西安地区苹果林地与农田土壤水分变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地处半湿润地区,降雨量偏少而集中,加之地下水埋藏深度大,使土壤水分在黄土高原的植被建设中显得尤为重要。地表的蒸发和植物的蒸腾,使得土壤水分出现亏损,部分植被下的土壤中出现了干层。土壤水分已成为制约西北生态环境建设的首要因子,也是制约该区农林业发展的重要因素。因此,研究人工植被下土壤-水环境对生态环境建设和农林业发展具有极其重要的意义。
     本文通过对黄土高原南部的西安地区不同人工植被下0~6m土壤含水量的测定,研究了该地区2008年农田和苹果林地土壤含水量的季节变化,区域差异,农田土壤水分的变化情况,苹果林地土壤水分的消耗过程等问题。本文研究的样品利用轻型人力钻采取,钻孔深度为6m,采样间距为10cm,每孔一般采样60个。土壤含水量的测定采用了被认为是准确可靠的烘干称重法。所选研究地点包括长安区郭杜镇大学城附近、少陵塬、咸阳庞西村和礼泉。所选人工植被有7龄、10龄、15龄苹果林,还有麦地和玉米地。通过对不同季节苹果林地和农田土壤含水量的测定与分析,得出了以下认识:
     (1)同一地点相同季节和相同降水条件下,不同人工植被土壤含水量是有差异的。在我们所选择的人工植被中,农田0~6m土壤平均含水量为16.95%,10龄苹果林地平均土壤含水量为14.61%,比农田减少了2.34%。在0~200cm、200~400cm和400~600cm农田的平均土壤含水量分别为14.63%、17.10%和19.12%,而10龄苹果林地分别为13.63%、15.01%和15.18%,比玉米地减少了1%、2.09%和4.36%。说明果树经济林比农田耗水多。
     (2)咸阳不同树龄果树林地土壤含水量存在明显差异。幼龄苹果林地土壤含水量明显高于中龄苹果林地含水量。但在相同地形条件下,6m深度范围内不同树龄苹果林地土壤水分随深度变化情况较为相似,总体上呈波动减小趋势。
     (3)在2008年秋季,少陵塬玉米地土壤含水量最高,大学城附近次之,庞西村最低。庞西村和礼泉中龄苹果林地土壤含水量都较低,分别为11.42%和12.94%,而且中龄苹果林在4m以下土壤含水量普遍小于12%,这充分说明该地区中龄苹果林下普遍存在干层。
     (4)西安地区近半个世纪以来气候趋于暖干化,但从2003年丰水年之后到现在,本区农田土壤含水量仍相当高,农田并无土壤干层发育,即使在冬小麦的耗水高峰期,农田土壤含水量仍然能够满足农作物生长的需求。这与近6年该区降水基本正常有关,表明土壤含水量受短期降水影响。
     (5) 2007年西安地区降水量为698.5mm,属于丰水年。但经过2008年一年的消耗,西安地区15龄苹果林地土壤含水量明显降低。表明西安地区中龄苹果林地水分消耗速度快,而且仅靠丰水年的降水难以维持中龄苹果林的正常生长。
     (6)通过最小二乘法对西安地区不同人工植被0~6m土壤含水量变化趋势进行模拟,发现5次多项式ψ=c_1+c_2z+c_3z~2+…+c_6z~5对土壤含水量模拟结果最好。
     (7)利用土壤水分动力学模型,模拟了地处半湿润地区的西安市长安区大学城附近从2008年3月25日到2008年4月8日的土壤含水量的变化,并与实测值进行了对比,其离差为0.0078,模拟效果较好。土壤表层0~1m模拟效果较下层差,这是由于土壤水分动力学模型对植物的根系分布、土壤水分的扩散率和导水率的敏感性较强的缘故。
The Loess Plateau is situated at semi-humid area,where the rainfall is little and concentrates, and the underground water buried depth is deep,which cause the soil moisture to be especially important in vegetation construction of the Loess Plateau.Surface evaporation and plant's transpiration cause the soil moisure to be serious lost,and the dry layer has appeared in soil under some vegetation.The moisture content is the most important factor that restricts northwest ecological environment construction and the important factor that restricts the development of the agriculture and the forestry,so the research to the soil-water environment in the artificial vegetation has the extremely vital significance.
     Through determining the soil moisture in different artificial vegetation from the surface to below 6 meters in Xi'an area of the most south of the Loess Plateau,this artical has studied some problems such as in local area the soil moisture content' seasonal variation in farmland and apple forest land in 2008,the region difference of different artificial vegetation,the soil moisture variation condition of the farmland,the soil moisture consumption process of the apple forest and so on.The samples studied are got through light-duty manpower.The depth of the hole is 6 meters,and the distance is 10 centimeters.In every hole 60 samples are got.The determination of the soil moisture content uses the drying weight method which is considered accurate and reliable.The spots include the university city and Shaoling plateau in Chang'an area,Pangxi village in Xianyang area, as well as Liquan and so on.Kinds of the artificial vegetation were chosen including the 7 age,10 age,15 age apple forest,the wheat and the corn and so on.Through the determination and analysis to soil moisture content of apple forest and farmland in the different seasons,we have obtained the below knowledge.
     (1) The soil moisture content under different artificial vegetation of Xi'an area is different. Among the artificial plant chosen by us,average of soil moisture content of farmland is 16.95%.,for ten-year-age apple tree plantation,it is 14.61%which is less than farmland's by 2.34%.In the depth of 0-200cm,200-400cm and 400-600cm,average of soil moisture content of farmland is 14.63%, 17.10%and 19.12%,for apple tree plantation,it is 13.63%,15.01%and 15.18%.Above data show that water consumption of apple tree plantation is more than farmland.
     (2) Different age of apple forest have obvious difference in soil moisture content.The Young age of soil moisture of apple forest is higher than middle age.In the same condition of terrain,for 6 m,soil mositure of different age apple forest have same resemblance that is changed by depth..
     (3) In autumn of 2008,the soil moisture in "universities city",Pangxi village and Shaoling Plateau was measured and obtain the result that Shaoling plateau is the highest then is universities city the last is Pangxi village.In Pangxi village and Liquan,the middle age of soil moisture of apple forest is generally low,which is 11.42%and 12.94%.And soil moisture of below 4m of middle age generally is less than 12%.This evidence adequately shows that soil of middle age of apple forest in this area generally has dry layer.
     (4) In half century climate of Xi'an is apt to warming and drying.From 2003 year having enough precipitation to now,soil moisture of farmland still remains high.Farmland has no dry layer even at high peak of water consumption of wheat,soil moisture also meet need of crop growing. This evidence is related with normal precipitation during these 6 years in this area.The conclusion is that soil moisture is influenced by precipitation in short period.
     (5) Precipitation in Xi'an,2007,is 698.5mm,enough rainy water year.After 2008 consumption,soil moisture of 15-year-age apple forest obviously decreased.The conclusion is that the consumption speed of the soil moisture under middle age apple forest land in Xi'an area is very quickly,moreover it is difficult that only depending on the precipitation in the rainy year to maintain the middle age apple forest' normal growth.
     (6) By minor 2 multiplications to simulate fluctuation of 0-6cm soil moisture content for different artificial vegetation,the finding isφ=c_1+c_2z+c_3z~2+…+c_6z~5,this algebraic expression with five terms can evaluate the soil moisture.
     (7) By the mode of soil moisture dynamics,simulate and contrast fluctuation of semi-humid area of soil moisture in Chang'an district of xi'an from 25~(th),March,2008 to 8~(th) April,2008,the deviation is 0.0078.Data is very near to reality.The simulating data of 0-1m of surface soil is poor because of strong sensibility of soil moisture dynamics for root distribution,diffusivity of soil moisture and conductivity.
引文
[1]何其华,何永华,包维楷.干旱半干旱区山地土壤水分动态变化.山地学报,2003,21(2):149-156.
    [2]李瑜琴,赵景波.西安南郊曲江丰水年苹果林地土壤干层恢复[J].干早区地理,2005,28(4):99-102.
    [3]王浩,王建华,秦大庸,等.现代水资源评价及水资源学学科体系研究[J].地球科学进展,2002,17(1):12-17.
    [4]成立,刘昌明.水资源及其内涵的研究现状和时间维的探讨[J].水科学进展,2000,11(2):153-158.
    [5]张洪业.土壤水资源研究的两个重要方面及在农业节水中的意义—华北黄河以北平原地区为例[J].资源科学,1999,21(6):29-33.
    [6]由懋正,王会肖.农田土壤水资源评价[M].北京:气象出版社,1996.
    [7]石声汉.汜胜之书今释[M].北京:科学出版社,1956.
    [8]广西农学院注释组.《齐民要术》选注[M].南宁:广西人民出版社,1977.
    [9]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [10]杨文治.黄土高原环境的旱化与黄土中水分关系[J].中国科学(D辑),1998,28(4):357-365.
    [11]黄明斌,杨新良,李玉山,等.黄土区渭北旱塬苹果基地对区域水循环的影响[J].地理学报,2001,56(1):7-131.
    [12]王力,邵明安,张青峰.陕北黄土高原土壤干层的分布和分异特征[J].应用生态学报,2004,15(3):436-442.
    [13]谢贤群.我国北方地区农业生态系统水分运行及区域分异规律研究的内涵和研究进展[J].地球科学进展,2003,18(3):440-446.
    [14]樊军,郝明德,邵明安.进行了黄土旱塬农业生态系统土壤深层水分消耗与水分生态环境效应分析[J].农业工程学报,2004,20(1):61-64.
    [15]杨婕,杨晓光,王化琪,等.早稻农田土壤水分变化特征研究[J].中国生态农业学报,2005,13(3):81-86.
    [16]李志军,张富仓,康绍忠,等.不同潜水埋深条件下的农田土壤水分动态试验研究[J].水利与建筑工程学报,2005,3(4):21-23.
    [17]张洪芬,王劲松,黄斌.西峰黄土高原麦田土壤水分的垂直分布的研究[J].土壤通报,2006,37(6):1081~1085.
    [18]何锦.基于SWAP模型的农田水分动态模拟研究[D].西安:长安大学,2006.
    [19]刘爽,武雪萍,吴会军,等.休闲期不同耕作方式对洛阳冬小麦农田土壤水分的影响[J].中国农业气象,2007,28(3):292-295.
    [20]黄明斌,党廷辉,李玉山.黄土区旱塬农田生产力提高对土壤水分循环的影响[J].农业工程学报,2002,18(6):50-54.
    [21]梁季阳.华北平原节水灌溉的信息管理与实时操作模式[J].自然环境,1997,(1):23-27.
    [22]R.,Philip J.Plant water Relations:Some Physical Aspects,Ann Rev[J].plant Physoil,1966,17:22-26.
    [23]I.,Rodiguez Iturbe.Ecohydrology:Ahydrologic perspective of climate soil vegetation dynamics[J].Water Resour Res,2000,36(1):3-9.
    [24]R.,Nielsen D.Soil water[M]:Am.Soc.Agron.Madison,Wisconsin,1972:16-22.
    [25]D.,Milly P C.Potential evaporation and soil moisture in general circulation models[J].Journal of Climate,1992,5(3):209-226.
    [26]Jakson N A,Wallace J S.Modeling soil evaporation in agroforestry system in Kenya[J].Agrieultural and Forest Meteorology,1999(94):123-128.
    [27]Gregory P J,Simmonds L P,Pibeam C J.Soil type,climatic regime,and the response of water use efficiency to crop management[J].Agronomy Joural,2000(92):225-239.
    [28]Huszar T,Mika T,Mika J,Loczy D,et al.Climate change and soil moisture:A case study[J].Phys Chem Earth(A),1999,24(10):905-912.
    [29]Rodriguez_Iturbe.Ecohydrology:A hydrologic perspective of climate soil vegetation dynamics[J].Water Resour Res,2000,36(1):3-9.
    [30]IN,Nassar.Thermally induced water movement in uniform day soil[J].Soil Science,1996,161(8):471-479.
    [31]E.,Yuin.An infiltration model to predict suction changes in the soil profile[J].Water Resource Research,1995,34(7):1617-1622.
    [32]I.,Rapp.Evaporation and crust imperdance role in seeding emergence[J].Soil Science,2000,165(4):354-364.
    [33]O,Wendroth.Observations of Measured Soil Hydraulic Properties from Laboratory Tension Disc Infiltrometer Experiments[J].Water Resource Research,1998,34(9):2191-2202.
    [34]Young-Gyun Cho,Sung-Keun Rheel & Sung-Taik Lee.Effect of soil moisture on bioremediation of chlorophenol-contaminated soil[J].Biotechnology Letters,2000,22:915-919.
    [35]Michel Aubertin,John Moson,et al.Discuss of" variation in moisture content for a soil cover over a 10 year periord[J].Canadian Geotechnical Journal,2007,44:103-106.
    [36]Jirka Stefan,McDonald Andrew J,et al.Relationship between soil hydrology and forest structure and composition in the southern Brazilian Amazon[J].Journal of Vegetation Science,2007,18:183-194.
    [37]R.B.Keam,J.R.Holdem,et al.Soil moisture profile estimation from surface measurement at multiple frequencies[J].Soil Res,1999,37:1107-0021.
    [38]Apostolos K.Ziogas,Louis W.Dekker Soil water repellency in north-eastern Greece with adverse effects of drying on the persistence[J].Australia Journal of Soil research,2005,43:281-289.
    [39]Yuin E.An infiltration model to predict suction changes in the soil profile.Water Resource Research,1998,34(7):1617-1622.
    [40]Rapp I.Evaporation and crust imperdance role in seeding emergence.Soil Science,2000,165(4):354-364.
    [41]Caims J,Audebent A,Towend J,t al.Effect of mechanical impedance on root growth of two rice varieties under field drought stress.Plant and Soil,2004,267(1-2):309-318.
    [42]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(2):91-101.
    [43]王志强,刘宝元,王晓兰.黄土高原半干旱区天然锦鸡儿灌丛对土壤水分的影响[J].地理研究,2005,24(1):113-120.
    [44]侯庆春,黄旭,韩仕峰,等.黄土高原地区小老树成因及其改造途径的研究[J].水土保持学报,1991,5(2):76-83.
    [45]杨文治.黄土高原土壤水资源与植树造林[J].自然资源学报,2001,16(5):433-438.
    [46]穆兴民,徐学选,王文龙,等.黄土高原人工林对区域深层土壤水环境的影响[J].土壤学报,2003,40(2):210-217.
    [47]杨文治,邵明安,彭新德,等.黄土高原环境的旱化与黄土中水分关系[J].中国科学(D辑),1998,28(4):357-365.
    [48]李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源报,2001, 16(5):427-432.
    [49]赵景波,侯甬坚,黄春长.陕北黄土高原人工林下土壤干化原因与防治[J].中国沙漠,2003,23(6):612-615.
    [50]杨开宝,刘国彬,李景林,等.陕北丘陵区农田蒸散规律及对土壤水环境的影响与防治对策[J].西北农林科技大学学报(自然科学版),2005,33(4):91-96.
    [51]曾辰,邵明安.黄土高原水蚀风蚀交错带柠条幼林地土壤水分动态变化[J].干旱地区农业研究,2006,24(6):155-158.
    [52]龚石元.冬小麦和夏玉米农田土壤分层水分平衡模型[J].北京农业大学学报,1995,21(1):61-67.
    [53]李熙春,尚松浩.华北冬小麦-夏玉米农田水分动态模拟研究[J].灌溉排水学报,2003,22(5):10-16.
    [54]侯庆春,韩蕊莲,韩仕峰.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,1999(5):11-14.
    [55]朱显谟.抢救“土壤水库”治理黄土高原生态环境[J].中国科学院院刊,2000,4:293-295.
    [56]杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1):78-85.
    [57]王经民,戴夏燕.韩斌.黄土丘陵区土壤水分研究[J].农业系统科学与综合研究,2000,16(1):53-56.
    [58]王克勤,王斌瑞.集水造林防止人工林植被土壤干化的初步研究[J].林业科学,1998,34(4):14-21.
    [59]余新晓,张建军,朱金兆.黄土地区防护林生态系统土壤水分条件的分析与评价[J].林业科学,1996,32(4):289-297.
    [60]张信宝.黄土高原植被建设的科学检讨和建议[J].中国水土保持,2003(1):17-32.
    [61]杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992:282-295.
    [62]王国梁,刘国彬,周生路.黄土高原土壤干层研究述评[J].水土保持学报,2003,17:156-159.
    [63]孙长忠,黄宝龙,陈海滨,等.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报,1998,20(3):7-14.
    [64]韩仕峰,李玉山,石玉洁,等.黄土高原土壤水分资源特征[J].水土保持通报,1990,10(1):36-42.
    [65]赵景波,杜娟,李艳花.西安蓝田人工林地土壤干层研究[J].陕西师范大学学报(自然科学版),2004,32(2):97-101.
    [66]杜娟,赵景波.西安临潼人工林土壤干化与恢复研究[J].干旱区资源与环境,2005,19(6):164-167.
    [67]刘刚,王志强,王晓岚.吴旗县不同植被类型土壤干层特征分析[J].水土保持研究,2004,11(1):126-129.
    [68]陈洪松,王克林,邵明安.黄土区人工林草植被深层土壤干燥化研究进展[J].林业科学,2005,41(4):155-161.
    [69]王力,邵明安,侯庆春.黄土高原土壤干层初步研究[J].西北农林科技大学学报(自然科学版),2001,29(4):34-38.
    [70]李艳花,赵景波.西安南郊丰水年秋季土壤水分研究[J].中国沙漠,2006,26(1):113-116.
    [71]刘建立,徐绍辉,刘慧,等.确定田间土壤水力传导率的分形方法[J].水科学进展,2003,14(4):464-470.
    [72]陕西师范大学地理系.西安市地理志[M].西安:陕西人民出版社,1988.
    [73]赵景波.黄土形成与演变模式[J].土壤学报,2002,39(4):459-465.
    [74]张元禧,施鑫源.地下水水文学[M].郑州:中国水利水电出版社,1998.
    [75]艾学山,李万红.水科学若干领域研究前沿[J].水利学报,2002,7:125-128.
    [76]刘巧玲,孙守文,冯大干,等.不同覆盖物对城市绿地土壤保水效果的试验研究[J].新疆农业科学,2006,43(5):436-438.
    [77]李玲玲,黄高宝,张仁陡,等.免耕秸秆覆盖对旱作农田土壤水分的影响[J].水土保持学报,2005,19(5):94-98.
    [78]侯庆春,王力,邵明安.土壤干层量化指标初探[J].水土保持学报,2000,14(4):87-90.
    [79]侯庆春,王力,邵明安.延安试区人工刺槐林地的土壤干层分析[J].西北植物学报,2001,21(1):101-106.
    [80]周旗.关中平原土壤水分环境变化与植被建设研究[D].西安:陕西师范大学,2005.
    [81]封建湖,车刚明,聂玉峰.数值分析原理[M].北京:科学出版社,2001:81-87
    [82]楼顺天,陈生潭,雷虎民.MATLAB 5.X程序设计语言[M].西安:西安电子科技大学出版社,2000.
    [83]王红梅,谢应忠,陈来祥.黄土高原坡地土壤水分动态特征及影响因素[J].宁夏农学院学报,2004,25(4):62-66.
    [84]陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展[J].水科学进展,2003,14(4):513-520.
    [85]刘昌明,孙睿.水循环的生态学方面:土壤—植被—大气系统水分能量平衡研究进展[J].水科学进展,1999,10(3):251-259.
    [36]赵文智,程国栋.干旱区生态水文过程研究若干问题评述[J].科学通报2001,46(22):1851-1827.
    [87]郭炎,李保国.虚拟植物的研究进展[J].科学通报,2001,46(4):273-280.
    [88]李瑜琴,赵景波.西安附近丰水年秋季苹果林地土壤水分恢复研究[J].中国生态农业学报,2007,15(4):75-77.
    [89]陈云明,侯喜禄,刘文兆.黄土丘陵半干旱区不同类型植被水保生态效益研究[J].水土保持学报,2000,14(3):57-62.
    [90]赵景波,杜娟.陕西咸阳人工林地土壤干层研究[J].地理科学,2005,25(3):322-327.
    [91]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [92]王福明,贺正辉,索瑾.应用数值计算方法[M].北京:科学出版社,1992.
    [93]雷志栋.土壤水动力学[M].清华大学出版社,1988:277-279.
    [94]谭浩强,田淑清.FORTRAN语言——FORTRAN77结构化程序设计[M].北京:清华大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700