S. G., Stability of liquid flow down a heated inclined plane. Int. J. Heat Mass Transfer. 14: 377-385, 1971.
    [80] Bankoff, S. G., Dynamics and stability of thin heated liquid films. Tran. ASME, J. Heat Transfer, 112: 538-546, 1990.
    [81] Marschall, E. and Lee, C. Y., Stability of condensate flow down a vertical wall. Int. J. Heat Mass Transfer, 16: 44-48, 1973.
    Spindler, B., Linear stability of liquid films with interfacial phase change. Int J. Heat Mass
    
    [82] Transfer, 25(2): 161-173,1982.
    [83] López, P. G., Bankoff, S. G. and Miksis, M. J., Non-isothermal spreading of a thin liquid film on an inclined plane. J. Fluid Mech. 324: 261-286, 1996
    [84] 师晋生, 施明恒, 饱和下降液膜的稳定性研究. 应用力学学报,16(4): 27-34, 1999.
    [85] Bankoff, S. G., Significant questions in thin liquid film heat transfer. Transactions of the ASME. J. Heat Transfer. 116: 10-16, 1994.
    [86] Williams, M. B. and Davis, S. H., Nonlinear theory of film rupture. J. Colloid Interf. Sci. 90: 220-228, 1982.
    [87] Burelbach, J. P., Bankoff, S. G. and Davis, S. H., Nonlinear Stability of evaporating /condensing liquid films. J. Fluid Mech. 195: 463-494, 1988.
    [88] Burelbach J. P., Bankoff, S. G. and Davis, S. H., Steady thermocapillary flows of thin liquid layers. II experiment. Phys Fluids, 2: 322-333, 1990.
    [89] Davalos-Orozco, L.A. and You, X., Three-dimensional instability of a liquid layer flowing down a heated vertical cylinder. Phys. Fluids, 12: 2198-2209, 2000.
    [90] Norman, W. S. and Mcintyre, V., Heat transfer to a liquid film on a vertical surface. Trans. Instn. Chem. Engrs. 38: 301-307, 1960.
    [91] Wilke, W., W?rmeübergang an Rieselfilme, VDI Forschungsh, No.490, Düsseldorf, 1962.
    [92] 蒋章焰, 马同泽, 赵嘉琪, 霍秀和, 垂直管外降落液膜的流动和传热特性, 工程热物理学报, 9(1): 70-74, 1988.
    [93] Gimbutis, G. J., Gimbutyté, S. S. and ?inkūnas, S. S., Heat Transfer of falling liquid film under different heat flux distributions in the film. Recent Advances in Heat Transfer, Proc. of the 1st Baltic Heat Transfer Conference, Goteborg, Sweden 1991.
    [94] Gimbutis, G. J., Gimbutyté, S. S. and ?inkūnas, S. S., Heat Transfer in a falling liquid film with large curvature. Heat Transfer Research, 25(2): 216-219, 1993.
    [95] Shmerler, J. A. and Mudawwar, I., Local Evaporative Heat Transfer Coefficient in Turbulent Free- Falling Liquid Films. Int. J. Heat Mass Transfer, 31(1): 731-742, 1988.
    [96] Shmerler, J. A. and Mudawwar, I., Local Heat Transfer Coefficient in Wavy Free-Falling Turbulent Liquid Films undergoing Uniform Sensible Heating. Int. J. Heat Mass Transfer, 33(1): 67-77, 1988.
    [97] Chun, K. R. and Seban, R. A., Heat transfer to evaporating films, J. Heat Transfer, 96: 391-396, 1971.
    [98] Kutateladze, S. S. and Gogonin, I. I., Heat Transfer in film condensation of slowly moving vapour. Int. J. Heat Mass Transfer. 22: 1593-1599, 1979.
    
    
    [99] Hirshburg, R. I. and Florschuetz, L., W. Laminar Wavy-Film Flow: Part II, Condensation and Evaporation. Transactions of the ASME. J. Heat Transfer. 104: 459-464, 1982.
    [100] Fujita, T., and Ueda, T., Heat transfer to falling liquid film and film breakdown-Part I: subcooling films. Int. J. Heat Mass Transfer, 21: 97-108, 1978.
    [101] Fujita, T., and Ueda, T., Heat transfer to falling liquid film and film breakdown-Part II: Saturated liquid films with nucleate boiling. Int. J. Heat Mass Transfer, 21: 109-118, 1978.
    [102] Mudawwar, I. A. and EI-Masri, M. A., Momentum and heat transfer across freely-falling turbulent liquid films. Int. J. Heat Transfer, 12(5): 771-790, 1986.
    [103] Sabir, H., Suen, K. O. and Vinnicombe, G. A., Investigation of effects of wave motion on the performance of a falling film absorber. Int. J. Heat Mass Transfer, 38(12): 2463-2472, 1996.
    [104] Ueda, T. and Tanaka, T., Studies of liquid film flow in two-phase annular and annular-mist flow regimes. Part I. Downflow in a vertical tube. Bull JSME, 17: 603-613, 1974.
    [105] Yih, S. M. and Liu, J. L., Prediction of heat and mass transfer in turbulent falling liquid film with or without interfacial shear. J. AIChE., 29(6): 903-909, 1983.
    [106] Faghri, A. and Seban, R. A., Heat Transfer in Wavy Liquid Films. Int. J. Heat Mass Transfer, 28(2): 506-508, 1985.
    [107] Lyu, T. H. and Mudawwar, I., Determination of Wave-Induced Fluctuations of Wall Temperature and Convection Heat Transfer Coefficient in the Heating of a Turbulent Falling Liquid Film, Int. J. Heat Mass Transfer, 34(10): 2521-2534, 1991.
    [108] Pei-Wen Li, Wen-Quan Tao, Analytical and Numerical Solution to the Film Condensation Heat Transfer out Single Horizontal Elliptical Tube. 3rd International Symposium on Multiphase Flow and Heat Transfer,In:Chen Xue-Jun, Xi'an Jiaotong University Press,1: 233-239, 1994.
    [109] 叶学民, 阎维平, 蒋章焰, 王军, 自由降膜表面波流动和传热特性的研究. 华北电力大学学报,26(1):7-12, 1999.
    [110] Xuemin Ye, Weiping Yan, Zhangyan Jiang and Chunxi Li,Hydrodynamics of Free-Falling Turbulent Wavy Films and its Implication to Enhanced Heat Transfer,Heat Transfer Engineering, 23(1): 48-60, 2002.
    [111] Yung, B., Lorentz, J. J. and Ganic, E. N., Vapor/liquid interaction and entrainment in falling film evaporators. Trans. ASME, J. Heat Transfer, 102: 20-25, 1980.
    Dhir, V. K. and Taghavi-Tafreshi, K., Hydrodynamics transitions during dripping of
    
    [112] liquid from underside of a horizontal tube. ASME Paper No.81-WA/HT-12, 1981.
    [113] Maron-Moalem, D. Sideman, S. and Dukler, A. E., Dripping characteristics in a horizontal tube film evaporator. Desalination, 27: 117-127, 1978.
    [114] Ganic, E. N. and Roppo, M. N., An experimental study of falling liquid film breakdown on a horizontal cylinder during heat transfer. Trans. ASME, J. Heat Transfer, 102: 342-346, 1980.
    [115] Mitrovic, J., Influence of tube spacing and flow rate on heat transfer from a horizontal tube to a falling liquid film. Proc. 8th international Heat Transfer Conference, San Francisco, 4, 1949-1956, 1986.
    [116] Honda, H. Uchima, B. Nozu, S., Nakata, H. and Torigoe, E., Film condensation of R-113 on in-line bundles of horizontal finned tubes. Trans. ASME, J. Heat Transfer, 113: 479-486, 1991.
    [117] Fletcher, L. S., Sernas, V. and Parken, W. H., Evaporation heat transfer coefficients for thin sea water films on horizontal tubes. Industrial Engineering Chemistry, Progress Des, Dev, 14: 411-416, 1975.
    [118] Conti, R. J., Experimental investigation of horizontal-tube ammonia film evaporators with small temperature differentials. Proc. 5th Ocean Thermal Energy Conversion Conference, Miami Beach, FL. 6: 161-180, 1978.
    [119] Parken, W. H., Fletcher, L. S., Sernas, V. and Han, J. C., Heat transfer through falling film evaporation and boiling on horizontal tubes. Trans. ASME, J. Heat Transfer, 112: 744-750, 1990.
    [120] Sernas, V., Heat transfer correlation for subcooled water films on horizontal tubes. Trans. ASME, J. Heat Transfer, 101: 176-180, 1979.
    [121] Parken, W. H., Heat transfer to thin water films on horizontal tubes. Ph. D. Dissertation, Rutgers University, NJ, 1975.
    [122] Rohsenow, W. M., Handbook of Heat Transfer Fundamentals, 2nd ed. Rohsenow, Hartnett, and Ganic, eds, McGraw-Hill, New York, 1985.
    [123] Rogers, J. T. and Goindi, S. S., Experimental laminar falling film heat transfer coefficients on a large diameter horizontal tube. Can. J. Chem. Eng. 67: 560-568, 1989.
    [124] Armbruster, R. and Mitrovic, J., Heat transfer in falling-film on a horizontal tube. Proc. 1995 National Heat Transfer Conference-Vol.12, ASME HTD-Vol.314: 13-24, 1995.
    Rogers, J. T., Goindi, S. S. and Lamari, M., Turbulent falling film flow and heat transfer on horizontal tubes. Proc. 1995 National Heat Transfer Conference-Vol.12, ASME
    
    [125] HTD-Vol.314: 3-12, 1995.
    [126] Fujita, Y. and Tsutsui, M., Evaporation heat transfer of falling films on horizontal tube---Part1, Analytical study. Heat Transfer-Japanese Research, 24(1): 1-16, 1995.
    [127] Fujita, Y. and Tsutsui, M., Evaporation heat transfer of falling films on horizontal tube---Part2, Experimental study. Heat Transfer-Japanese Research, 24(1): 17-31, 1995.
    [128] Fujita, Y. and Tsutsui, M., Experimental investigation of falling film evaporation on horizontal tubes. Heat Transfer-Japanese Research, 27(8): 609-618, 1998.
    [129] Hu, X. and Jacobi, A. M., The intertube falling film: Part1---Flow characteristics, Mode transitions, and Hysteresis. Trans. ASME, J. Heat Transfer, 118: 616-625, 1996.
    [130] Hu, X. and Jacobi, A. M., The intertube falling film: Part2---Mode effects on sensible heat transfer to a falling liquid film. Trans. ASME, J. Heat Transfer, 118: 626-633, 1996.
    [131] Solan, A. and Afati, A., Heat transfer in laminar flow of a liquid film on a horizontal cylinder. Proc. 5th Heat Transfer Conference, Tokyo, 2: 90-93, 1974.
    [132] Rogers, J. T., Laminar falling film flow and heat transfer characteristics on horizontal tubes. Can. J. Chemical Engineering, 59: 213-222, 1981.
    [133] Cess, R. D., Laminar-film condensation on a flat plate in the absence of body force. Z. Angew. Math. Phys., 11: 426-433, 1960.
    [134] Koh, J. C. Y., Film condensation in a forced-convection boundary-layer flow. Int. J. Heat Mass Transfer. 5: 941-954, 1960.
    [135] Chen, M. M., An analytical study of laminar film condensation: Part I-flat plate. ASME, J. Heat Transfer, 83: 48-54, 1961.
    [136] Shekriladze, I. G. and Gomelauri, V. I., Theoretical study of laminar film condensation of flowing vapour. Int. J. Heat Mass Transfer. 9(6): 581-591, 1966.
    [137] Rose, J. W., Fundamentals of condensation heat transfer: laminar film condensation. JSME J. Ser. II, 31: 357-375, 1988.
    [138] Rose, J. W., Condensation heat transfer fundamentals. Trans. Inst. Chem. Eng. 76, Part. A,: 143-152, 1998.
    [139] Rohsenow, W. M., Webber, J. H., and Ling, A. T., Effect of vapor velocity on laminar and turbulent-film condensation. Trans. ASME, 78: 1637, 1956.
    [140] Rohsenow, W. M., Hartnett, J. P. and Cho, Y. I., Handbook of heat transfer. 3rd ed. New York: McGraw-Hill, 1998.
    [141] Mills, A. F., Basic Heat and Mass Transfer, 2nd ed. Upper Saddler River, N. J., Prentice, Hall, 1999.
    
    
    [142] Mosaad, M., Combined free and forced convection laminar film condensation on an inclined circular tube with isothermal surface. Int. J. Heat Mass Transfer. 42(21): 4017-4025, 1999.
    [143] Winkler, C. M. and Chen, T. S., Mixed convection film condensation from isothermal vertical surfaces - the entire regime. Int. J. Heat Mass Transfer, 43(17): 3245-3251, 2000.
    [144] Mitrovic, J., Effects of vapor superheat and condensate subcooling on laminar film condensation. Trans. ASME, J. Heat Transfer, 122: 192-196, 2000.
    [145] Dulkler, A. E., Comparison of theoretical and experimental film thickness. J. ARS, 31: 86, 1961.
    [146] Dulkler, A. E., Predicting heat transfer coefficients for film flow, Part II: Design Charts and Equations. Petro/Chem. Engineer, 33: 222, 1961.
    [147] Ueda, T., Kulo, T. and Inoue, M., Heat transfer for steam condensing inside a vertical tube. Proceeding of the 5th International Heat Transfer Conference, 3: 304, 1974.
    [148] Razavi, M. D. and A. S., Damle, Heat transfer coefficient for turbulent filmwise condensation. Trans. IChem. Engrs. 56: 81, 1978.
    [149] Ambrosini, W., Manfredini, A., Mariotti, F., Oriolo, F. and Vigni. P., Heat transfer form a plate cooled by a water film with countercurrent air flow. J. Nuclear Technology, 112: 227-237, 1995.
    [150] 师晋生, 陈玉宙, 自由表面摩擦和蒸发对过冷下降液膜传热的影响. 热能动力工程,16(7): 383-385, 2001.
    [151] Hartley, D. E. and Murgatroyd, W., Criteria for the break-up of thin liquid layers flowing isothermally over solid surfaces. Int. J. Heat Mass Transfer, 7(7): 1003-1015, 1964.
    [152] Zuber, N. and Staub, F. W., Stability of Dry patches forming in liquid films flowing over heated surfaces. Int. J. Heat Mass Transfer, 9(9): 897-905, 1966.
    [153] Hewitt, G. F. and Lacey, P. M. C., The breakdown of the liquid film in annular two-phase flow. Int. J. Heat Mass Transfer, 8(5): 781-791, 1965.
    [154] Murgatroyd, W., The role of shear and form forces in the stability of a dry patch in two-phase film flow. Int. J. Heat Mass Transfer, 8(2): 297-301, 1965.
    [155] Penn, D. G., De-Bertodano, M. A. L., Lykoudis, P. and Beus, S.G., Dry patch stability of shear driven liquid film. Proceeding of NHTC'00, 34th National Heat Transfer Conference, 617-625, Pittsburgh, Pennsylvansia, August 20-22, 2000.
    [156] 蒋章焰, 马同泽, 赵嘉琪, 霍秀和, 过冷液膜的换热特性和破断特性. 化工学报,6(6): 663-669,1990.
    
    
    [157] 蒋章焰,宋金田,孔旭静,郭朝阳, 垂直加热管外自由降膜流的破断特性. 工程热物理学报,16(2):199-204,1995.
    [158] 徐尧润,刘振义,卢晓江,席华,宋继田, 异形竖板上降落液膜破断特性. 化工学报,48(4):485-491,1997.
    [159] Bankoff, S. G., Minimum thickness of a draining down liquid film. Int. J. Heat Mass Transfer, 14(21): 2143-2146, 1971.
    [160] 师晋生,施明恒,平壁上等温层流液膜的破裂特性. 东南大学学报, 27(3): 131-135, 1997.
    [161] Saber, H. H. and El-Genk, M. S., Determination of the minimum thickness of an isothermal liquid film on a vertical surface. Proceeding of NHTC'00, 34th National Heat Transfer Conference, 481-488, Pittsburgh, Pennsylvansia, August 20-22, 2000.
    [162] Hughes, D. T. and Bott, T. R., Minimum thickness of a liquid film flowing down a vertical tube. Int. J. Heat Mass Transfer, 41(2): 253-260, 1998.
    [163] Dukler, A. E., Smith, L. and Chopra, A., Flooding and upward film flow in tubes-I, Int. J. Multiphase Flow, 10(5): 585-597, 1984.
    [164] Maron, D. M. and Dukler, A. E., Flooding and upward film flow in tubes-II, Int. J. Multiphase Flow, 10(5): 599-621, 1984.
    [165] Hallett, V. A., Surface phenomena causing breakdown of falling liquid films during heat transfer. Int. J. Heat Mass Transfer, 9(2): 283-294, 1966.
    [166] Budiman, A. G., Florijianto, C. and Palen, J. W., Breakdown of Evaporating Falling Films as a Function of Surface Tension Gradient, Heat Transfer Engineering, 17(4): 72-81, 1996.
    [167] Duffey R. B. and Hughes E. D., Dryout stability and inception at low flow rates. Int. J. Heat Mass Transfer, 34(2): 473-481, 1991.
    [168] Hoke, J. and Chen, J. C., Thermocapillary breakdown of subcooled falling liquid films. In. Eng. Chem. Res., 31(3): 668-694, 1992.
    [169] Bohn M. S. and Davis, S. H., Thermocapillary breakdown of falling liquid films at high Reynolds numbers. Int. J. Heat Mass Transfer, 36(7): 1875-1881, 1993.
    [170] Wang, B. X., Zhang, J. T. and Peng, X. F., Experimental study on the dryout heat flux of falling liquid film. Int. J. Heat Mass Transfer, 43(11): 1897-1903, 2000.
    [171] Koizumi, Y., Ohtake, H. and Ikeda, S., Characteristics of falling liquid film on the outer surface of a vertical pipe (minimum wetting rates and waves on the film). Proceeding of ASME Heat Transfer Division-2000, vol. 2: 197-203, 2000.
    
    
    [172] Doniec, A., Laminar flow of a liquid rivulet down a vertical solid surface. The Canadian J. of Chemical Engineering, 69(1): 198-202, 1991.
    [173] Mikielewicz, J. and Moszynski, J. R., Minimum thickness of a liquid film flowing down a vertical solid surface. Int. J. Heat Mass Transfer, 19(5): 771-776. , 1976
    [174] Munakata, T., Watanabe, K. and Miyashita, K., Minimum wetting rate on wetted- wall column, J. of Chemical Engineering of Japan, 8(6): 440-444, 1975.
    [175] Ponter, A. B. and Aswald, K. M., Minimum thickness of a liquid film flowing down a vertical surface-validity of Mikielewicz and Moszynski's equation,. Int. J. Heat Mass Transfer, 20(4): 575-576, 1977.
    [176] Delhaye, J. M., Jump conditions and entropy sources in two-phase systems. Local instant formulation. Int. J. Multiphase Flow, 1: 395-409, 1974.
    [177] Palmer, H. J., The hydrodynamic stability of rapidly evaporating liquids at reduced pressure. J. Fluid Mech., 75: 487-511, 1976.
    [178] Anshus, B. E. and Goren, S. L., A method of getting approximate solutions to the Orr-Sommerfeld equation for flow on a vertical wall. AIChE, 12: 1004-1008, 1966.
    [179] Goussis, D. A. and Kelly, R. E., On the thermocapillary instabilities in a liquid layer heated from below. Int. J. Heat Mass Transfer, 33(10): 161-173, 1990.
    [180] Gaster, M., A note on the relation between temporally-increasing and spatially-increasing disturbance in hydrodynamic stability[J]. J. Fluid Mech., 14: 222, 1962.
    [181] Kutateladze, S. S., On the use of the similarity theory in the process of condensation of saturated vapor. J. Tech. Phys. 7: 282-293, 1937.
    [182] 梁晋文,陈林才,何贡, 误差理论和数据处理,中国计量出版社,1999,5,北京.
    [183] Schlichting, H., Boundary-Layer Theroy, McGraw-Hill, 1979, New York.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700