连续材料改性处理常压等离子体中试装置的研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体材料表面改性,作为一种清洁的干式处理技术,具有极强的吸引力和竞争优势,近几十年来已经有了较大的发展,是一项具有重要理论意义和实用价值的研究课题。应用常压等离子体进行等离子体处理目前已经成为一种新的研究方向,这是由于其无须昂贵的真空系统和分批处理。
     介质阻挡放电(DBD),也被称为无声放电,是由两个平行的平面电极或圆柱形电极间至少存在一个独立的介质层,并在交流电源驱动下的放电,是一种能够在大气压条件下获得非平衡态等离子体的有效手段,在等离子体化学工程、材料表面改性、纳米材料制备、环境保护等方面获得了广泛应用。
     本论文结合上海市教育委员会曙光计划资助项目“合成纤维织物大气压下介质阻挡放电改性处理”(项目编号:02SG28),在课题组已有研究成果的基础上,提出并自行设计建立了一台工业用连续材料改性处理DBD的中试装置,这台装置的设计建立对今后同类设备的研发与推广,以及常压等离子体的工业应用具有重要的意义。
     本论文采用示波器李萨如图形测量DBD功率,在常温常压环境下使用DBD光谱诊断装置,对常压DBD在材料连续改性过程中的等离子体发射光谱进行诊断,记录和比较了氮气、氦气和氩气常压DBD发射光谱,定性分析了N_2第二正系跃迁(C~3π_(?)→B~3π_g)的谱线、He的两条明显特征谱线(3~1P_1→2~1S_0,3~3D→3~3P)和Ar集中在680-780nm范围内的原子发射谱线,并运用Ar元素谱线的相对强度来初步定量分析等离子体的电子温度,以达到对材料表面改性过程的实时
The surface-modification technique of materials by low temperature plasma (LTP) has been developed rapidly in past dozens of years, because it is a kind of sanitary and "dry" processing technique that has many attractive and competitive advantages. Therefore, it is a subject that has important academic significance and practical profit. Interest has grown in applying atmospheric pressure plasma to plasmas processing for the benefits this can offer to existing and potential new processes, because they do not require expensive vacuum systems and batch processing.Dielectric barrier discharge (DBD), also referred as silent discharge (SD), is characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an ac power supply. As an effective method of producing non-equilibrium plasma, it has been paid much attention to due to its prospective applications in plasma chemical engineering, material surface modification, preparation of nanometer material, environmental protection and so on.In this thesis, a continuous modification embryo device of DBD is brought forward and developed, based on previous results of our research group and "Studies on the Surface Modification to Synthetic Fibers and Fabrics Using Atmospheric Pressure Dielectric Barrier
    
    Discharge" (No: 02SG28) supported by the "Dawn Project" of Shanghai Municipal Education Commission. The developing device is great significant to the designing and manufacture of the same type instruments, and also to the industrial application of atmospheric pressure plasma.Discharge power is measured by Lissajous figure of the oscilloscope in this thesis. The spectrum lines of nitrogen, helium and argon plasma emission at atmospheric pressure were separately recorded and qualitatively analyzed using spectral diagnosis equipment of atmospheric pressure DBD plasma. The spectrum lines of the second positive system of nitrogen (C 3 -B3g)3 two characteristic spectrum lines of helium (31P1 -21S0,33D-33P), and all of neutral argon atom spectrum lines in the range 680 to 780nm are recognized. For controlling the process of material surface modification promptly, the electron temperature of DBD plasma is quantitatively analyzed using relative intensity of argon spectrum lines.Ultrahigh molecular weight polyethylene (UHMWPE) fibers are very low density, high strength, high modulus, excellent energy absorbance, good impact resistance, good corrosion resistance and so on. However, UHMWPE fibers and its composites have not been extensively applied in reality, because UHMWPE fibers don't have heavy polar group, ultrahigh drawn fibers' surface is quite smooth, and fiber-matrix interfacial adhesive strength is low. It is difficult for both fibers and resin to form chemical bond. Thus, UHMWPE fibers' surface was modified continuously using atmospheric pressure argon DBD plasma. It is observed that the surface of treated fibers has formed the shallow holes of etching by scanning electron microscope (SEM) micrographs, and the bonding property between plasma treated fiber and epoxy resin has been improved greatly.Polypropylene (PP) fiber's interfacial adhesion is bad either, because its surface is smooth and fiber-matrix interfacial adhesive
    
    strength is low. It is so difficult for both fibers and resin to form chemical bond that mechanics performances of the fiber composite are influenced. It is observed that the PP fibers' hydrophily and hygroscopicity are improved greatly due to etching effect after continuous plasma modification of atmospheric pressure DBD.It is investigated that the permittivity and thickness of the dielectric materials affect the wettability of textile materials, which are treated by DBD plasma. The experimental result demonstrates that it is beneficial for the surface modification of the material along with the permittivity increase and the thickness decrease.Atmospheric pressure DBD plasma has become higher and higher with its ever-increasing applications, but the
引文
[1] J.R.Roth.工业等离子体工程(第1卷基本原理)[M].科学出版社,1998
    [2] 郭奕玲,沈慧君.物理学史[M].清华大学出版社,1993
    [3] [美]N.A.克拉尔,A.W.特里维尔皮斯.等离子体物理学原理[M].北京:原子能出版社,1983
    [4] 金佑民,樊友三.低温等离子体物理基础[M].清华大学出版社,1983
    [5] 甄汉生.等离子体加工技术[M].清华大学出版社,1990
    [6] 李银安,张友鹤,王新新.等.等离子体的定义问题[J].物理,1992,21(12):758
    [7] 徐学基,诸定昌.气体放电物理[M].复旦大学出版社,1996
    [8] [美]F.F.陈.等离子体物理学导论[M].人民教育出版社,1980
    [9] 方振逵.等离子体聚合及其对聚烯烃表面性能的影响[J].高分子材料科学与工程,1998,14(6):14
    [10] 胡建芳,洪明苑.低温等离子体及其在材料表面改性中的应用[J].物理,1987,16(2):89~92,98
    [11] 杨超,邱高.等离子体表面技术和在有机材料改性应用中的新进展[J].高分子材料科学与工程,2001,17(6):30
    [12] 柯勤飞,钱春芳.熔喷聚丙烯非织造布的接枝改性工艺及性能研究[J].中国纺织大学学报,1998,24(1):9
    [13] 李云,柯勤飞.熔喷非织造布白细胞过滤材料表面接枝改性及性能测试[J].中国纺织大学学报,1999,25(5):101
    [14] 柯勤飞,李云.PBT熔喷非织造布的等离子体接枝改性工艺及性能研究[J].中国纺织大学学报,2000,26(1):32
    [15] 姚春秀,柯勤飞.丙烯酰胺接枝改性熔喷聚酯非织造布的研究[J].中国纺织大学学报,2000,26(4):85
    [16] 姚春秀,柯勤飞.吸附性白细胞滤材表面润湿性能的测试[J].产业用纺织品,2000,18(7):12
    [17] 陈苏.等离子技术在纺织工业中的应用[J].纺织导报,1999,5:80
    [18] U. Kogelschatz. Filamentary, patterned, and diffuse barrier discharge[J]. IEEE Trans. Plasma Sci., 2002, 30: 1400
    [19] Kanazawa S., Kogoma M., Moriwaki T., et al. Stable glow plasma at atmospheric pressure [J]. J. Phys. D: Appl. Phys, 1988, 21: 838
    [20] Massines F., Rabehi A., Decomps P., et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier [J]. J. Appl. Phys., 1998, 83(6): 2950
    
    [21] Gadri R. B., et al. An overview of the physical processes, phenomenology, and applications of the one atmosphere uniform glow discharge plasma (OAUGDP)[A]. 1st Intern. Symp. Nonthermal Medical/Biological Treatments Using Electromagnetic Field and Ionized Gas[C], Norfolk, VA. USA, 1999, G-5: 12
    [22] 齐会民,张敏利,徐学基.等.低温等离子体处理毛条工艺及设备研究[J].上海纺织科技,1993,5:4;6:7
    [23] Zhang G. Q., et al. Proc. ISPC-13[C]. Beijing: Peking Univ. Press, 1997. 1933
    [24] Xu Y. L., Xu X. J.. Proc. ISPC-13[C]. Beijing: Peking Univ. Press, 1997. 725
    [25] Gadri R. B.. Numerical simulation of an atmospheric pressure and dielectric barrier controlled glow discharge [D]. Ph D. Dissertation Order 2644, 1997, University Paul Sabatier, Toulouse Ⅲ, France
    [26] 王新新,芦明泽,蒲以康.空气中大气压下均匀辉光放电的可能性[J].物理学报,2002,52(12):2778
    [27] 唐晓亮,冯贤平,黎志光,等.常压介质阻挡放电等离子体发射光谱诊断及其在材料表面改性中的应用[J].光谱学与光谱分析,2004,24(11):1437
    [28] 杨超.介质阻挡放电对血液过滤材料表面改性的研究[D].上海:东华大学硕士学位论文,2001
    [29] 黎志光.大气压下的准辉光放电及其在纺织材料表面改性中的应用[D].上海:东华大学硕士学位论文,2003
    [30] 任忠夫.涤纶织物的介质阻挡放电连续处理改性[D].上海:东华大学硕士学位论文,2004
    [31] 杨超,邱高.新型常压等离子体源及在血液过滤材料表面改性中的应用研究[J].东华大学学报,2001,27(6):91
    [32] 唐晓亮,任忠夫,邱高,等.常压介质阻挡放电等离子体改善涤纶织物的染色性能研究[J].印染,2004,41(19):1
    [33] 赵化侨.等离子体化学与工艺[M].中国科学技术大学出版社,1993
    [34] 姜生,晏雄.改善超高分子量聚乙烯纤维粘合性能的研究[J].玻璃钢/复合材料,2004,3:47
    [35] H. Schonhorn. Surface treatmeat of polymers for adhesive bonding [J]. Journal of Applied Polymer Science, 1967, 11: 1461
    
    [36] Masaru Mori, Yoshikimi Uyama. Surfac modification of polyethylene fiber by graft polymerization [J]. Journal of Polymer Science, 1994, 32: 168
    [37] 郑震,施楣梧,周国泰,等.超高分子量聚乙烯纤维表面处理的研究进展[J].合成纤维,2002,31(5):9
    [38] 吴越,胡福增,骆玉祥,等.空气等离子法处理超高分子量聚乙烯纤维[J].功能高分子学报,2001,14(2):190
    [39] 王书忠,吴越,骆玉祥,等.超高分子量聚乙烯纤维的低温等离子处理[J].复合材料学报,2003,20(6):98
    [40] D J Carlsson, G Colin. Oxidation behavior of high strength chainpolyethylene fibers [J]. Textile Research Journal, 1988, 58: 520
    [41] 吴越,张洪生,薛志云,等.等离子接枝处理超高分子量聚乙烯纤维[J].功能高分子学报,2001,14(1):76
    [42] 于伟东,储才元.纺织物理[M].东华大学出版社,2002
    [43] 王善元,张汝光.纤维增强复合材料[M],中国纺织大学出版社,1998
    [44] Paul Smith, Piet J Lemstra. Ultra-high-Strength Polyethylene Filaments by Solution Spinning/Drawing [J]. J. Mater. Sci., 1980, 15: 505
    [45] Tissington B., Pollard G., Ward I. M.. A study of the influence of fibre/resin adhesion on the mechanical behavior of ultra-high-modulus polyethylene fibre composites [J]. J. Mater. Sci., 1991, 26: 82
    [46] Tissington B., Pollard G., Ward I. M.. Study of the impact behavior of ultra-high-modulus polyethylene fibre composites [J]. Composite Science and Technology, 1992, 44(3): 197
    [47] L. T. Drzal, M. Madhukar. Fibre-matrix adhesion and its relationship to composite mechanical properties [J]. J. Mater. Sci., 1993, 28: 569
    [48] 刘松涛,晏雄.改善丙纶吸湿性能的方法[J].技术创新,2004,(8):14
    [49] 陈彦模,朱美芳.聚丙烯纤维发展现状和未来趋势展望[J].江苏纺织,1999,(5):28
    [50] 吴宏仁,赵华山,等.聚丙烯纤维的科学与工艺[M].北京:纺织工业出版社,1987
    [51] 史庆军.常压辉光放电及其对涤纶织物的表面改性研究[D].辽宁:大连理工大学硕士学位论文,2001
    [52] 饭田修一,等编.张质贤,等译.物理学常用数表[M].科学出版社,1979
    [53] 唐晓亮,邱高,任忠夫,等.常压介质阻挡放电的部分电学参量研究[J].高电压技术,2004,30(9):55
    
    [54] 张芝涛,白敏冬,赵艳辉,等.高浓度臭氧发生器放电特性实验研究[J].高电压技术,2003,29(5):33
    [55] 朱士尧.等离子体物理基础[M].科学出版社,1983
    [56] 项志遴,俞昌旋.高温等离子体诊断技术[M].上海科学技术出版社,1982
    [57] F Debal, M Wautelet, J Bretagne, et al. Spatiallu-resolved spectroscopic optical emission of dc-magnetron sputtering discharges in argon-nitrogen gas mixtures [J]. Plasma Sources Sci. Technol. 2000, 9(1): 152.
    [58] 丁学成.等离子体增强化学气相沉积法制备氮化碳薄膜及其气相反应过程研究[D].河北:河北大学硕士学位论文,2001
    [59] 冉俊霞,毛志国,董丽芳.大气压氩气介质阻挡放电光谱[J].河北大学学报(自然科学版),2004,24(5):486
    [60] HAHN T. D., WIESE W. L.. Atomic transition probability ratio between some Ar Ⅰ 4s-4p and 4s-5p transitions [J]. Phys. Rev. A, 1990, 42(9): 5747
    [61] WIESE W. L., BRAULT J. W., DANZMANN K., et al. Unified set of atomic transition probabilitie5for neutral argon [J]. Phys. Rev. A, 1989, 39(5): 2461
    [62] 陆同兴,赵献章,崔执凤.用发射光谱测量激光等离子体的电子温度与电子密度[J].原子与分子物理学报,1994,11(2):120
    [63] (苏)德列斯文,著.唐福林,陈允明,毛斌,译.低温等离子体物理及技术[M].科学出版社,1980
    [64] 李廷钧.发射光谱分析[M],原子能出版社,1983
    [65] Campbell H. D., Barnard A. J. Measurement of Relative Transition Probabilities in Ar Ⅱ [J]. J. Quant. Spectro. Radiat. Transfer., 1969, 9: 461
    [66] 杨灿珠,普小云,林理忠,等.表面波型微波感耦常压氩等离子体的光谱诊断[J].光谱学与光谱分析,1997,17(6):40
    [67] Meiners H. On the Calculation of Transition Probabilities in the Argon Ⅰ Spectrum [J]. J. Quant. Spectrosc. Radiat. Transfer., 1969, 9: 1493
    [68] Murphy P. Transition Probabilities in the Speetra of Ne Ⅰ, Ar Ⅰ, and Kr Ⅰ[J]. Journal of the Optical Society of America, 1968, 58(9): 1200
    [69] Z. Chen. Impedance Matching for One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Reactors [J]. IEEE Trans. Plasma Sci., 2002, 30(5): 1922
    [70] 刘鹏.大气压辉光放电实验研究[D].安徽:中国科学技术大学硕士学位论文,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700