Abi1对脑胶质瘤生物学行为影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Abil蛋白在脑胶质瘤和乳腺癌组织中的表达
     目的:研究脑胶质瘤组织中Abil蛋白的表达及其临床意义,以及乳腺癌组织中Abil、c-Abl和WAVE2蛋白的表达及其相互关系。
     方法:应用免疫组化S-P法检测38例脑胶质瘤组织和7例正常脑组织中Abil蛋白的表达,以及66例乳腺癌组织和24例正常乳腺组织中Abil、c-Abl和WAVE2蛋白的表达。
     结果:1.脑胶质瘤组织与正常脑组织相比,Abil蛋白表达明显下降。在脑胶质瘤组织中,Abil强阳性率与组织学分级呈负相关。2.乳腺癌组织与正常乳腺组织相比,Abil和WAVE2蛋白表达明显下降,而c-Abl蛋白表达无明显下降,但有蛋白定位的改变。3.Abil强阳性率与乳腺癌组织的肿瘤大小、组织学分级、淋巴结转移及临床分期呈负相关性,与患者年龄无关。c-Abl阳性率及WAVE2强阳性率均与乳腺癌组织的组织学分级、淋巴结转移及临床分期呈负相关性,与患者年龄及肿瘤大小无关。4.乳腺癌中Abil蛋白表达与c-Abl和WAVE2蛋白表达呈正相关。
     结论:1.Abil在脑胶质瘤和乳腺癌中的低表达均与不良预后因素相关。2.乳腺癌中Abil蛋白表达的变化可影响c-Abl蛋白的定位和WAVE2蛋白的表达。推测Abil在Abl/Abil/WAVE2通路中可能具有至关重要的地位。
     第二部分稳定转染Abil基因的脑胶质瘤细胞株的建立
     目的:前期研究表明脑胶质瘤组织中Abil表达明显降低,为探讨Abil与脑胶质瘤发生发展的关系,建立稳定转染Abi1基因的脑胶质瘤细胞株。
     方法:采用Western blot检测U251 MG、H4、U-87 MG及C6这4株脑胶质瘤细胞Abil蛋白的表达,选取表达最低的细胞株,采用脂质体法进行pEGFP-C3/Abil质粒的稳定转染。用G418筛选转染株2周后,采用单克隆化操作,将细胞接种于96孔板。最终,扩增出的单克隆细胞株用Western blot检测其Abil的表达情况。
     结果:1.4株脑胶质瘤细胞Abil蛋白表达都降低,其中以U251 MG细胞Abil表达为最低。2.经8周G418筛选以及Western blot鉴定,得到可稳定、较高水平表达Abil的U251 MG细胞株。
     结论:成功建立了稳定转染Abil基因的人脑胶质瘤U251 MG细胞株。
     第三部分Abil对脑胶质瘤生物学行为的影响
     目的:探讨Abil对脑胶质瘤生物学行为的影响,为Abil基因应用于脑胶质瘤基因治疗提供理论依据。
     方法:研究稳定转染Abil基因的人脑胶质瘤U251 MG细胞株的生物学行为。采用倒置显微镜和吉姆萨染色观察细胞形态。采用流式细胞术检测细胞DNA含量。采用生长实验、软琼脂克隆形成实验及Ki67标记等方法评价细胞增殖能力。采用划痕试验和迁移实验检测细胞迁移能力,采用侵袭实验检测细胞侵袭能力。
     结果:稳定转染Abil基因的U251 MG与对照组相比,发生了以下变化:1.细胞形态向分化程度高的方向变化。2.多核细胞的比例下降。3.细胞生长曲线下移,克隆形成率和Ki67表达降低。4.细胞迁移能力上调。
     结论:Abil对脑胶质瘤的恶性转化可能有抑制作用。Abil可以抑制脑胶质瘤细胞增殖,上调细胞迁移能力。
Part 1 The expression of Abil in glioma and breast cancer tissues
     Objective To investigate the expression and significance of Abil protein in glioma. And to explore the expression of Abil, c-Abl and WAVE2 proteins in breast cancer and their correlation.
     Methods The expression of Abil was examined in 38 glioma tissues and 7 normal brain tissues by immunohistochemical staining. The expression of Abil, c-Abl and WAVE2 were examined in 66 breast cancer specimens and 24 normal mammary tissues by immunohistochemical staining.
     Results 1. The strong positive rate of Abil was significantly lower in glioma group than in normal control group. The strong positive rate of Abil was negatively correlated with histological grade of glioma.2. The strong positive rate of Abil and WAVE2 were significantly lower in breast cancer group than in normal control group. The positive rate of c-Abl was not significantly lower in breast cancer group than in normal control group, but its location changed.3. In breast cancer, the strong positive rate of Abil was negatively correlated with tumor size, histological grade, lymph node metastasis and clinical stage, but not with age. The positive rate of c-Abl and the strong positive rate of WAVE2 were negatively correlated with histological grade, lymph node metastasis and clinical stage, but not with age and tumor size.4. In breast cancer, positive correlation was found between the expression of Abil protein and that of c-Abl protein, and between the expression of Abil protein and that of WAVE2 protein.
     Conclusion 1. The reduction of Abil expression is correlated with poor prognosis of glioma and breast cancer patients.2. The reduction of Abil expression may influence the location of c-Abl protein and the expression of WAVE2 protein. So it is hypothesized that Abil may have a key role in Abl/Abil/WAVE2 passway.
     Part 2 The construction of glioma cell line stably transfected with Abil gene
     Objective Our prior studies indicated that the expression of Abil in glioma tissues was relatively low. To explore the relationship between Abil and tumorigenesis and development of glioma, glioma cell line stably transfected with Abil gene was constructed.
     Methods The expression of Abil in 4 glioma cell lines (U251 MG, H4, U-87 MG and C6) were detected by Western blot. pEGFP-C3/Abil plasmid stably transfected glioma cell line in which Abil expression is lowest among four glioma cell lines by Lipofectamine 2000. Then the cells were cultured in DMEM containing G418. After two weeks, cells were seeded into 96 wells plates. So, different clones were got, which were amplified from a single cell. Abil expression in different monoclones were tested by Western blot.
     Results 1. Abil expression in U251 MG cells was lowest among four glioma cell lines.2. A glioma cell line which stably expressing Abil at high level was obtained by 8-week G418 selection and Western blot identification.
     Conclusion Glioma cell line U251 MG stably transfected with Abil gene was successfully constructed.
     Part 3 The effects of Abil on biological behavior of glioma
     Objective To explore the effects of Abil on biological behavior of glioma.
     Methods To evaluate the effect of Abil on cell morpholoy, U251 MG stably transfected with Abil gene were observed by converted microscope with or without Giemza staining. The cell cycle distribution was analyzed by flow cytometry. Growth assay, soft agar colony formation assay and Ki67 staining were used to analyse cell proliferation. For evaluation of in vitro motility of glioma cells, a monolayer wounding(scratch) assay and transwell migration assay were performed. Matrigel invasion assay was performed to evaluate invasive capability in vitro.
     Results 1. Upregulation of Abil expression changed morphology of U251 MG cells.
     2. Abi1 decreased the proportion of multinucleate cells in U251 MG cells.3. Abi1 downregulated the growth rate of U251 MG cells, decreased cloning efficiency and Ki67 expression.4. Abi1 increased migration of U251 MG cells.
     Conclusion Abi1 could inhibit malignant transformation of glioma. Abi1 suppressed cell proliferaion of glioma, and increase migration.
引文
[1]Shi Y, Alin K, Goff SP. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev,1995,9(21):2583-2597
    [2]Dai Z, Quackenbush RC, Courtney KD, et al. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Genes Dev,1998,12(10):1415-1424
    [3]Wang B, Mysliwiec T, Krainc D, et al. Identification of ArgBPl, an Arg protein tyrosine kinase binding protein that is the human homologue of a CNS-specific Xenopus gene. Oncogene,1996,12(9):1921-1929
    [4]Ismail AM, Padrick SB,Chen B, et al. The WAVE regulatory complex is inhibited. Nat Struct Mol Biol,2009,16(5):561-563
    [5]Leng Y, Zhang J, Badour K, et al. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson mediated tyrosine phosphorylation required for WAVE2 activation. Proc Natl Acad Sci USA,2005,102(4):1098-1103
    [6]Courtney KD, Grove M, Vandongen H, et al. Localization and phosphorylation of Abl-interactor proteins, Abi-1 and Abi-2, in the developing nervous system. Mol Cell Neurosci.2000,16(3):244-257
    [7]Innocenti M, Frittoli E, Ponzanelli I, et al. Phosphoinositide 3-kinade activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol,2003, 160(1):17-23
    [8]Tani K, Sato S, Sukezane T, et al. Abl Interactor 1 promotes tyrosine 296 phosphorylation of Mammalian Enabled (Mena) by c-Abl kinase. J Biol Chem, 2003,278(24):21685-21692
    [9]Proepper C, Johannsen S, Liebau S, et al. Abelson interacting protein 1 (Abi-1) is essential for dendrite morphogenesis and synapse formation. EMBO J,2007, 26(5):1397-1409
    [10]Lin TY, Huang CH, Kao HH, et al. Abi plays an opposing role to Abl in Drosophila axonogenesis and synaptogenesis. Development,2009,136(18): 3099-3107
    [11]Biesova Z, Piccoli C, Wong WT. Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene,1997,14(2):233-241
    [12]Tanos BE, Pendergast AM. Abi-1 forms an epidermal growth factor-inducible complex with Cbl:role in receptor endocytosis. Cell Signal,2007,19(7):1602-1609
    [13]Macoska JA, Xu J, Ziemnicka D, et al. Loss of expression of human spectrin src homology domain binding protein 1 is associated with 10p loss in human prostatic adenocarcinoma. Neoplasia,2001,3(2):99-104
    [14]Fan PD, Goff SP. Abl interactorl binds to sos and inhibits epidermal growth factor-and v-Abl-induced activation of extracellular signal-regulated kinases. Mol Cell Biol,2000,20(20):7591-7601
    [15]Fan PD, Cong F, Goff SP. Homo-and Hetero-Oligomerization of the c-Abl Kinase and the Abelson-Interacter-1. Cancer Research,2003,63(4):873-877
    [16]Yao R,Wang Y, Lubet RA, et al. Differentially expressed genes associated with mouse lung tumor progression. Oncogene,2002,21(37):5814-5821
    [17]Cui M, Yu W, Dong J, et al. Downregulation of ABI1 expression affects the progression and prognosis of human gastric carcinoma. Med Oncol,2009, June 25 [Epub ahead of print]
    [18]Sun X, Li C, Zhuang C, et al. Abl interactor 1 regulates Src-Idl-matrix metalloproteinase 9 axis and is required for invadopodia formation, extracellular matrix degradation and tumor growth of human breast cancer cells. Carcinogenesis,2009,30(12):2109-2116
    [19]Nalabothula N, Lakka SS, Dinh DH, et al. Sense p16 and antisense uPAR bicistronic construct inhibits angiogenesis and induces glioma cell death. Int J Oncol,2007,30(3):669-678
    [20]Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of
    tumours of the central nervous system. Acta Neuropathol,2007,114(2):97-109
    [21]姜蕊,吴翠环,于世英.非小细胞肺癌中基质金属蛋白酶13和其抑制剂1表达及与预后的关系.中国组织化学与细胞化学杂志,2008,17(2):132-137
    [22]Bradley WD, Koleske AJ. Regulation of cell migration and morphogenesis by Abl-family kinases:emerging mechanisms and physiological contexts. J Cell Sci, 2009,122(Pt19):3441-3454
    [23]Gautreau A, Ho HY, Li J, et al. Purification and architecture of the ubiquitous Wave complex. Proc Natl Acad Sci USA,2004,101(13):4379-4383
    [24]Innocenti M, Gerboth S, Rottner K, et al. Abil regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nat Cell Biol,2005,7(10):969-976
    [25]Fernando HS, Davies SR, Chhabra A, et al. Expression of the WASP verprolin-homologues (WAVE members) in human breast cancer. Oncology,2007,73(5-6): 376-383
    [26]Semba S, Iwaya K, Matsubayashi J, et al. Coexpression of actin-related protein 2 and Wiskott-Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clin Cancer Res,2006,12(8):2449-2454
    [27]Iwaya K, Oikawa K, Semba S, et al. Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci,2007,98(7):992-999
    [1]Bigner DD, Bigner SH, Ponten J, et al. Heterogeneity of Genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol,1981,40(3):201-029
    [2]杜玉梅,左正宏.基因功能研究方法的新进展.生命科学,2008,20(4):589-59
    [3]张菊,关恒云,张鹏举,等.miRNAlet-7a1真核表达载体的构建及对肺癌细胞增殖的影响.中国病理生理杂志,2009,25(8):1495-1500
    [4]傅蕾,彭仕芳,谭德明.人sTNFR1真核表达载体构建及体外抑制TNF-a细胞毒效应.基础医学与临床,2007,27(12):1324-1328
    [5]申建刚,张晓岚,魏娟,等.FAK-ERK信号转导通路在FRNK抑制肝星状细胞胶原合成中的作用.世界华人消化杂志,2009,17(14):1402-1405
    [1]Courtney KD, Grove M, Vandongen H, et al. Localization and phosphorylation of Abl-interactor proteins, Abi-1 and Abi-2, in the developing nervous system. Mol Cell Neurosci,2000,16(3):244-257
    [2]Shi Y, Alin K, Goff SP. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev,1995,9(21):2583-2597
    [3]Ismail AM, Padrick SB,Chen B, et al. The WAVE regulatory complex is inhibited. Nat Struct Mol Biol,2009,16(5):561-563
    [4]Leng Y, Zhang J, Badour K, et al. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson mediated tyrosine phosphorylation required for WAVE2 activation. Proc Natl Acad Sci USA,2005,102(4):1098-1103
    [5]Innocenti M, Frittoli E, Ponzanelli I, et al. Phosphoinositide 3-kinade activates Rac by entering in a complex with Eps8, Abil, and Sos-1. J Cell Biol,2003, 160(1):17-23
    [6]Tani K, Sato S, Sukezane T, et al. Abl Interactor 1 promotes tyrosine 296 phosphorylation of Mammalian Enabled (Mena) by c-Abl kinase. J Biol Chem, 2003,278(24):21685-21692
    [7]Dai Z, Quackenbush RC, Courtney KD, et al. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Genes Dev,1998,12(10):1415-1424
    [8]Wang B, Mysliwiec T, Krainc D, et al. Identification of ArgBP1, an Arg protein tyrosine kinase binding protein that is the human homologue of a CNS-specific Xenopus gene. Oncogene,1996,12(9):1921-1929
    [9]Proepper C, Johannsen S, Liebau S, et al. Abelson interacting protein 1 (Abi-1) is essential for dendrite morphogenesis and synapse formation. EMBO J,2007, 26(5):1397-1409
    [10]Lin TY, Huang CH, Kao HH, et al. Abi plays an opposing role to Abl in Drosophila axonogenesis and synaptogenesis. Development,2009,136(18): 3099-3107
    [11]Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol,2007,114(2):97-109
    [12]Konopka G, Bonni A. Signaling pathways regulating gliomagenesis. Curr Mol Med,2003,3(1):73-84
    [13]Hulleman E, Helin K. Molecular mechanisims in gliomagenesis. Adv Cancer Res, 2005,94:1-27
    [14]Culver K, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science,1992, 256(5063):1550-1552
    [15]Bigner DD, Bigner SH, Ponten J,et al. Heterogeneity of Genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol,1981,40(3):201-029
    [16]Fadare O, Rodriguez R. The significance of marked nuclear atypia in grade 1 cervical intraepithelial neoplasia. Hum Pathol,2009,40(10):1487-1493
    [17]Steigen SE, Straume B, Turbin D, et al. Clinicopathologic factors and nuclear morphometry as independent prognosticators in KIT-positive gastrointestinal stromal tumors. J Histochem Cytochem,2008,56(2):139-145
    [18]Macoska JA, Xu J, Ziemnicka D, et al. Loss of expression of human spectrin src homology domain binding protein 1 is associated with 10p loss in human prostatic adenocarcinoma. Neoplasia,2001,3(2):99-104
    [19]Yao R, Wang Y, Lubet RA, et al. Differentially expressed genes associated with mouse lung tumor progression. Oncogene,2002,21(37):5814-5821
    [20]Yu W, Sun X, Clough N, et al. Abil gene silencing by short hairpin RNA impairs Bcr-Abl-induced cell adhesion and migration in vitro and leukemogenesis in vivo. Carcinogenesis.2008,29(9):1717-1724
    [21]Biesova Z, Piccoli C, Wong WT. Isolation and characterization of e3Bl, an eps8 binding protein that regulates cell growth. Oncogene,1997,14(2):233-241
    [22]Jenei V, Andersson T, Jakus J, et al. E3B1, a human homologue of the mouse gene product Abi-1, sensitizes activation of Rap1 in response to epidermal growth factor. Exp Cell Res,2005,310(2):463-473
    [23]Tanos BE, Pendergast AM. Abi-1 forms an epidermal growth factor-inducible complex with Cbl:role in receptor endocytosis. Cell Signal,2007,19(7):1602-1609
    [24]Sun X, Li C, Zhuang C, et al. Abl interactor 1 regulates Src-Idl-matrix metalloproteinase 9 axis and is required for invadopodia formation, extracellular matrix degradation and tumor growth of human breast cancer cells. Carcinogenesis,2009,30(12):2109-2116
    [1]Nalabothula N, Lakka SS, Dinh DH, et al. Sense p16 and antisense uPAR bicistronic construct inhibits angiogenesis and induces glioma cell death. Int J Oncol,2007,30(3):669-678
    [2]Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol,2007,114(2):97-109
    [3]Konopka G, Bonni A. Signaling pathways regulating gliomagenesis. Curr Mol Med,2003,3(1):73-84
    [4]Hulleman E, Helin K. Molecular mechanisims in gliomagenesis. Adv Cancer Res, 2005,94:1-27
    [5]CBTRUS (Central Brain Tumor Registry of the United States). Primary brain tumors in the United States:statistical report tables 1998-2002.2005,18-19
    [6]Stupp R, Mason WP, van den Bent MJ, et al. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med,2005,352(10):987-996
    [7]Hutterer M, Gunsilius E, Stockhammer G. Molecular therapies for malignant glioma. Wien Med Wochenschr,2006,156(11-12):351-363
    [8]Chiocca EA. Gene therapy:a primer for neurosurgeons. Neurosurgery,2003, 53(2):364-373
    [9]Culver K, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science,1992, 256(5063):1550-1552
    [10]Klatzmann D, Valery CA, Bensimon G, et al. A phaseⅠ/Ⅱ study of herpes simplex virus type I thymidine kinase "suicide" gene therapy for recurrent glioblastoma. Hum Gene Ther,1998,9(17):2595-2604
    [11]Shand N, Wever B, Bernstein M, et al. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes
    simplex virus thymidine kinase genefollowed by ganciclovir. Hum Gene Ther, 1999,10(14):2325-2335
    [12]Harsh GR, Deisboeck TS, Louis DN, et al. Thymidine kinase activation of ganciclovir in recurrent malignant gliomas:a gene marking and neuropatholog--ical study. J Neurosurg,2000,92(5):804-811
    [13]Sandmair AM, Loimas S, Puranen P, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther,2000,11(11):2197-2205
    [14]Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther,2000,11(17):2389-2401
    [15]Smitt PS, Driesse M, Wolbers J, et al. Treatment of relapsed malignant glioma with an adenoviral vector containing the herpes simplex thymidine kinase gene followed by ganciclovir. Mol Ther,2003,7(6):851-858
    [16]Prados MD, McDermott M, Chang SM, et al. Treatment of progressive or recurrent glioblastoma multiforme in adults with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration:a phase I/II multi-institutional trial. J Neurooncol,2003,65(3): 269-278
    [17]Germano IM, Fable J, Gultekin SH, et al. Adenovirus/herpes simplex virus simplex-thymidine kinase/ganciclovir complex:preliminary results of a phase I trial in patients with recurrent malignant gliomas. J Neurooncol,2003,65 (3): 279-289
    [18]Immonem A, Vapalahti M, Tyynela K, et al. Adv/HSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma:a randomized controlled study. Mol Ther,2004,10(5):967-972
    [19]Moolten FL. Tumor chemosensitivity conferred by inserted thymidine kinase genes:paradigm for a perspective cancer control strategy. Cancer Res,1986, 46(10):5276-5281
    [20]Namba H, Tagawa M, Iwadate Y, et al. Bystander effect-mediated therapy of experimental brain tumor by genetically engineered tumor cells. Hum Gene Ther, 1998,9(1):5-11
    [21]Floeth FW, Shand N, Bojar H, et al. Local inflammation and devascularization-in vivo mechanisms of the "bystander effect" in VPC-mediated HSV-tk/GCV gene therapy in human malignant glioma. Cancer Gene Ther,2001,8(11):843-851
    [22]Lee J, Hampl M, Albert P, et al. Antitumor activity and prolonged expression from a TRAIL-expressing adenoviral vector. Neoplasia,2002,4(4):312-323
    [23]Li H, Alonso-Vangeas M, Colicos MA, et al. Intracerebral adenovirus-mediated p53 tumor suppressor gene therapy for experimental human glioma. Clin Cancer Res,1999,5(3):637-642
    [24]Lang FF, Bruner JM, Fuller GN, et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma:biological and clinical results. J Clin Oncol, 2003,21(13):2508-2518
    [25]Shinoura N, Koike H, Furitu T, et al. Adenovirus-mediated transfer of caspase-8 augments cell death in gliomas:implication for gene therapy.Hum Gene Ther, 2000,11(8):1123-1137
    [26]Iwadate Y, Inoue M, Saegusa T, et al. Recombinant sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin Cancer Res,2005,11(10):3821-3827
    [27]Liu Y, Ehtesham M, Samoto K, et al. In situ adenoviral interleukin-12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther,2002,9(1):9-15
    [28]Parker JN, Gillespie GY, Love CE, et al. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA,2000,97(5):2208-2213
    [29]Daga A, Orengo AM, Gangemi RMR, et al. Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer,2007,121(8):1756-1763
    [30]Ambar BB, Frei K, Malipiero U, et al. Treatment of experimental glioma by administration of adenoviral vectors expressing Fas ligand. Hum Gene Ther,1999, 10(10):1641-1648
    [31]Maleniak TC, Darling JL, Lowenstein PR, et al. Adenovirus-mediated expression of HSV1-TK or Fas ligand induces cell death in primary human glioma-derived cell cultures that are resistant to the chemotherapeutic agent CCNU. Cancer Gene Ther,2001,8(8):589-598
    [32]Benedetti S, Bruzzone SG, Pollo B, et al. Eradication of rat malignant gliomas by retroviral-mediated, in vivo delivery of the interleukin-4 gene. Cancer Res,1999, 59(3):645-652
    [33]Chiocca EA, Smith KM, McKinney B, et al. A phase I trial of Ad.hIFN-beta gene therapy for glioma. Mol Ther,2008,16(3):618-626
    [34]Ehtesham M, Kabos P, Gutierrez MA, et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res,2002,62(24):7170-7174
    [35]Arnhold S, Hilgers M, Lenartz D, et al. Neural precursor cells as carriers for a gene therapeutical approach in tumor therapy. Cell Transplant,2003,12(8): 827-837
    [36]Benveniste RJ, Keller G, Germano I. Embryonic stem cell-derived astrocytes expressing drug-inducible transgenes:differentiation and transplantation into the mouse brain. J Neurosurg,2005,103(1):115-123
    [37]Lee J, Elkahloun AG, Messina SA, et al. Cellular, genetic characterization of human adult bone marrow-derived neural stem-cell like cells:a potential antiglioma cellular vector. Cancer Res,2003,63(24):8877-8889
    [38]Nakamura K, Ito Y, Kawano Y, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther,2004,11(14):1155-1164
    [39]Moore XL, Lu J, Sun L, et al. Endothelial progenitor cells "homing" specificity to brain tumors. Gene Ther,2004,11(10):811-818
    [40]Germano IM, Uzzaman M, Keller G. Gene delivery by embryonic stem cells for malignant gliomas. Cancer Biol Ther,2008,7(9):1341-1347
    [41]Jandial R, Singec I, Ames CP, et al. Genetic modification of neural stem cells. Mol Ther,2008,16(3):450-457
    [42]Uzzaman M, Benveniste R, Keller G, et al. Embryonic stem cell-derived astrocytes:novel gene therapy vector for brain tumors. Neurosurg Focus,2005, 19(3):E6-E16
    [43]Germano IM, Uzzaman M, Benveniste RJ, et al. Apoptosis in human glioblastoma cells produced using embryonic stem cell-derived astrocytes expressing tumor necrosis factor-related apoptosis-inducing ligand. J Neurosurg, 2006,105(1):88-95
    [44]Uzzaman M, Keller G, Germano IM. In vivo gene delivery by embryonic-stem--cell-derived astrocytes for malignant gliomas. Neuro oncol,2009,11(2):102-108
    [45]Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res,2005,65(8): 3307-3318
    [46]Barresi V, Belluardo N, Sipione S, et al. Transplantation of prodrug-converting neuronal progenitor cells for brain tumor therapy. Cancer Gene Ther,2003,10(5): 396-402
    [47]Uhl M, Weiler M, Wick W, et al. Migratory neural stem cells for improved thymidine kinase-based gene therapy of malignant gliomas. Biochem Bio-phys Res Commun,2005,328(1):125-129
    [48]Herrlinger U, Woiciechowski C, Sena-Estevez M, et al. Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral glio-mas. Mol
    Ther,2000,1(4):347-357
    [49]Kingsley JD, Dou H, Morehead J, et al. Nanotechnology:a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol,2006,1(3): 340-350
    [50]Felgner PL, Gadek TR, Holm M, et al. Lipofection:a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA,1987, 84(21):7413-7414
    [51]Yoshida J, Mizuno M, Fujii M, et al. Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytomas) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum Gene Ther,2004, 15(1):77-86
    [52]Voges J, Reszka R, Grossmann A, et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol,2003,54(4):479-487
    [53]de Fougerolles AR. Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther,2008,19(2):125-132
    [54]Chiocca EA. Oncolytic viruses. Nat Rev Cancer,2002,2(12):938-950
    [55]Wang WJ, Tai CK, Kasahara N, et al. Highly efficient and tumor-restricted gene transfer to malignant gliomas by replication-competent retroviral vectors. Hum Gene Ther,2003,14(2):117-127
    [56]Lawler SE, Peruzzi PP, Chiocca EA. Genetic strategies for brain tumor therapy. Cancer Gene Ther,2006,13(3):225-233
    [57]Lamfers M, Grill J, DirvenC, et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res,2002,62(20):5736-5742
    [58]Enderlin M, Kleinman EV, Struyf F, et al. TNF-alpha and the IFN-beta-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther,2009,16(2): 149-160
    [59]Raj K, Ogston P, Beard P. Virus-mediated killing of cells that lack p53 activity. Nature,2001,412(6850):914-917
    [60]Harding T, Lalani A, Roberts BN, et al. AAV serotype 8-mediated gene delivery of a soluble VEGF receptor to the treatment of glioblastoma. Mol Ther,2006, 13(5):956-966
    [61]Ma HI, Lin SZ, Chiang YH, et al. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther,2002,9(1):2-11
    [62]Yanamandra N, Kondraganti S, Gondi C, et al. Recombinant adeno-associated virus (rAAV) expressing TFPI-2 inhibits invasion, angiogenesis and tumor growth in a human glioblastoma cell line. Int J Cancer,2005,115(6):998-1005
    [63]Foust K, Nurre E, Montgomery CL, et al. Intravascular AAV9 preferentially targets neonatal neurons and adults astrocytes. Nat Biotechnol,2009,27(1): 59-65
    [64]Zarnitsyn VG, Kamaev PP, Prausnitz MR. Ultrasound-enhanced chemotherapy and gene delivery for glioma cells. Technol Cancer Res Treat,2007,6(5):433-442
    [65]Palu G, Cavaggioni A, Calvi P, et al. Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine gene:a pilot study in humans. Gene Ther,1999,6(3):330-337
    [66]Colombo F, Barzon L, Franchin E, et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme:biological and clinical results. Cancer Gene Ther,2005,12(10):835-848
    [67]Ali S, Curtin JF, Zinger JM, et al. Inflammatory and antiglioma effects of an adenovirus expressing human soluble Fms-like tyrosine kinase 3 ligand (hsFLt3L):treatment with hsFLt3L inhibits intracranial glioma progression. Mol Ther,2004,10(6):1071-1084
    [68]Ali S, King GD, Curtin JF, et al. Combined immunostimulation and conditional cytotoxic gene therapy provide long-term survival in a large glioma model. Cancer Res,2005,65(16):7194-7204
    [69]King GD, Muhammad AKMG, Xiong W, et al. High-capacity adenovirus vector-mediated anti-glioma gene therapy in the presence of systemic antiadenovirus immunity. J Virol,2008,82(9):4680-4684
    [70]Fulci G, Breymann L, Gianni D, et al. Cyclophospahamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA, 2006,103(34):12873-12878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700