Exendin-4在骨髓间充质干细胞治疗糖尿病中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病(T2DM)是由遗传和环境共同作用而引起的一组以糖代谢紊乱为主要表现的临床综合征,由于胰岛素分泌、作用或两者同时存在缺陷引起碳水化合物、脂肪、蛋白质、水和电解质等代谢紊乱,可以引起多个系统器官同时损伤的慢性并发症,是致残致死的主要原因。目前的治疗以降糖为主,一定程度上能够改善胰岛素抵抗、代谢综合征,但不能根治糖尿病,尤其是对包括胰岛细胞在内的多器官组织的损伤疗效甚微,间充质干细胞(MSCs)因其具有损伤修复和多向分化潜能,成为糖尿病及其并发症治疗领域的研究热点。
     研究显示,骨髓间充质干细胞(BMSCs)移植后对大多数组织损伤的修复起效快,具有直接的修复能力,课题组前期的研究结果显示,BMSCs对T2DM多种器官组织的损伤具有良好的直接修复作用,对T2DM并发症及一般状况的改善非常明显,对胰岛的修复也有一定的作用,但是短期内还未能观察到胰岛功能的完全恢复,也未见到同类报道。同时我们看到,BMSCs还具有一定的改善胰岛素抵抗及降糖作用,但是短期内直接降糖作用较弱。杨卫红等的研究显示,高糖可以抑制BMSCs的增殖,促进BMSCs的凋亡,我们的研究也显示,高糖高脂培养的BMSCs凋亡增加,高糖高脂还可以导致β细胞分泌胰岛素的能力下降。因此,如果无辅助的治疗,移植入体内的BMSCs在发挥作用时可能会受到T2DM病因的影响,而且在T2DM病因的作用下不利于BMSCs向胰岛细胞分化,单独使用BMSCs治疗还具有一定的局限性。
     Exendin-4是从蜥蜴唾液腺分离出来的GLP-1 (glucagon-like peptide-1)的类似物,具有较长的血浆半衰期和较强的生物活性。它能够针对T2DM的多个病理生理靶点发挥降糖效应,改善胰腺局部的微环境,同时能够促进胰岛细胞的再生及干细胞向胰岛细胞的分化。但是,它进入体内发挥作用相对较慢,刺激胰岛细胞再生需较长周期,而且对于全身并发症的改善是一种间接的作用,依赖体内的干细胞体系,BMSCs与Exendin-4在T2DM及其并发症的治疗上具有很好的互补作用。为探索一条副作用低的、有效的治疗T2DM胰岛细胞损伤的方法,本研究课题将探讨在BMSCs移植的过程中联合使用Exendin-4是否有利于BMSCs进入体内更好地发挥作用,Exendin-4在体外是否能够促进BMSCs向胰岛素分泌细胞(IPCs)的分化,Exendin-4是否能够促进BMSCs在体内分化为IPCs, BMSCs是否通过促进胰岛β细胞再生,减少β细胞凋亡发挥治疗作用,联合使用Exendin-4是否能协同增强BMSCs的治疗作用。各部分研究结果分别简述如下。
     一、正常大鼠BMSCs的分离培养和鉴定
     采用全骨髓贴壁培养法分离、培养、纯化大鼠BMSCs,观察细胞在光镜下的生长特征并记录其生长曲线,对所获得的细胞进行成骨及成脂肪细胞诱导分化,流式细胞仪分析其表面标记(CD34, CD44, CD45, CD71, CD105)。结果显示,BMSCs呈梭形、漩涡状生长,BMSCs成骨和成脂诱导可以使BMSCs出现钙盐沉积和脂滴,表达成骨细胞、脂肪细胞特征,表面标志鉴定CD34、CD45呈阴性,CD44、CD71、CD105呈阳性,确定所获细胞绝大多数为BMSCs。本部分实验建立了大鼠BMSCs的体外培养体系,为后续的干细胞研究提供了稳定的细胞模型。
     二、Exendin-4在BMSCs转分化为胰岛样细胞中作用的体外研究
     本部分研究中我们采用两步法诱导BMSCs分化为胰岛样细胞,同时加入不同浓度的Exendin-4 (5、10、20、40、80nM),观察其对分化的影响。双硫腙染色鉴定胰岛样细胞团,免疫细胞化学染色法对胰岛素分泌细胞进行鉴定,用放射免疫分析法观察诱导后细胞对葡萄糖刺激试验的反应,Real time-PCR检测胰岛β细胞相关基因Ngn3、PDX-1、Insl及Glut2的表达。结果表明,在Exendin-4作用下,BMSCs向胰岛样细胞转化增多,体外培养细胞上清液中胰岛素含量明显升高,胰岛β细胞相关基因Ngn3、PDX-1、Insl及Glut2 mRNA的表达增加,在一定范围内呈剂量依赖性。
     三、Exendin-4在BMSCs移植治疗T2DM中的作用
     建立T2DM大鼠的模型,分为正常对照组、T2DM模型组、BMSCs移植组、Exendin-4处理组及BMSCs+Exendin-4治疗组,将Brdu标记的BMSCs从大鼠尾静脉移植入T2DM模型大鼠体内,观察不同的干预措施对各组大鼠的体重、血糖、血脂及血浆胰岛素、脂联素水平的影响,并通过免疫组化、免疫荧光双标技术观察BMSCs在大鼠胰腺组织的分布及分化情况。结果表明,BMSCs能够迁移至T2DM模型大鼠胰腺组织,并转化为胰岛素分泌细胞。BMSCs移植的同时使用Exendin-4可以更好地降低血糖,增加大鼠胰腺组织中胰岛素染色阳性区域的面积,改善β细胞功能。
     四、Exendin-4在BMSCs移植治疗T2DM中作用的机制研究
     探讨BMSCs移植治疗T2DM的机制,TUNEL方法观察各组胰岛细胞的凋亡情况,Real-time PCR与Western blot方法检测各组胰腺组织PDX-1与胰岛素mRNA及蛋白的表达,免疫组化与Western blot方法检测各组胰腺组织Caspase3与Bax的蛋白水平。结果显示,BMSCs移植能够通过增加胰岛PDX-1与胰岛素mRNA及蛋白的表达促进胰岛β细胞的再生,同时能够减少胰岛Caspase3与Bax的蛋白水平,减少胰岛细胞的凋亡,联合使用Exendin-4能够协同增强治疗效果。
     结论
     1.通过全骨髓贴壁法,成功分离、培养了大鼠BMSCs,通过对该细胞生物学特性的观察及应用流式细胞检测其表面抗原,证实了所得到的贴壁细胞为BMSCs,为后续的实验提供了充足的BMSCs和良好的实验基础。
     2.体外研究结果显示Exendin-4可以促进BMSCs分化为功能性胰岛样细胞,该细胞DTZ染色阳性,经葡萄糖刺激能够分泌一定数量的胰岛素,并能表达胰岛细胞的相关基因Ngn3、PDX-1、Insl及Glut2。Exendin-4的促分化作用在一定范围内呈剂量依赖性。
     3.利用高糖高脂饮食加小剂量注射STZ的方法成功建立T2DM大鼠模型,该T2DM模型具有肥胖、高血糖、血脂异常、高胰岛素血症及胰岛素抵抗的特点,接近人类T2DM的发病特征,可以用于T2DM的实验研究。
     4.同种异体BMSCs移植能够在一定程度上治疗大鼠T2DM,移植的BMSCs能够迁移至T2DM大鼠的胰腺组织,并分化为胰岛素分泌细胞,同时应用Exendin-4,能够更好地降低T2DM大鼠的血糖,增加胰岛β细胞胰岛素染色阳性区域的面积,改善β细胞功能。
     5.BMSCs移植通过增加PDX-1与胰岛素的表达,促进β细胞再生,同时,能够下调Caspase3、Bax的表达,减少β细胞的凋亡,联合Exendin-4能够协同增强BMSCs移植治疗T2DM的作用,为T2DM的细胞治疗提供了新的思路。
Type 2 diabetes mellitus (T2DM) is a clinical syndrome mainly represented glucose metabolic disorder caused by genetic and environmental elements. Insulin secretion, effect or both defects lead to metabolic disorders included carbohydrates, fats, protein, water, and electrolytes, et al. T2DM can cause multiple system organ damaged chronic complications which is the major cause of disability or death. The current treatment is mainly to lower blood sugar, to a extent, it can improve insulin resistance and metabolic syndrome, but can not cure diabetes, especially for multi-organ tissue included islet cells damage has little effect. Mesenchymal stem cells (MSCs) which have repair ability and multi-differentiation potential have become the research focus in the area of diabetes and its complications treatment.
     Studies have shown that bone marrow-derived mesenchymal stem cells (BMSCs) transplantation has fast onset of action in most tissue damage repair, with a direct repair capacity. Our previous research showed that BMSCs have a good direct repair in multiple organ tissue injury in T2DM, it is very clear to improve the complications and overall situation in T2DM, BMSCs also have a certain role in islet restoration, but not yet observed in the short term islet function fully restored, also not seen the same reports. At the same time, we have seen BMSCs have a certain degree of improving insulin resistance and the hypoglycemic effect, but their direct hypoglycemic effect is weaker in short-term. YANG Wei-hong's study has shown that high glucose can inhibit the proliferation of BMSCs and promote their apoptosis, our studies also show that high glucose and fat increase apoptosis of BMSCs, also can lead to (3-cell insulin secretion capacity decline. Therefore, if no supplementary treatment, the role of BMSCs in T2DM body may be influenced by etiology, under the influence of etiology of T2DM, it is not conducive for BMSCs to differentiate to islet cells, BMSCs alone treatment has some limitations.
     Exendin-4 is a GLP-1 (glucagon-like peptide-1) analogues extracted from lizard salivary glands, with a longer plasma half-life and strong biological activity. It can play a hypoglycemic effect through a number of pathophysiological targets for T2DM, improve pancreatic local micro-environment at the same time, it also can promote the regeneration of islet cells and stem cells differentiation to islet cells. However, it is relatively slow to play a role, it will take longer cycles to stimulate islet cell regeneration, but also for the improvement of systemic complications is an indirect role, dependent on the body's stem cell system, BMSCs and Exendin-4 has a very good complementary in the T2DM treatment. In order to explore a lower side effect, effective treatment method for pancreatic islet dysfunction in T2DM, this research will explore whether Exendin-4 helps BMSCs play a better role in the process of BMSCs transplantation, whether Exendin-4 in vitro can promote the differentiation of BMSCs to the insulin-producing-cells (IPCs), whether Exendin-4 in the body can promote BMSCs to differentiate into IPCs, whether BMSCs play a therapeutic effect is through the promotion of pancreaticβ-cell regeneration, reducingβ-cell apoptosis, the joint use of Exendin-4 is able to enhance the synergistic therapeutic effect of BMSCs. The various parts of the findings are summarized below, respectively.
     1.Isolation and identification of normal rats BMSCs
     BMSCs were isolated and cultured by whole bone marrow adherent culture method, the cells were observed under light microscope, their growth characteristics were recorded by growth curve, obtained BMSCs were induced to differentiate into the bone and fat cells, their surface markers (CD34, CD44, CD45, CD71, CD 105) were analysised by flow cytometry. The results showed that, BMSCs grew spindle-shaped whirlpool, they could make calcium deposits and lipid droplets in the course of osteogenic and adipogenic differentiation, BMSCs appeared to express osteoblast and fat cells characteristics, their identification of surface markers CD34, CD45 were negative, CD44, CD71 and CD105 were positive, the vast majority of obtained cells were BMSCs. This part we established a rat BMSCs cultured system, provided a stable cell model for the follow-up of stem cell research.
     2.Exendin-4 on rat BMSCs transdifferentiation into islet-like cells in vitro
     In this section study, we used two-step method to induce BMSCs differentiate into islet-like cells, different concentrations of Exendin-4 (5,10,20,40,80nM) were added to observe its effect on differentiation. Dithizone staining were used to identify islet-like cell clusters, insulin-producing cells were identified through immune staining, the induced cells response to glucose stimulation were observed by radioimmunoassay, Real time-PCR were used to detect the expression of isletβ-cell-related genes Ngn3, PDX-1, Insl and Glut2. The results showed that islet-like cell transformation increased under Exendin-4, supernatant insulin levels were significantly higher, isletβ-cell-related genes Ngn3, PDX-1, Insl and Glut2 mRNA expression increased, within a certain range in a dose-dependent.
     3.The effect of Exendin-4 on BMSCs transplantation for treatment of T2DM
     T2DM rats were randomly divided into normal control group, T2DM model group, BMSCs transplantation group, Exendin-4 treatment group and BMSCs+Exendin-4 group, while Brdu labeled BMSCs transplanted from the rat tail vein to the rats body with T2DM, the effects of different interventions on the body weight, blood glucose, blood lipids, plasma insulin and adiponectin levels were observed, distribution and differentiation of BMSCs in rat pancreatic tissue were observed by immunohistochemistry and double-labeled immunofluorescence technique. The results showed that, BMSCs can migrate to the T2DM rat pancreatic tissue, and induce into insulin-producing cells. The use of Exendin-4 in BMSCs transplantation process can significantly reduce blood sugar, increase insulin positive area expression in rat pancreatic tissue, improveβ-cell function.
     4.Mechanism study of Exendin-4 on BMSCs transplantation for treatment of T2DM
     To explore mechanism of BMSCs transplantation for the treatment of T2DM, TUNEL were observed in each group of islet cell apoptosis, Real-time PCR and Western blot methods were used to detect PDX-1 and insulin mRNA and protein expression in each group pancreatic tissues, islet Caspase3 and Bax protein levels were detected by immunohistochemistry and Western blot method. The results showed that, BMSCs transplantation increased islet PDX-1 and insulin mRNA and protein expression, promoted regeneration of islet P-cells, while able to reduce islet Caspase3 and Bax protein levels, reduce the apoptosis of islet cells, the joint use of Exendin-4 can enhance the therapeutic effect.
     Conclusions
     1.Through the whole bone marrow adherent methods, successfully isolated and cultured rat BMSCs, the obtained cells were confirmed as BMSCs through the biological characteristics and application of flow cytometry, for the follow-up experiments provided sufficient BMSCs products and a good experimental basis.
     2.In vitro studies showed that Exendin-4 can effectively promote BMSCs to differentiate into functional islet-like cells, these cells were positive in DTZ staining, they could secret insulin after glucose stimulation, they also express P-cell-related genes such as Ngn3,PDX-1,Ins1 and Glut2. The role of Exendin-4 on BMSCs differenciation was in a dose-dependent within a certain range.
     3.The use of high-sugar high-fat diet plus low-dose injection of STZ method successfully established rat model of T2DM, the T2DM model had obesity, hyperglycemia, dyslipidemia, hyperinsulinemia and insulin resistance characteristics, closed to human T2DM pathogenesis, they could be used to T2DM experimental research.
     4.Allogeneic BMSCs transplantation can treat rats T2DM, transplanted BMSCs can migrate to the T2DM rat pancreatic tissue and to differentiate into insulin-producing cells, while application of Exendin-4, can significantly reduce the T2DM rats blood glucose, increase insulin secretion, improve P-cell function.
     5. BMSCs transplantation increased islet PDX-1 and insulin mRNA and protein expression, promoted regeneration of islet P-cells, while able to reduce islet Caspase3 and Bax protein levels, reduce the apoptosis of islet cells, the joint use of Exendin-4 can enhance the therapeutic effect, this study gives a new insight into the cells treatment of T2DM.
引文
1.Chen JC, Malik V, Jia W, et al. Diabetes in Asia epidemiology, risk factors, and pathophysi-ology. JAMA,2009,301:2129-2140.
    2.Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med,2010,362:1090-10101.
    3.冯凭,对2型糖尿病患者启动胰岛素治疗的思考,国际内分泌代谢杂志,2008,28:70-72.
    4.Pirot P, Ortis F, Cnop M, et al. Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing-cells. Diabetes,2007,56:1069-1077.
    5.Nauck MA, Meier JJ. The enteroinsular axis may mediate the diabetogenic effects of TCFTL2 polymorphisms. Diabetologia,2007,50:2413-2416.
    6.Walcher D, Babiak C, Poletek P, et al. C-peptide induced vascular smooth muscle cell prolifer-ation:involvement of Src-kinase, phosphatidylinositol 3-kinase, and extracellular signal-regulated kinase 1/2. Circ Res,2006,99:1181-1187.
    7.Yudkin JS. Insulin resistance and the metabolic syndrome or the pitfalls of epidemiology. Diabetologia,2007,50:1576-1586.
    8.Turner RC, Cull CA, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus:progressive requirement for multiple therapies (UKPDS 49). UK Prospectiv Diabetes Study (UKPDS) Group. JAMA,1999,281:2005-2012.
    9.Carver C. Insulin treatment and the problem of weight gain in type 2 diabetes. Diabetes Educ, 2006,32:910-917.
    10.Korytkowski M. When oral agents fail:practical barriers to starting insulin. Int J Obes Relat Metab Disord,2002,26 (Suppl 3):S18-S24.
    11.Mark F.pittenger ect.Multrilienge potential of adult human mesenchymal stem cells. Science, 1999,284:143-147.
    12. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,2002,418:41-49.
    13.Kondaiah P. Bone marrow stromal cells and multilineage differentiation. Biosci,2003,28: 651.
    14.Le Blanc K, Tammik C, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibi-lity system. Scand J Immunol,2003,57:11-20.
    15.Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation. Transplantation,2003,75:389-397.
    16. Honczarenko M, Le Y, Swierkowski M, et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells,2006; 24:1030-1041.
    17 Chi-Hsien Liu, Shiaw-Min Hwang. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine,2005,32:270-279.
    18.Ryang Hwa Lee, Min Jeong Seo, Roxanne L, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/ scid mice. PNAS 2006,103:17438-17443.
    19.Tang DQ, Cao LZ, Burkhardt BR, et al. In vivo and in vitro charaeterization of insulin-produ-cing cells obtained from murine bone marrow. Diabetes,2004,53:1721-1732.
    20.郭连瑞,谷涌泉,张建,等.自体骨髓干细胞移植治疗糖尿病足13例报告.中华糖尿病杂志,2004,12:313-316.
    21.周芳,张馥敏,杨志健,等.自体骨髓间充质干细胞和单个核细胞移植治疗冠心病的临床研究.中国介入心脏病学杂志,2004,12:270-273.
    22.Shibata T, Naruse K, Kamiya H, et al. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes,2008,57:3099-30107.
    23.Chai G, Zhang Y, Liu W, et al. Clinical application of tissue engineered bone repair of human craniomaxillofacial bone defects. Natl Med J China,2003,83:1676-1681.
    24.Wang WM, Sun NL, Liu J, et al. Effects of intracoronary autologous bone marrow mononu-clear cells transplantation in patients with anterior myocardial infarction. Chin J Cardiol,2006, 34:103-106.
    25.Fang B, Song YP, Liao LM, et al. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Trans-plant,2006,38:389-390.
    26.Wang WZ, Xing GY, Zhang KC, et al. Treatment of vascular necrosis of femoral head by core decompression and autograft of mesenchyaml stem cell. J Chin Physician,2006,8:436-438.
    27.杨卫红,李裕明.葡萄糖对小鼠间充质干细胞增殖的影响.中国糖尿病杂志,2008,16:625-628.
    28.Mager DE, Abemethy DR, Egan JM, et al. Exendin-4 pharmacodynamics:insights from the hyperglycemic clamp technique. J Pharmacol Exp Ther,2004,311:830-835.
    29.Hui H, Nourparvar A, Zhao X, et al. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreating cells via a cyclic 5'-adenosine monophosphate-dependent protein-kinase-A and a phos-phatidylinositol 3-kinase-dependent pathway. Endocrinology,2003,144:1444-1455.
    1. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,2002,418:41-49.
    2.Kondaiah P. Bone marrow stromal cells and multilineage differenciaton. Biosci,2003,28: 651-659.
    3.Tropel P, Noel D, Platet N, et al. Isolation and characterizatin of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res,2004,295:395-406.
    4.Sanchez-Ramos JR. Neural cells derived from adult bone marrow and umbilical cord blood. J Neuraosci Res,2002,69:880-893.
    5.Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res,2003,288:51-59.
    6.Masahiro M, Akiyama I, Sakaguchi M, et al. Improved conditions to induce hepatocytes from rat bone marrow cells in culture. Biochem Biophys Res Commun,2002,298:24-30.
    7.Jiang Y, Vaessen B, lenvik T, et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol,2002,30:896-904.
    8.De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multilineage cells from human adipose tissue and bone marrow. Cells Tissues Organs,2003,174:101-109.
    9.Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchy-mal stem cells. Science,1999,284:143-147.
    10.Hgushi H,Caplan AI. Stem cell technology and biocramics:from cell to gene engineering.J Biomed Mater Res,1999,48:913-927.
    11.Friendenstein AJ, Gorskaj JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol,1976,4:267-274.
    12.Erices A, Conget P, Minguell JJ, et al. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol.2000,109:235-242.
    13.Pereira RF, Halford KW, Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA.1995,92:4857-4861.
    14.Zohar R, Sodek J, McCulloch CA.. Characterization of stromal progenitor cells enriched by flow cytometry. Blood,1997,90:3471-3481.
    15.McBride C, Gaupp D, Phinney DG, et al. Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR. Cytotherapy,2003,5:7-18.
    16.Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. Cell Biochem,1994,56:283-289.
    17.Devine SM. Mesenchymal stem cells:will they have a role in the clinic. Journal of Cellular Biochemistry,2002,38:73-79.
    18.Lennon DP, Haynesworth SE, Young RG, et al. A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential lof rat marrow-derived mesenchy-mal stem cells. Experimental Cell Research,1995,219:211-222.
    19.刘树辉,曹中伟,秦书俭等,SD大鼠骨髓间充质干细胞的分离培养方法的研究.锦州医学院学报,2006,27:35-37.
    20.Kause DS, Theise ND, Collector MI, et al. Multi-organ, Multi-lineage engraftment by a single bone marrow derived stem cell. Cell,2001,105:369-377.
    21.Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular TheraPy Position statement. Cytotherapy,2007,9:301-302.
    22.Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci,2003,10:228-241.
    1.Jahr H, Bretzel RG. Insulin-positive cells in vitro generated from rat bone marrow stromal cells. Transplant Proc,2003,35:2140-2141.
    2.Oh SH, Muzzonigro TM, Bae SH, et al. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type 1 diabetes. Lab Invest,2004,84:607-617.
    3.Tang DQ, Cao LZ, Burkhardt BR, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes,2004,53:1721-1732.
    4.李艳华,白慈贤,谢超,等.成人骨髓间充质干细胞体外定向诱导分化为胰岛样细胞团的研究.自然科学进展,2003,13:593-597.
    5.Zhou J, Wand X, Pinceyro MA, et al. Glucagon-like peptide 1 and exendin-4 convert pancre-atic AR42J cells into glucagon-and insulin-producting cells. Diabetes,1999,48:2358-2366.
    6.IDF 2006,19th World Diabetes Congress,3-7 December 2006, Cape Town, South Africa. Abstracts. Diabet Med,2006,23 (Suppl 4):1-788.
    7.Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med,2000, 343:230-238.
    8.Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin secreting structures similar to pancreatic islets. Science,2001,92:1389-1394.
    9.Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells. Diabetes, 2001,50:1691-1697.
    10.Chen LB, Jinag XB, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol.2004,10:3016-3020.
    11.Jia YJ, Zhong L, Song JH, et al. Rat bone marrow mesenchymal stem cells transdifferentiated into islet-secreting cells in vitro. Chin J Comtemp Pediatr.2003,5:393-397.
    12.Klein T, Ling Z, Heimberg H, et al. Nestin is expressed in vascular endothelial cells in the adult human pancreas. J Histochem Cytochem,2003,51:697-706.
    13.Treutelaar MK, Skidmore JM, Dias-Leme CL, et al. Nestin-lineage cells conrtibute to the microvasculature but not endocrine cells of the islet. Dibaetes,2003,52:2503-2512.
    14.Banerjee M, Kanitkar M, Bhonde RR. Approaches towards endogenous pancreatic regene-ration. Rev Diabet Stud,2005,2:165-176.
    15.Roche E, Assimacopoulos-Jeannet F, Witters LA, et al. Induction by glucose of genes coding for glycolytic enzymes in a pancreatic beta-cell line (INS-1).J Boil Chem,1997,272:3091-3098.
    16.Leibiger B, Wahlander K, Berggren PO, et al. Glucose-stimulated insulin biosynthesis dep-ends on insulin-stimulated insulin gene transcription. J Biol Chem,2000,275:30153-30156.
    17.Soria B.In-vitro dieffrentiation of pancreatic beta-cells. Differentiation.2001,68:205-219.
    18.Soria B, Roche E, Berna G, et al. Insulin secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes,2000,49:157-162.
    19.Vaca P, Berna G, Araujo R, et al. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells. Exp Cell Res,2008,314:969-974.
    20.LI L, Yi Zh, Seno M, et al. Activin A and Betacellulin effect on regeneration of pancreatic β-Cells in neonatal streptozotocin-treated rats. Diabetes.2004,53:608-615.
    21.Hori Y, Gu X, Xie X, et al. Differentiation of insulin-producing cells from human neural progenitor cells. PLos Med,2005,2:e103.
    22.Mckinnon CM, Docherty K. Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia.2001,44:1203-1214.
    23.Xu G, Stoffers DA, Habener JF, et al. Exendin-4 stimulates both(3-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes,1999,48:2270-2276.
    24.Drucker DJ. Glucagon-like peptides:regulators of cell proliferation, dieffrentiation, and apoptosis. Mol Endocrinol.2003,17:161-171.
    25.Miyamoto M, Inoue K, Gu, Y, et al. Improved large-scale isolation of breeder porcine islets: possibility of harvesting from nonheart-beating donor. Cell Transplant,1998,7:397-402.
    26.Shiroi A, Yoshikawa M, Yokota H, et al. Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells,2002,20:284-292.
    27.Gradwohl G, Dierich A, LeMeur M, et al. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Nat Acad Sci USA,2000,97:1607-1611.
    28.姚忠祥,陈茂林,刘建军,等.人胰腺干细胞的体外分离培养、鉴定和分化特性.第三军医大学学报,2003,25:23-25.
    29.Liu T, wang CY,Yu F, et al. In vitro pancreas duodenal homeobox-1 enhances the differentiation of pancreatic ductal epithelial cells inio insulin-producing cells. World J Gastroenterol,2007,13:5232-5237.
    30.Yang L, LI S, Hatch H, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA,2002,99:8078-8083.
    1.American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care,2008,31(Suppl 1):S55-S60.
    2.Vilsboll T, Holst JJ. Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia, 2004,47:357-366.
    3.Boumaza I, Srinivasan s, Witt WT, et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmune, 2009,32:33-42.
    4.Zhang N, Li J, Luo R, et al. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes,2008,116: 104-111.
    5.Li JH, Zhang N, Wang JA. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest,2008,31:103-110.
    6.Lee RH, Seo MJ, Reger RL, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/Scid mice. Proc Natl Acad Sci USA,2006,103:17438-17443.
    7.Storlien LH, James DE, Burleigh KM, et al. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. AM J Physiol,1986,251:E576-E583.
    8.潘玲,李德良,张立群.成年营养性肥胖大鼠模型.中国药理与临床,2003,19:47-49.
    9.曾艳,贾正平,张汝学,等.地黄寡糖在2型糖尿病模型上的降血糖作用及机制.中国药理学通报,2006,22:411-415.
    lO.Mauricio D, Mandrup-Poulsen T. Apoptosis and the pathogenesis of IDDM:a question of life and death. Diabetes,1998,47:1537-1543.
    11.Mellado-Gil JM, Aguilar-Diosdado M. Assay for high glucose-mediated islet cell sensitization to apoptosis induced by streptozotocin and cytokines. Biol Proced Online,2005,7:162-171.
    12.Storlien LH, James DE, Burleigh KM, et al. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure,and obesity in rats. Am J Physiol,1986,251:E576-583.
    13.司晓晨,尚文斌,卞慧敏,等.链脲佐菌素加高脂膳食诱导2型糖尿病大鼠模型.安徽中医临床杂志,2003,15:383-385.
    14.郭啸华,刘志红,李恒,等.实验性2型糖尿病大鼠模型的建立.肾脏病与透析肾移植杂志,2000,9:351-355.
    15.Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes,2001,50:1126-1133.
    16.Gratzner HG. Monoclonal antibody to 5-bromo and 5-iodo-deoxyuridine:a new reagent for detection of DNA replieation. Science,1982,218:474-475.
    17.Nakamura S, Takeda Y, Kanno M, et al. Application of bromodeoxyuridine(Brdu) and anti-Brdu monoclonal antibody for the in vivo analysis of prolifrative characteristics of human leukemia cells in bone marrow. Oncology,1991,48:285-289.
    18.Nemoto R, Uchida K, Hottorl K, et al. Phase fraction of human blader tumor measured in situ with bromodeoxyuridine labeling. J Virol,1988,139:286-289.
    19.Paek HJ, Morgan JR, Lysaght MJ. Sequestration and synthesis:the source of insulin in cell clusters differentiated from murine embryonic stem cells. Stem Cells,2005,23:862-867.
    20.Feng SW, Yao XL, Li Z, et al. In vitro bromodeoxyuridine labeling of rat bone marrow-derived mesenchymal stem cells. Di Yi Jun Yi Da Xue Xue Bao,2005,25:184-186.
    21.Meenal Banerjeea, Anil Kumarb, Ramesh R.Bhonde, et al. Reversal of experimental diabetes by multiple bone marrow-transplantation. Biochemical and Biophysical Research Communica-tions,2005,328:318-325.
    22. Wen Y, Ouyang J, Yang R, et al. Reversal of new-onset type 1 diabetes in mice by syngeneic bone marrow transplantation. Biochem BioPhys Res Commun,2008,374:282-287.
    23.Ezquer FE, Ezquer ME, Parrau DB, et al. Systemic administration of multipotent mesenchy-mal stromal cells reverts hyperglycemia and prevents nephropathy in typeldiabetic mice. Biol Blood Marrow Transplant,2008,14:631-640.
    24.Andreea Ianus, Gcorge G Holz, Neil D Theise, et al. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest,2003, 111:843-850.
    25.David Hess, Li Lil, Matthew Martin, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nature Biotechnology,2004,21:763-770.
    26.Dong QY, Chen L, Gao GQ,et al. Allogeneic diabetic mesenchymal stem cells transplantation in streptozotocin-induced diabetic rat. Clin Invest Med,2008,31:E328-337.
    27.Gao X, Song L, Shen K, et al. Transplantation of bone marrow derived cells promotes pancreastic islet repair in diabetic mice. Biochem Biophys Res Commun,2008,371:132-137.
    28.Chen J, LI Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke,2001,32:1005-1011.
    29.Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchy-mal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA,2002,99:8932-8937.
    30.WU GD, Nolta JA, Jin YS, et al. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation,2003,75:679-685.
    31.Xu YX, Chen L, Wang R, et al. Mesenchymal stem cell therapy for diabetes through paracrine mechanisms. Med Hypotheses,2008,71:390-393.
    32.Chao KC, Chao KF, Chen CF, et al. A novel human stem cell coculture system that maintains the survival and function of culture islet-like cell clusters. Cell Transplant,2008,17:657-664.
    33.Luo L, Badiavas E, Luo JZ, et al. Allogeneic bone marrow supports human islet beta cell survival and function oversix months. Biochem Biophys Res Commun,2007,361:859-864.
    34.David Hess, Li Lil, Matthew Martin, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nature Biotechnology,2004,21:763-770.
    35.Hasegawa Y, Ogihara T, Yhmada T, et al. Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization. Endocrinology,2007,148: 2006-2015.
    36.Gnecchi M, He H, Liang OD, et al. Paracrine action acconnts for marked protection of ische-mic heart by Akt-modifid mesenchymal stem cells. Nat Med,2005,11:367-368.
    37.Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modi fied mesenchymal stem cell-mediated cardiac protection and functional improvement. AFSEB J, 2006,20:661-669.
    38.Chien KR. Lost and found:cardiac stem cell therapy revisited. J Clin Invest,2006,116:1838-1840.
    1.Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of β-cell mass compensation for insulin resistance and P-cell defects in the male Zucker diabetic fatty rat. Diabetes,1998,47: 358-364.
    2.De koning EJ, Bonner-Weir S, Rabelink TJ, Preservation of P-cell function by targeting β-cell mass. Trends Pharmacol Sci,2008,29:218-227.
    3.唐滔,胡建国,杨进福,等.骨髓间充质干细胞移植对大鼠心肌梗死后细胞凋亡的作用.中南大学学报(医学版),2004,29:274-278.
    4.刘宏宝,赵峰,张鹏,等,骨髓间质干细胞输注对庆大霉素致急性肾小管损伤细胞增殖和凋亡的影响.解放军医学杂志,2008,33:1085-1088.
    5.Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by chan-ges in lifestyle among subjects with impaired glucose tolerance. N Engl J Med,2001,344:1343-1350.
    6.Moriscot C, de Fraipont F, Richard MJ, et al. Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental path-way upon genetic and/or microenvironmental manipulation in vitro. Stem Cells,2005,23:594-603.
    7.Ashizawa S,Brunicardi FC,Wang XP.PDX-1 and the pancreas.Pancreas,2004,28:109-120.
    8.Sharma A,Zangen DH,Reitz P,et al The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes,1999,48:507-513.
    9.Johnson JD,Ahmed NT,Luciani DS,et al. Increased islet apoptosis in pdxl+/-mice. Clin nvest, 2003,111:1147-1160.
    10.Olbrot M, Rud J, Moss LG, et al. Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci USA,2002,99:6737-6742.
    11.Samaras SE, Zhao L, Means A, et al. The islet beta cell-enriched RIPE3bl/Maf transcription factor regulates pdx-1 expression. J Biol Chem,2003,278:12263-12270.
    12.Butler AE, Janson J, Boriner-Weir S, et al. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes,2003,52:102-110.
    13.Federici M, Hribal M, Perego L, et al. High glucose causes apoptosis in cultured human pan-creatic islets of langerhans. Diabetes,2001,50:1290-1301.
    14.Bonnefont-Rousselot D, Bastard JP. Consequences of the diabetic status on the oxidant/anti-oxidant balance. Diabet Metab,2000,26:163-176.
    15.Liu K, Paterson AJ, Chin E, et al. Glucose stimulated protein modification by O-linked Glc-NAc in pancreatic β-cells:linkage of O-linked GlcNAc to β-cell death. Proc Natl Acad Sci USA, 2000,97:2820-2825.
    16.Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets:evidence that beta-cell death is caspase medi-ated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes,2002,51:1437-1442.
    17.Piro S, Anello M, Di Pietro C, et al. Chronic exposure to free fatty acid or high glucose indu-ces apoptosis in rat pancreatic islets:possible role of oxidative stress. Metabolism,2002,51: 1340-1347.
    18.Shimabukuro M, Zhou YT, Levi M, et al. Fatty acid induced β-cell apoptosis:a link between obesity and diabetes. Proc Natl Acad Sci USA,1998,95:2498-2502.
    19.Kim WH, Lee JW, Suh YH, et al. Exposure to chronic high glucose induces P-cell apoptosis through decreased interaction of glucokinase with mitochondria. Diabetes,2005,54:2602-2611.
    20.Stoica BA, Movsesyan VA, Lea PM, et al. Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol Cell Neurosci,2003,22:365-382.
    21.Mathis D, Vence C, Benoist C. Beta-cell death during progression to diabetes. Nature,2001, 414:792-798.
    22.Donath MY, Storling J, Maedler K, et al. Inflammatory mediators and islet β-cell failure:a link between type 1 and type 2 diabetes. J Mol Med,2003,81:455-470.
    23.Hui H, Dotta F, Di Mario U, et al. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol,2004,200:177-200.
    24.Rosse T, Olivier R, Monney L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature,1998,391:496-499.
    25.Jesmin S, Zaedi S, Yamaguchi N, et al. Effeets of dua lendothelin receptor antagonist on antiapoptotic marker Bcl-2 expression in streptozotocin-induced diabetic rats. Exp Biol Med, 2006,231:1034-1039.
    26.Porrou T, Robertso N. Secondary beta-cell failture in type 2 diabetes:a convergenc of gluco-toxicity and lipotoxicity. Endocrinology,2002,143:339-342.
    27.Mellou D, Tsur A,Zangen D, et al. Pancreatic duoderal homeobox in health and disease Endo-crinol Metab,2002,15:1461-1472.
    28.Parkes D, Jodka C, Smith P, et al. Pharmacokinetic actions of exendin-4 in the rat:compari-son with glucagon-like peptide-1. J.Drug Dev Res,2001,53:260-267.
    29.Gedulin BR, Nikoulina SE, Smith PA, et al. Exenatide(exendin-4)improves insulin sensitivity and beta-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. J.Endocrinology,2005,146:2069-2076.
    30. Young AA, Gedulin BR, Bhavsar S, et al Glucose-lowering and insulin-sensitizing actions of exendin-4:studies in obese diabetic(ob/ob,db/db)mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys(Macaca mulatta). J.Diabetes,1999,48:1026-1034.
    1.Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol, 1974,2:83-92.
    2.Friendenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet,1987,20:263-272.
    3.Susanne K, Hermann E, Johannes S. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells,2006,24:1294-1301.
    4.Zvaifler NJ, Marinova ML, Adams G, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res,2000,2:477-488.
    5.Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood,2004,103:1669-1675.
    6. Wang HS, Hung SC, Peng ST. Mesenchymal stem cells in the wharton's jelly of the human umbilical cord. Stem Cells,2004,22:1330-1337.
    7.Vogel G. Harnessing the power of Stem Cells. Science,1999,283:1432-1434.
    8.Petersen BE, Bowen WC, Patrene KD, et al. Bone Marrow as a Potential Source of Hepatic Oval Cells. Science,1999,284:1168-1170.
    9.Gronthos S, Graves S, Ohta S, et al. The STRO-1+fraction of adult human bone marrow contains the osteogenic precursors. Blood,1994,84:4164-4173.
    10.Wakitani S, Saito T, Caplan A. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to sazacytidine. Muscle Nerve,1995,18:1417-1426.
    11.Le Blanc K, Tammik C, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibi-lity system. Scand J Immunol,2003,57:11-20.
    12.Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation. Transplantation,2003,75:389-397.
    13.IDF 2006,19th World Diabetes Congress,3-7 December 2006, Cape Town, South Africa. Abstracts. Diabet Med,2006,23 (Suppl 4):1-788.
    14.Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med,2000, 343:230-238.
    15.Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin secreting structures similar to pancreatic islets. Science,2001,92:1389-1394.
    16.Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells. Diabetes,2001,50:1691-1697.
    17.OH IH, Kim DW. Three-dimensional approach to stem cell therapy. J Korean Med Sci,2002, 17:151-160。
    18.Erices A, Conget P, Minguell JJ, et al. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol,2000,109:235-242.
    19.Friendenstein AJ, Gorskaj JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol,1976,4:267-274.
    20.Pereira RF, Halford KW, Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA,1995,92:4857-4861.
    21.Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood,1997,90:3471-3481.
    22.McBride C, Gaupp D, Phinney DG, et al. Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR. Cytotherapy,2003,5:7-18.
    23.Dominici M, Le Blanc K, Mueller I, et al.Minimal criteria for defining multipotent mesenchy-mal stromal cells. The International Society for Cellular TheraPy Position statement. Cytotherapy, 2007,9:301-302.
    24.Goodell MA. Stem cells:is there a future in plastics? Curr Opin Cell Biol,2001,13:662-665.
    25. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,2002,418:41-49.
    26.Kondaiah P, Bone marrow stromal cells and multilineage differentiation. Biosci,2003,28: 651-657.
    27.Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchy-mal stem cells. Science,1999,284:143-147.
    28.Le Blanc K, Tammik C, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompati-bility system. Scand J Immunol,2003,57:11-20.
    29.Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells implications in transplantation. Transplantation,2003,75:389-397.
    30.Honczarenko M, Le Y, Swierkowski M, et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells,2006; 24:1030-1041.
    31.Chi-Hsien Liu, Shiaw-Min Hwang. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine,2005,32:270-279.
    32.Guo Z, LI H, LI X, et al. In vitro characteristics and in vivo immunosuppressive activity of compact bone-derived murine mesenchymal progenitor cells. Stem Cells,2006,24:992-1000.
    33.Aggarwal S, Pittenger MF, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood,2005,105:1815-1822.
    34.Chen JL, Feng K, Guo ZK, et al. Experimental study of T lymphocyte reactivity inhibited by allogeneic bone marrow mesenchymal stem cells. Chin J Hematol,2005,26:740-742.
    35.Zhang W, Ge W, Li C, et al. Efects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev,2004,13:263-271.
    36.Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy pati-ents. Biol Blood Marrow Transplant,2005,11:389-398.
    37.Sudres M,Norol F, Trenado A, et al. Bone marrow mesenchymal stem cells suppress lymph- ocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol,2006, 176:7761-7767.
    38.Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal setm cells. Lancet,2004,363:1439-1441.
    39.Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res,2006,312: 2169-2179.
    40.Sethe S. Aging of mesenchymal stem cells. Ageing Res Rev,2006,5:91-116.
    41.Dolbeare F, Selden JR. Immunochemical quantitation of bromide-oxyuridine:application to cell-cycle kinetics. Methods Cell Biol,1994,41:297-316.
    42.Munoz-Elias G, Woodbury D, Black Ib.Marrow stromal cells, mitosls, and neuronal different-iation:stem cell and precursor functions. Stem Cells,2003,21:437-448.
    43.Gastaldelli A, Ferrannini E, Miyazaki Y, et al. Beta-cell dysfunction and glucose intolerance: results from the San Antonio metabolism(SAM) study. Diabetoologia,2004,47:31-39.
    44.Karnieli O, Izhar YP, Bulvik S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells,2007,25:2837-2844.
    45.Lu YH, Wang ZW, Zhu MY. Human bone marrow mesenchymal stem cells transfected with human insulin genes can secrete insulin stably. Ann Clin Lab Sci,2006,36:127-136.
    46.Jahr H, Bretzel RG. Insulin-positive cells in vitro generated from rat bone marrow stromal cells. Transplant Proc,2003,35:2140-2141.
    47.0h SH, Muzzonigro TM, Bae SH, et al. Adult bone marrow-derived cells transdifferentiating into insulin-producing cells for the treatment of type 1 diabetes. Lab Invest,2004,84:607-617.
    48.Choi KS, Shin JS, Lee JJ, et al. In vitro transdifferentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophs Res Commun,2005,330: 1299-1305.
    49.李艳华,白慈贤,谢超,等.成人骨髓间充质干细胞体外定向诱导分化为胰岛样细胞团的研究[J].自然科学进展,2003,13:593-597.
    50.Chen LB, Jinag XB, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol.2004,10:3016-3020.
    51.Tang DQ, Cao LZ, Burkhardt BR, et al. In vivo and in vitro characterization of insulin-produ-cing cells obtained from murine bone marrow. Diabetes:2004,53:1721-1732.
    52.Wu XH, Liu CP, Xu KF, et al. Reversal of hyperglycemia in diabetic rats by portal vein trans-planttation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol,2007,13:3342-3349.
    53.Vaca P, Berna G, Araujo R, et al. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells. Exp Cell Res,2008,314:969-974.
    54.LI L, Yi Zh, Seno M, et al. Activin A and Betacellulin effect on regeneration of pancreatic β-Cells in neonatal streptozotocin-treated rats. Diabetes.2004,53:608-615.
    55.Hori Y, Gu X, Xie X, et al. Differentiation of insulin-producing cells from human neural progenitor cells. PLos Med,2005,2:e103.
    56.Mckinnon CM, Docherty K. Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia,2001,44:1203-1214.
    57.Zalzman M, Anker-Kitai L, Efrat S. Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype. Diabetes,2005,4:2568-2575.
    58.Shi Y, Hou LL, Tang FC, et al. Inducing embryonic stem cells to differentiate into pancreatic β cells by a novel three-step approach with activin A and alltrans retinoic acid. Stem Cells,2005, 23:656-662.
    59.Liu ZY, Habener JF. Glucagon-like Peptide-1 Activation of TCF7L2-dependent Wnt Signal-ing Enhances Pancreatic Beta Cell Proliferation. J Biol Chem,2008,283:8723-8735.
    60.Abraham EJ, Leech CA, Lin JC. Insulinotropic hormone glucagons-like peptide-1 differentia-tion of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrin-ology,2002,143:3152-3161.
    61. Suzuki A, Nakauchi H, Taniguchi H. Glucagon-like peptide 1(1-37)converts intestinal epithe-lial cells into insulin-producing cells.PNAS,2003,100:5034-5039.
    62.Suarez-Pinzon WL, Lakey JRT, Brand SJ, et al. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β-cells from pancreastic duct cells and an increase in functional p-cell mass. J Clin Endocrinol Metab,2005,90:3401-3409.
    63.Li L, Seno M, Yamada H, et al. Betacellulin improves glucose metabolism by promoting conversion of intraislet precursor cells to β-cells in streptozotocin-treated mice. AmJ Physiol Endocrinol Metab,2003,285:E577-583.
    64.Zhan XR, Li XY, Liu XM, et al. Generation of insulin-secreting cells from adult rat pancreat-ic ductal epithelial cells induced by hepatocyte growth factor and betacell-ulin-delta4. Biochem Biophys Res Commun,2009,382:375-380.
    65.Wang CY, Gou SM, Liu T, et al. Differentiation of CD24-pancreatic ductal cell-derived cells into insulin-secreting cells. Dev Growth Differ,2008,50:633-643.
    66.Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regenerat-ion. Nat Biotechnol,2003,21:763-770.
    67.Dor Y, Brown J, Martinez OI, et al. Adult pancreatic beta-cells are formed by self-duplica-tion rather than stem-cell differentiation. Nature,2004,429:41-46.
    68.Leehner A, Ysng YG, Blaeken RA, et al. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes,2004,53:616-623.
    69.Urban VS, Kiss J, Kovacs J, et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells,2008,26:244-253.
    70.Imene B, Suganya S, William TW. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun, 2009,32:33-42.
    71.Sanvito F, Herrera PL, Huarte J. TGF-P influences the relative development of the exocrine and endocrine pancreas in vitro. Development,1994,120:3451-3462.
    72.Otonkoski T, Cirulli V, Beattie M, et al. Role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic P-cell growth. Endocrinology,1996,137:3131-3139.
    73.Li TS, HayashiM, Ito H, et al. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells. Circulation,2005,111:2438-2445.
    74.Luo X, Yang H, Kim IS, et al. Systemic transforming growth factor-betal gene therapy induces Foxp3+regulatory cells, restores self-tolerance, and facilitates regeneration of beta cell function in overtly diabetic nonobese diabetic mice. Transplantation,2005,79:1091-1096.
    75.Dai C, Li Y, Yang J, et al. Hepatocyte growth factor preserves beta cell mass and mitigates hyperglycemia in streptozotocin-induced diabetic mice. J Biol Chem,2003,278:27080-27087.
    76.Garcia OA, Takane KK, Reddv VT, et al. Adenovirus-mediated hepatocyte growth factor expression in mouse islets improves pancreatic islet transplant performance and reduces beta cell death. J Biol Chem,2003,278:343-351.
    77.Lopez-Talavera JC, Garcia OA, Sipula I, et al. Hepatocyte growth factor gene therapy for pancreatic islets in diabetes:reducing the minimal islet transplant mass required in a glucocorti-coid-free rat model of allogeneic portal vein islet transplantation. Endocrinology,2004,145: 467-474.
    78.Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med,2000,6: 1282-1286.
    79.Koc ON, Lazarus HM. Mesenchymal stem cells:heading into the clinic. Bone Marrow Trans-plant,2001,27:235-239.
    80.Ryang Hwa Lee, Min Jeong Seo, Roxanne L, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. PNAS 2006; 103:17438-17443
    81.Li JH, Zhang N, Wang JA. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endo- crinol Invest,2008,31:103-110.
    82.Zhang N, Li J, Luo R, et al. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes,2008,116: 104-111.
    83.Shibata T, Naruse K, Kamiya H, et al. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes,2008,57:3099-30107.
    84.Kwon DS, Gao X, Liu YB, et al. Treatment with bone marrow-derived stromal cells acceler-ates wound healing in diabetic rats. Int Wound J,2008,5:453-463.
    85.Vojtassak J, Danisovic L, Kubes M, et al. Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett,2006,27:134-137.
    86.郭连瑞,谷涌泉,张建,等.自体骨髓干细胞移植治疗糖尿病足13例报告.中华糖尿病杂志,2004,12:313-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700