用户名: 密码: 验证码:
水稻广谱抗稻瘟病基因的遗传分析与定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病是由子囊菌Magnaporthe grisea(Hebert)Barr[无性世代为Pyricularia grisea(Cooke)Sacc.]引起的,广泛分布于水稻栽培的国家和地区,是水稻上最重要的病害之一。寻找利用具有广谱抗性的抗源和抗性基因是当前控制稻瘟病的关键措施。谷梅4号是一个来自四川的地方品种,经过10多年的不同地区的种植试验,表现出广谱持久的抗瘟性,在实验室接种来自不同地区和国家的30个强致病力菌株,其抗29个,表现出广谱的抗瘟性,其抗谱明显强于现在认为具有广谱抗性的Pi-1、Pi-2、Pi-3等。
     谷梅4号与两个感病粳稻Cpslo17和Maratelli杂交F_1,自交F_2,分别与感病亲本回交获得BC_1F_1,BC_1F_1自交获得BC_1F_2,然后通过接种稻瘟病菌株CH109、CH199、CH63、101/1/1、101/4/8、CH174、CH131进行遗传分析,发现谷梅4号对这些菌株的抗性均由一对显性单基因控制,对CH109接种的所有的367株F2群体移至田间,在分蘖盛期再注射接种菌株CH174、CH131,接种的抗感结果与CH109接种一致。这表明谷梅4号对这三个菌株的抗性为同一个基因,将此基因暂时定名为Pi-gm(t)。
     对CH109接种的抗感分离群体,利用BSA分析法,以均匀分布在水稻12条染色体上105对SSR引物,把抗瘟基因Pi-gm(t)初步定位在第六条染色体的SRF5附近,然后在继续设计了一系列SSR标记和CAPS标记将Pi-gm(t)定位在引物C26348和C15959之间的5.1 cM范围内。利用距离Pi-gm(t)最近的标记C26348检测用不同菌株接种的定位群体构建的不同抗感池的多态性,它们的带型与CH109接种分离的抗感池的带型一致,这就表明Pi-gm(t)是一个广谱抗病基因或者其所处的区域存在紧密连锁的抗病基因簇。
     在第6染色体的Pi-gm(t)基因附近还存在Pi-2、Pi-9、Pi-25,但接种定位群体的菌株CH109对Pi-2是有毒性的,所以可推测Pi-gm(t)和Pi-2可能不是同一个基因或存在某种差异,具体的关系还要经过Pi-gm(t)与Pi-2和Pi-9的等位性测定来进一步确定,与Pi-25定位接种菌株不同,其关系也不确定。
Rice blast, caused by the fungus Magnaporthe grisea, is one of the most serious and widespread diseases of rice (Oryza sativa L.) all over the world. In China, rice blast is considered as one of the most harmful diseases. To identify and use the broad-spectrum or durable resistance gene(s) is consided very important and effective way to control rice blast disease. Gu-mei 4 (GM4), a native variety from Sichuan, China, was identified in different disease nurseries for more than 20 years, and was characterized of broad-spectrum and durable resistance to blast. GM4 was inoculated with 30 blast isolates collected from different rice regions of China, Thailand and French. The results showed that GM4 could resist 29 of 30 isolates tested. Also the resistance spectrum of GM4 is broader than that of gene Pi-1, Pi-2, Pi-3.
    The F1, F2, BC1, BC1F2 from the crosses between GM4 and susceptible verieties Cpslo17, Maratellu Suyunuo were obtained. Both parents and partial populations were sprayed by 7 isolates CH109, CH199, CH63, CH174, CH13K 101/1/1, 101/4/8, respectively. The inoculation results showed that blast resistance of GM4 was controlled by a single dominant gene tentively named Pi-gm(t). The F2 segregation of GM4/Cpslol7 populations inoculated with CHI09 isolate was inoculated by injecting CHI74 and CHI31 isolates at tillering stage. The result was the same to CHI09. This indicate that the Pi-gm(t) is a broad-spectrum resistance gene that controlled the resistance to 3 blast isolates.
    We constructed the mapping population of Pi-gm(t) and conducted mapping study with 105 SSR makers using DNA extracted from different resistance/susceptible pools inoculated with the isolates CHI09. The gene Pi-gm(t) was preliminary mapped onto chromosome 6 near marker SRF5,and then we further designed some SSR and CAPS marker, mapping Pi-gm(t) in the region approximately 5.1cM between CAPS marker C26348 and C15959 , The CAPS marker C26348 amplified in different pools produced the same pattern to CH109,this result show that resistance to different isolates in GM4 is controlled by Pi-gm(t) gene, which is broad-spectrum gene or gene cluster.
    The gene Pi-gm(l) is near to Pi-2 ^ Pi-9 and Pi-25 on chromosome 6. But the isolates CHI09 is virulence to Pi-2 presented in the rice line C101A51,also the resistance spectrum of Pi-gm(t)is broader than that of Pi-2, Pi-gm(t) should not be the same gene as Pi-2.The relation between Pi-gmft)
    and Pi-2, Pi-9 will be identified by allelic test.Yet the relation between Pi-gm(t) and Pi-25 was not be
    identified for different inoculating isolates.
引文
1.董继新,董海涛,李德葆等,水稻抗稻瘟性研究进展,农业生物技术学报,2000,8(1)99-102
    2.段永嘉,朱有勇,刘二明,稻瘟病抗性遗传规律研究,见:朱立宏等编 主要农作物抗病性遗传研究进展[M],南京,江苏科学技术出版社,1990 116-123
    3.何月秋,唐文华,水稻稻瘟病菌研究进展(一)水稻稻瘟病菌多样性及其变异机制,云南农业大学学报,2001,16(1)60-64
    4.何月秋,唐文华,水稻抗稻瘟病遗传研究进展,云南农业大学报,2000,15(4)371—375
    5.李士贵,朱立煌,周开达等,利用微卫星标记鉴定水稻的稻瘟病抗性,生物工程学报,2000,16(3):324-327
    6.李德葆,周雪平,何祖华主编,植物基因工程技术手册,1996
    7.孙国昌,金敏忠,柴荣耀等,水稻稻瘟病防治策略和21世纪研究展望,植物病理学报,1998, 28(4):289-292
    8.刘士平,李信,汪朝阳等,基因聚合对水稻稻瘟病的抗性影响,分子育种,2003,1(1):22—26
    9.凌忠专,潘庆华,王久林等,云南粳稻红镰刀谷的抗瘟性分析,见:朱立宏等编.主要农作物抗病性遗传研究进展[M],南京,江苏科学技术出版社,1990,111-115
    10.沈瑛,李成云,袁筱萍等,稻瘟病菌的菌丝融合现象及其后代的致病性,中国农业科学,1997,30(6):16-22
    11.沈瑛,朱培良,袁筱萍等,我国稻瘟病菌的遗传多样性与地理分布,中国农业科学,1996,29(4):39-46
    12.沈瑛,邓一文,Tharreu D等,用微卫星(MS)标记分析稻瘟病菌的有性生殖和遗传多样性,中国农业科学,2004,37(2):215-221
    13.沈瑛,袁筱萍,邓一文等,亚洲部分稻瘟病的交配型和雌性能育菌株的遗传多样性分析,中国农业科学,2003,36(11):1287-1292
    14.沈瑛,朱旭东,陈红旗等,中国部分杂交稻和常规早籼、晚粳品种(系)的抗瘟性,中国农业科学,2004,37(3):362-369
    15.申宗坦,何祖华,金敏忠等,几个籼稻品种对稻瘟病抗性的遗传分析,中国水稻科学,1986, 1(1):1-7
    16.吴建利,樊叶扬,柴荣耀等,水稻抗穗瘟基因的分子定位,植物病理学报,2000,13(2):112
    17.吴建利,水稻抗稻瘟病机理及分子标记辅助选择,博士论文,2000
    
    
    18.王宗华,王艳丽,福建稻瘟菌群体遗传结构及其变异规律,中国农业科学,1998,31(5):7—12
    19.郑康乐,钱惠荣,庄杰云等,应用R F L P标记定位水稻的抗稻瘟病基因,中国水稻研究所年报,1993,91
    20.朱立煌,徐吉臣,翟文学等,用分子标记定位一个未知的抗稻瘟病基因,中国科学(B辑),1994,24:1048~1052
    21.钟军,李恂,官春云等,植物抗病基因克隆的研究进展,生物技术通讯,2002,13(4):309—311
    22. Michelmore RW et al. Identification of markers linked to disease resistance genes by bulked segregant analy-sis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA. 1991, 88: 9828-9832
    23. Adachi K, Hamer JE. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 1998, 10(8): 1361-1374.
    24. Adachi K, Nelson GH, Peoples KA, Frank SA, Montenegro-Chamorro MV, DeZwaan TM et al. Efficient gene identification and targeted gene disruption in the wheat blotch fungus Mycosphaerella graminicola using TAGKO. Curr Genet 2002, 42(2): 123-127.
    25. Agrawal GK, Iwahashi H, Rakwal R. Rice MAPKs. Biochem Biophys Res Commun 2003; 302(2): 171-180.
    26. Bachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 1996; 9(5): 745-753.
    27. Balhadere PV, Talbot NJ. PDE1 encodes a P-type ATPase involved in appressofium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell 2001; 13(9): 1987-2004.
    28. Banno S, Kimura M, Tokai T, Kasahara S, Higa-Nishiyama A, Takahashi-Ando N et al. Cloning and characterization of genes specifically expressed during infection stages in the rice blast fungus. FEMS Microbiol Lett 2003; 222(2): 221-227.
    29. Beckerman JL, Ebbole DJ. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant Microbe Interact 1996; 9(6): 450-456.
    30. Bent A F. Plant Disease Resistance Genes: Function Meets Structure. Plant Cell 1996; 8(10): 1757-1771.
    31. Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh Wet ai. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea
    
    avirulence gene ACEL Theor Appl Genet 2003; 107(6): 1139-1147.
    32. Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S et al. Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics 2003; 269(2): 173-179.
    33. Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA et al. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 2000; 12(11): 2033-2046.
    34. Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 1994; 138(4): 1251-1274.
    35. C. Sallaud, M. Lorieux, E. Roumen, D. Tharreau, R. Berruyer, P. Svestasrani, O. Garsmeur, A. Ghesquiere and J. L. Notteghem, Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet, 2003,106:791 -801
    36. Chauhan RS, Farman ML, Zhang HB, Leong SA. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics 2002; 267(5): 603-612.
    37. Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R et al. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci U S A 2001; 98(12): 6963-6968.
    38. Conaway-Bormans CA, Marchetti MA, Johnson CW, McClung AM, Park WD. Molecular markers linked to the blast resistance gene Pi-z in rice for use in marker-assisted selection. Theor Appl Genet 2003; 107(6): 1014-1020.
    40. Conaway-Bormans. Molecular markers linked to the blast resistance gene Pi-z in rice for use in marker-assisted selection. PH. D dissertation, 2002.
    41. Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 2000; 3(4): 278-284.
    42. Froeliger EH, Carpenter BE. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet 1996; 251 (6): 647-656.
    43. Frye CA, Tang D, Innes RW. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 2001; 98(1): 373-378.
    44. Fukiya S, Kodama M, Kito H, Sone T, Tomita F. Establishment of a new cross of the rice blast fungus derived from Japanese differential strain Ina 168 and hermaphroditic rice pathogen Guy 11. Biosci Biotechnol Biochem 2001; 65(7): 1464-1473.
    
    
    45. Hamer JE, Farrall L, Orbach MJ, Valent B, Chumley FG. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc Natl Acad Sci U S A 1989; 86(24): 9981-9985.
    46. Hamer JE, Talbot NJ. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol 1998; 1(6): 693-697.
    47. Hammond-Kosack KE, Jones JD. Resistance gene-dependent plant defense responses. Plant Cell 1996; 8(10): 1773-1791.
    48. Hammond-Kosack KE, Jones JD. PLANT DISEASE RESISTANCE GENES. Annu Rev Plant Physiol Plant Mol Biol 1997; 48: 575-607.
    49. Hammond-Kosaek KE, Parker JE. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 2003; 14(2): 177-193.
    50. Howard RJ, Ferrari MA, Roach DH, Money NP. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci U S A 1991; 88(24): 11281-11284.
    51. Howard RJ, Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 1996; 50: 491-512.
    52. Janssen P, Coopman R, Huys G, Swings J, Bleeker M, Vos Pet al. Evaluation of the DNA fingerprinting method AFLP as an new tool in bacterial taxonomy. Microbiology 1996; 142 ( Pt 7): 1881-1893.
    53. Jeon JS, Chen D, Yi GH, Wang GL, Ronald PC. Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol Genet Genomics 2003; 269(2): 280-289.
    54. J. H. Zhou, J. L. Wang, J. C. Xu, C. L. Leiand Z. Z. Ling. Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan. Plant Pathology, 2004, 53, 191-196
    55. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 2000; 19(15): 4004-4014.
    56. Jiang J, Wang S. Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice. Mol Genet Genomics 2002; 268(2): 249-252.
    57. Kanazin V, Marek LF, Shoemaker RC. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci U S A 1996; 93(21): 11746-11750.
    58. Kang S, Sweigard JA, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 1995; 8(6): 939-948.
    59. Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant
    
    ecotype-specific PCR-based markers. Plant J 1993; 4(2): 403-410.
    60. Kover PX, Caicedo AL. The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites. Mol Ecol 2001; 10(1): 1-16.
    61. Kumar J, Nelson RJ, Zeigler RS. Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Genetics 1999; 152(3): 971-984.
    62. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J et al. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 1994; 8(4): 365-3721
    63. Lau G, Hamer JE. Regulatory Genes Controlling MPG1 Expression and Pathogenicity in the Rice Blast Fungus Magnaporthe grisea. Plant Cell 1996; 8(5): 771-781.
    64. Lee YH, Dean RA. cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea. Plant Cell 1993; 5(6): 693-700.
    65. Lehmann P. Structure and evolution of plant disease resistance genes. J Appl Genet 2002; 43(4):403-414.
    66. Levy M, Romao J, Marchetti MA, Hamer JE. DNA Fingerprinting with a Dispersed Repeated Sequence Resolves Pathotype Diversity in the Rice Blast Fungus. Plant Cell 1991; 3(1): 95-102.
    67. Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with Mapmaker/Exp 3.0 (3rd edn). Whitehead Institute Technical report, Whitehead Institute, Cambridge, Mass
    68. Liu G, Lu G, Zeng L, Wang GL. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics 2002; 267(4): 472-480.
    69. Liu JJ, Ekramoddoullah AK. Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Mol Genet Genomics 2003; 270(5): 432-441.
    70. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 1993; 262(5138): 1432-1436.
    71. McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG et al. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 1997; 35(1-2): 89-99.
    72. McDonald BA, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 2002; 40: 349-379.
    73. Mitchell TK, Dean RA. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 1995; 7(11): 1869-1878.
    
    
    74. Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 2000; 12(11): 2019-2032.
    75. Ou SH, Rice diseases(2nd). 1985, Commonwealth Mycological Institute, New England
    76. Richter TE, Ronald PC. The evolution of disease resistance genes. Plant Mol Biol 2000; 42(1):195-204.
    77. Prashanth G B, Hittalmani S, Srinivasachary, Genetic markers associated with field resistance to leaf and neck blast across location in rice(Oryza sativa L.).Rice Genetics Newsletter 1998, 15:128-131
    78. Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P et al. A microsatellite map of wheat. Genetics 1998; 149(4): 2007-2023.
    79. Romao J, Hamer JE. Genetic organization of a repeated DNA sequence family in the rice blast fungus. Proc Natl Acad Sci U S A 1992; 89(12): 5316-5320.
    80. Ronald PC. Resistance gene evolution. Curr Opin Plant Biol 1998; 1(4): 294-298.
    81. Rossman, A Y, Howard R J, Valent B. Pyricularia grisea, the correct name for the rice blast fungus. Mycologia, 1990, 80:509-512
    82. Shamrai SN. [Plant resistance genes: molecular and genetic organization, function and evolution]. Zh Obshch Biol 2003; 64(3): 195-214.
    83. Shirasu K, Dixon RA, Lamb C. Signal transduction in plant immunity. Curr Opin Immunol 1996; 8(1): 3-7.
    84. Shull V, Hamer JE. Rearrangements at a DNA-fingerprint locus in the rice blast fungus. Curr Genet 1996; 30(3): 263-271.
    85. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD. Molecular genetics of plant disease resistance. Science 1995; 268(5211): 661-667.
    86. Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 1998; 11(5): 404-412.
    87. Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 1995; 7(8): 1221-1233.
    88. Talbot N J. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol., 1995, 3:9-16
    89. Talbot NJ. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 2003; 57: 177-202.
    
    
    90. Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 1993; 5(11):1575-1590.
    91. Talbot NJ, Kershaw MJ, Wakley GE, De Vries O, Wessels J, Hamer JE. MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. Plant Cell 1996; 8(6): 985-999.
    92. Tautz D. Notes on the definition and nomenclature of tandemly repetitive DNA sequences. EXS 1993; 67: 21-28.
    93. Tautz D, Renz M. Simple DNA sequences of Drosophila virilis isolated by screening with RNA. J Mol Biol 1984; 172(2): 229-235.
    94. Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 1984; 12(10): 4127-4138.
    95. Tautz D, Sehlotterer. Simple sequences. Curr Opin Genet Dev 1994; 4(6): 832-837.
    96. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 2001; 11(8): 1441-1452.
    97. Tharreau D, Lebrun M H, Talbot N J, NotteghemJ L. New tools for resistance gene characterization in rice. In: Advances in Rice Blast Research. Proceedings of the 2~(nd) International Rice Blast Conference, Montpellier, France, 1998, Kluwer Academic Publishers, Wageningen,The Netherlands, 2000: 54-62
    98. Urban M, Bhargava T, Hamer JE. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 1999; 18(3): 512-521.
    99. Valent B, Farrall L, Chumley FG. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 1991; 127(1): 87-101.
    100. Van der Biezen EA and Jones JDG. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol, 1998, 8: R226-R227
    101. Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 1994; 136(4): 1421-1434.
    102. Wang ZX, Yamanouchi U, Katayose Y, Sasaki T, Yano M. Expression of the Pib rice-blastresistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences. Plant Mol Biol 2001;
    
    47(5): 653- 661.
    103. Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 1999; 19(1): 55-64.
    104. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 1990; 18(24): 7213-7218.
    105. Wu JL, Sinha PK, Variar M, Zheng KL, Leach JE, Courtois B et al. Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet 2004; 108(6): 1024-1032.
    106. Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 1996; 10(21): 2696-2706.
    107. Xue C, Park G, Choi W, Zheng L, Dean RA, Xu JR. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 2002; 14(9): 2107-2119.
    108. Yi G, Lee SK, Hong YK, Cho YC, Nam MH, Kim SC et al. Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl Genet 2004.
    109. Yu, Z H, Mackill DJ Bonman JM et al. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor Appl Genet, 1991, 81:471 -476
    110. Yu, Z H, Mackill DJ Bonman JM et al. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.). Theor Appl Genet, 1996, 93: 856- 863
    111. Young ND. The genetic architecture of resistance. Curr Opin Plant Biol 2000; 3(4): 285-290.
    112. Zeigler RS. Recombination in Magnaporthe grisea. Annu Rev Phytopathol 1998; 36: 249-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700