选择性封闭肿瘤STAT3的新型溶瘤腺病毒M3的构建及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     选择性封闭肿瘤STAT3的新型溶瘤腺病毒M3的构建
     目的本实验室的第一代腺病毒载体(Ad5/dE1/TK)不能复制,体内存在时间短;第二代腺病毒载体(Ad5/dE1A/6.7K/gp19K)能复制,有一定的选择性,病毒裂解肿瘤细胞释放的肿瘤抗原可激发机体的特异性免役反应,对正常细胞有一定的毒性;针对以上两种腺病毒载体缺点,本课题构建一种具有更高肿瘤特异性的新型溶瘤腺病毒基因治疗载体(Ad5/dE1A/ADP),并将该载体和癌症治疗的一个理想靶点相结合-命名为M3,使之具有更高的选择性复制能力、病毒扩增量大、高效表达靶基因、有一定程度的免疫逃避能力和对正常细胞几无毒性的特点,具有强大的肿瘤特异性杀伤效应,为肿瘤的治疗提供了一个强有力的工具。方法应用层析技术获取腺病毒的TP-DNA,二次PCR技术对Ad5基因组E3区的ADP基因进行定点缺失,通过限制酶消化、连接酶连接、转化、克隆、体外同源重组、钙磷转染、细胞病毒内包装、腺病毒单克隆纯化等技术获得重组腺病毒,通过PCR扩增、测序技术对该重组腺病毒进行鉴定。CsCl梯度液超速离心获得纯化的重组腺病毒。结果成功的获得了具有高包装效率的腺病毒TP-DNA,通过该TP-DNA和穿梭载体的同源重组获得了正确的重组腺病毒。结论获得的重组腺病毒基因治疗载体M3具有预想的各种技术特征,为研究该载体的应用价值奠定了基础。
     第二部分
     高度肿瘤特异性新型溶瘤腺病毒载体M3基本生物学特性的鉴定
     目的对已构建成功的这种具有更高肿瘤特异性的新型溶瘤腺病毒载体M3的基本生物学特性进行鉴定,判断该载体是否满足本课题最初的设想。方法应用PCR检测该载体携带的外源基因(反义STAT3 cDNA片段)的表达模式,外源基因的表达是否模拟了被替代的腺病毒基因(ADP)的表达模式;real-time PCR检测ADP基因的缺失或反义STAT3 cDNA片段的插入对E3区其它基因表达的影响;CPE实验检测该载体对不同肿瘤细胞和正常细胞的裂解能力;病毒爆发实验及TCID50检测ADP基因的缺失或反义STAT3 cDNA片段的插入对子代病毒产量的影响。结果M3所携带外源基因主要在病毒复制的晚期表达,且其表达依赖于病毒DNA的复制,与被替代的腺病毒基因(ADP)的表达模式相一致;ADP基因的缺失或反义STAT3 cDNA片段的插入对其周围E3区的其它基因没有产生显著的影响;M3在肿瘤细胞种引起的CPE效应迟于相应的野生型病毒,5000倍于野生型腺病毒感染量时亦未在正常的细胞中观察到明显的CPE效应;ADP基因的缺失使得肿瘤细胞内子代病毒的量显著增加。结论获得的重组腺病毒M3具有预想的各种基本生物学特性,为该载体的应用奠定了基础。
     第三部分
     高度肿瘤特异性新型溶瘤腺病毒载体M3治疗效应的检测
     目的验证M3对靶蛋白的封闭效应、体外对肿瘤细胞表型的影响和体内的溶瘤效应。方法Western blot免疫印迹和real-time PCR检测M3对靶蛋白的封闭及其下游效应蛋白的调节;应用流式细胞分析技术检测M3在体外对不同组织来源的肿瘤细胞的杀伤能力;耐药细胞株的应用检测M3的化疗增敏作用;Transwell体外侵袭实验观察M3对不同肿瘤细胞侵袭能力的影响;异位及原位肿瘤移植模型检测M3的体内治疗效应。结果Western blot结果表明M3可有效抑制肿瘤细胞内靶蛋白STAT3的表达并下调其下游蛋白c-myc、Bcl-xL、survivin、VEGF、MMP-9和Tim3的表达,但对正常细胞HUVEC内的STAT3的表达没有影响;流式分析结果显示与Ad5/dE1A及Ad5/dE1A/ADP相比,M3对不同组织来源的肿瘤细胞具有强大的杀伤力,肿瘤细胞的最大凋亡率可达80%以上,显著增强了卵巢癌耐药细胞系C13K对药物的敏感性;体外侵袭实验表明M3可显著抑制肿瘤细胞的侵袭能力;前列腺癌及胃癌皮下移植瘤动物模型的实验结果表明瘤内直接注射M3可显著抑制肿瘤的生长,胃癌原位移植模型的实验结果表明,经静脉注射病毒不仅可显著抑制肿瘤的生长,同时亦显著的抑制了胃癌细胞的腹腔种植性转移。结论重组腺病毒M3可有效的封闭STAT3蛋白并影响其下游蛋白的表达,对肿瘤的杀伤效应强大,具有潜在的临床应用价值。
PART I
     Construction and Application of a Newly Oncolytic Adenovirus Vector M3 Selectively Blocking STAT3 of Tumor
     Objectives The first generation of adenovirus vevtor , Ad5/dE1/TK, vector in our laboratory couldn’t replicate and stayed in vivo for a short time. The second generation of adenovirus vector, Ad5/dE1A/6.7K/gp19K, which could replicate and was selective at some degree, was toxical to normal cells because it could lysis tumor cells and released tumor antigens that could stimulate specifically immune response. To aim directly at the shortcomings of two adenovirus vectors above, we planed to construct a newly oncolytic adenovirus vector, Ad5/dE1A/ADP, with more tumor specifity and then combined with an ideal target of cancer therapy.That would be the third genetion of aenovirus vector named M3. The vector would had powerful tumor-specifically effect and provide a potent approach of cancer therapy because of its more selectively replicative ability, high expression of target gene, some ability of immune evasion and minimal toxicity to normal cells. Methods To obtain TP-DNA of adenovirus by chromotography techniques; to delete ADP gene at fix-point in E3 domain of adenovirus genome by two rounds PCR; to acquire recombinant adenovirus by restriction endonuclease digesting, ligase ligating, transformation, cloning, homologous recombination in vitro, Ca-P transfection, packing adenovirus in cells, adenovirus monoclone purification and so on; to verify the recombinant adenovirus by PCR and sequencing; to gain purified recombinant adenovirus by CsCl gradient centrifuge. Results we obtained TP-DNA with high package effect successfully and gained right recombinant adenovirus through homologous recombination of the TP-DNA and shuttle vector. Conclusion Obtained recombinant adenovirus vector M3 for gene therapy that had a variety of anticipated technological characters established fundament for application of the vector.
    
     PARTⅡ
     Biological character verification of a more tumor-specific and newly oncolytic adenovirus vector M3
     Objectives We verified the biological characters of the more tumor-specific and newly oncolytic adenovirus vector that had constructed successfully to judge whether the vector satisfied the first expectation of our study. Methods We detected the expression model of exogenous gene (antisense STAT3 cDNA fragment) taken by the vector and detected if the expression of exogenous gene imitated the expression of substituted ADP by PCR. After deletion of ADP or insertion of antisense STAT3 cDNA fragment, effects on other gene expression in E3 domain was determined by real-time PCR. CPE assay detected the ability of the vector that lysised different tumor cells and normal cells. We detected whether deletion of ADP or insertion of antisense STAT3 cDNA fragment would affect on progeny virus production by virus burst assay and TCID50 assay. Results Exogenous gene taken by recombinant adenovirus was expressed in the late stage of the virus replication and the expression, which depended on virus DNA replication, was identified with expression models of substituted ADP. There was no effect on surrounding other gene in E3 domain after deletion of ADP or insertion of antisense STAT3 cDNA fragment. The occurrence of CPE effect of tumor cells by the virus was later than it by wild type adenovirus. And we didn’t observed the apparent CPE effect in normal cells when the amount of the recombinant adenovirus was 5000 times as many as that of wild type adenovirus. The production of the recombinant adenovirus was marked increased because of deletion of ADP. Conclusion Obtained recombinant adenovirus vector for gene therapy that had a variety of anticipated biological characters established fundament for application of the vector.
     PARTⅢ
     Analysis of Therapeutic Effects of the More Tumor-specific and Newly Oncolytic Adenovirus Vector M3
     Objectives To verify the effects of M3 on its target protein, affects of M3 on tumor cells phenotype in vitro and oncolytic effect of M3 in vivo. Methods The blocking effects of M3 on its target protein and the regulations of M3 on its downstream effect proteins were determined by western blot assay and real-time PCR. Lethal effect of M3 on a variety of tumor cells in vitro and sensitization effect by chemotherapy of M3 on drug resistant cell lines were determined by flow cytometry. We observed affects of invasion ability of M3 on different tumor cells by transwell invasion assay in vitro. To detect therapeutic effect of M3 in vivo by dystopic and orthotopic tumor transplanted model. Results Western blot results showed that M3 could effectively inhibit expression of STAT3 protein and down-regulate expression of downstream proteins such as c-myc、Bcl-xL、survivin、VEGF、MMP-9 and Tim3,but had no effect on STAT3 expression of mormal cells HUVEC. Analysis of flow cytometry demonstrated that M3 had potent lethal effect on tumor cells derived from different tissues or organs compared to Ad5/dE1A and Ad5/dE1A/ADP and the maximum apoptosis rate of tumor cells induced by M3 reached to more than 80%. And what’s more, M3 still enhanced significantly the sensibility of ovarian cancer cell line C13K to chemotherapeutic drugs. Transwell assay displayed M3 inhibited effectively invasive ability of tumor cells. In subcutaneouly transplant mice model of prostatic carcinoma and gastric cancer, M3 that was intratumorally injected could markedly restrain the growth of tumor cells. In orthotopic mice model of gastric cancer, M3 by intravenous injection not only markedly inhibited the growth of gastric cancer cells, but also prevented enterocoelia implantation metastasis of them. Conclusion Recombinant adenovirus M3 could block validly the expression of STAT3 protein and affect the expression of downstream protein in the mean time. With the potent lethal effect on tumor cells, M3 possessed the potential value of clinical application.
引文
1、Barker DD, Berk AJ. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection . Virology 1987, 156: 107–121.
    2、Khuri FR et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000, 6: 879–885.
    3、Heise C, Kirn DH. Replication-selective adenoviruses as oncolytic agents. J Clin Invest 2000, 105: 847–851.
    4、Ganly I et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000, 6: 798–806.
    5、Kirn D, Hermiston T, McCormick F. ONYX-015: clinical data are encouraging. Nat Med 1998, 4: 1341–1342.
    6、Darnell, J. E. Jr Transcription factors as targets for cancer therapy. Nature Rev. Cancer 2, 740–749 (2002). Superb review that makes a persuasive case for targeting transcription factors for cancer therapy.
    7、Egan, S. E. & Weinberg, R. A. The pathway to signal achievement. Nature 365, 781–783 (1993).
    8、Darnell, J. E. Jr STATs and gene regulation. Science 277, 1630–1635 (1997).
    9、Bromberg, J. & Darnell, J. E. Jr The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19, 2468–2473 (2000).
    10、Bwman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene 19, 2474–2488 (2000).
    1 McConnell MJ , Imperiale MJ . Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther, 2004, 15 : 1022-1033
    2 Wang X, Bergelson JM. Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. J Virol, 1999, 73: 2559-2562.
    3 Oliver Meier Urs F. Greber. Adenovirus endocytosis. J Gene Med., 2004, 6: 152-163.
    4 Nadeau I, Kamen A. Production of adenovirus vector for gene therapy. Biotechnol Adv, 2003, 728: 475
    5 Fueyo J, Gomez-Manzano C, Alemany R, etal. Amutant oncolytic adenovirus targeting the Rb pathway p roduces anti-glioma effect in vivo. Oncogene, 2000, 19: 2-12.
    6 Curiel DT. The development of conditionally rep licative adenoviruses for cancer therapy. Clin Cancer Res, 2000, 6: 3395-3399.
    7 Giacomo GV , Frederick FL. Clinical trials of adenoviruses in brain tumors: a review of Ad-p53 and oncolytic adenoviruses. Journal of Neuro-Oncology, 2003, 65: 237-246.
    8 Heise C, Kirn DH. Rep lication - selective adenoviruses as oncolytic agents. Journal of Clinical Investigation, 2000, 105: 847-851.
    9 Hermiston T.W., Tripp R.A., Sparer T., etal..Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenaldomain that are required for class I antigen binding and protectionfrom adenovirus-specific cytotoxic T lymphocytes. J. Virol. 1993, 67: 5289–5298.
    10 Dimitrov, T., et al. Adenovirus E3-10.4K/14.5K protein complex inhibits tumor necrosis factor-induced translocation of cytosolic phospholipase A2 to membranes. J. Virol. 1997, 71: 2830–2837
    11 A R Moise, J R Grant, T Z Vitalis, et al. Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release. J Virol, 2002, 76:1578 - 1587.
    12 Gooding L R, Sofola I O, Tollefson AE, et al . The adenovirus E3-14. 7K protein is a general inhibitor of tumor necrosis factormediated cytolysis. J Immunol, 1990 ,145: 3080 - 3086.
    13 Ranheim T S ,Shisler J ,Horton TM,et al . Characterization of mutants within the gene for the adenovirus E3 14.7-kilodalton protein which prevents cytolysis by tumor necrosis factor. J Virol, 1993, 67: 2159-2167.
    14 Kim HJ, Foster M P. Characterization of Ad5 E3-14.7K, an adenoviral inhibitor of apoptosis: Structure, oligometric state, and metal binding. Protein Science, 2002, 11: 1117-1128.
    15 Fessler S P, Chin Y R, Horwitz M S. Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J Virol, 2004, 78: 13113-13121.
    16 Swisher SG, Roth JA, Nemunaitis J et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl Cancer Inst. 1999, 91: 763–771.
    17 Koeneman KS, Kao C, Ko SC et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J. Urol. 2000, 18:102–110.
    18 Schuler M, Rochlitz C, Horowitz JA et al. A Phase I study of adenovirus-mediated wild type p53 gene transfer in patients with advanced non-small cell lung cancer. Hum. Gene Ther. 1998, 9: 2075–2082.
    19 Kirn, D.H., and McCormick, F. Replicating viruses as selective cancer therapeutics. Mol. Med. Today. 1996, 2: 519–527.
    20 Day, D.B., Zachariades, N.A., and Gooding, L.R. Cytolysis of adenovirus-infected murine fibroblasts by IFN-gamma-primed macrophages is TNF- and contact-dependent. Cell Immunol. 1994, 157: 223–238.
    21 Gooding, L.R. Regulation of TNF-mediated cell death and inflammation by human adenoviruses. Infect. Agents Dis. 1994, 3:106–115.
    22 Shisler, J., Duerksen, H.P., Hermiston, T.M., Wold, W.S., and Gooding, L.R. Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis. J. Virol. 1996, 70: 68–77.
    1 Barker DD, Berk AJ. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection . Virology 1987, 156: 107–121.
    2 Khuri FR et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000, 6: 879–885.
    3 Heise C, Kirn DH. Replication-selective adenoviruses as oncolytic agents. J Clin Invest 2000, 105: 847–851.
    4 Ganly I et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000, 6: 798–806.
    5 Kirn D, Hermiston T, McCormick F. ONYX-015: clinical data are encouraging. Nat Med 1998, 4: 1341–1342.
    6 Hermiston T. Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer. J Clin Invest. 2000, 105: 1169–1172.
    7 Hawkins LK et al. Gene delivery from the E3 region of the replicating human adenovirus: evaluation of the 6.7 K/gp19 K region. Gene Therapy 2001, 8: 1123–1131.
    8 Berkner KL, Sharp PA. Generation of adenovirus by transfection of plasmids. Nucleic Acids Res 1983, 11: 6003–6020.
    9 Kelly TJ Jr, Lewis AM Jr. Use of nondefective adenovirus-simian virus 40 hybrids for mapping the simian virus 40 genome. J Virol 1973, 12: 643–652.
    10 Flint SJ et al. Adenovirus transcription. II. RNA sequences complementary to simian virus 40 and adenovirus 2DNA in AD2+ND1- and AD2+ND3-infected cells. J Virol 1975, 16: 662–673.
    11 Tollefson AE, Scaria A, Saha SK, etal. The 11 600-MW protein encoded by region E3 of adenovirus is expressed early but is greatly amplified at late stages of infection. JVirol 1992, 66: 3633–3642.
    12 Wold WS et al. Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic. Curr Opin Immunol, 1999, 11: 380–386.
    13 Tollefson AE et al. The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants. Virology 1996, 220: 152–162.
    14 Tollefson AE et al. The adenovirus death protein (E3-11.6 K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol 1996, 70: 2296–2306.
    15 Hermiston T.W., Tripp R.A., Sparer T., etal..Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenaldomain that are required for class I antigen binding and protectionfrom adenovirus-specific cytotoxic T lymphocytes. J. Virol. 1993, 67: 5289–5298.
    16 Dimitrov, T., et al. Adenovirus E3-10.4K/14.5K protein complex inhibits tumor necrosis factor-induced translocation of cytosolic phospholipase A2 to membranes. J. Virol. 1997, 71: 2830–2837
    17 A R Moise, J R Grant, T Z Vitalis, et al. Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release. J Virol, 2002, 76: 1578 - 1587.
    18 Gooding L R, Sofola I O, Tollefson AE, et al . The adenovirus E3-14. 7K protein is a general inhibitor of tumor necrosis factormediated cytolysis. J Immunol, 1990 ,145: 3080 - 3086.
    19 Ranheim T S ,Shisler J ,Horton TM,et al . Characterization of mutants within the gene for the adenovirus E3 14.7-kilodalton protein which prevents cytolysis by tumor necrosis factor. J Virol, 1993, 67: 2159-2167.
    20 Kim HJ, Foster M P. Characterization of Ad5 E3-14.7K, an adenoviral inhibitor ofapoptosis: Structure, oligometric state, and metal binding. Protein Science, 2002, 11: 1117-1128.
    21 Fessler S P, Chin Y R, Horwitz M S. Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J Virol, 2004, 78: 13113-13121.
    1. Hahn, W. C. & Weinberg, R. A. Rules for making human tumor cells. New England J. Med. 347, 1593–1603 (2002).
    2. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).
    3. Darnell, J. E. Jr Transcription factors as targets for cancer therapy. Nature Rev. Cancer 2, 740–749 (2002). Superb review that makes a persuasive case for targeting transcription factors for cancer therapy.
    4. Darnell, J. E. Jr, Kerr, I. M. & Stark, G. R. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).
    5. Darnell, J. E. Jr STATs and gene regulation. Science 277, 1630–1635 (1997).
    6. Bromberg, J. & Darnell, J. E. Jr The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19, 2468–2473 (2000).
    7. Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene 19, 2474–2488 (2000).
    8. Darnell, J. E. Jr Studies of IFN-induced transcriptional activation uncover the Jak–Stat pathway. Interferon Cytokine Res. 18, 549–554 (1998).
    9. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).
    10. Levitzki, A. Protein tyrosine kinase inhibitors as novel therapeutic agents. Pharmacol. Ther. 82, 231–239 (1999).
    11. Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science 287, 1969–1973 (2000).
    12. Buettner, R., Mora, L. B. & Jove, R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 8, 945–954 (2002).
    13. Bromberg, J. F., Horvath, C. M., Besser, D., et al. Stat3 activation is required for cellular transformation by v-src. Mol. Cell. Biol. 18, 2553–2558 (1998).
    14. Mora, L. B. et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res. 62, 6659–6666 (2002).
    15. Song, J. I. & Grandis, J. R. STAT signaling in head and neck cancer. Oncogene 19, 2489–2495 (2000).
    16. Reddy, E. P., Korapati, A., Chaturvedi, P. & Rane, S. IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19, 2532–2547 (2000)
    17. Levy, D. E. & Darnell, J. E Jr Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).
    18. Levy, D. E. & Darnell, J. E Jr Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).
    19. Silvennoinen, O., Schindler, C., Schlessinger, J. & Levy, D. E. Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science 261, 1736–1739 (1993).
    20. Zhong, Z., Wen, Z. & Darnell, J. E. Jr Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95–98 (1994).
    21. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).
    1 McConnell MJ , Imperiale MJ . Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther, 2004, 15 : 1022-1033
    2 Wang X, Bergelson JM. Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. J Virol, 1999, 73: 2559-2562.
    3 Oliver Meier Urs F. Greber. Adenovirus endocytosis. J Gene Med., 2004, 6: 152-163.
    4 Nadeau I, Kamen A. Production of adenovirus vector for gene therapy. Biotechnol Adv, 2003, 728: 475
    5 Fueyo J, Gomez-Manzano C, Alemany R, etal. Amutant oncolytic adenovirus targeting the Rb pathway p roduces anti-glioma effect in vivo. Oncogene, 2000, 19: 2-12.
    6 Curiel DT. The development of conditionally rep licative adenoviruses for cancer therapy. Clin Cancer Res, 2000, 6: 3395-3399.
    7 Giacomo GV , Frederick FL. Clinical trials of adenoviruses in brain tumors: a review of Ad-p53 and oncolytic adenoviruses. Journal of Neuro-Oncology, 2003, 65: 237-246.
    8 Heise C, Kirn DH. Rep lication - selective adenoviruses as oncolytic agents. Journal of Clinical Investigation, 2000, 105: 847-851.
    9 Jackson M R ,Nilsson T ,Peterson PA. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J, 1990, 9: 3153-3162.
    10 Krajcsi P, Tollefson AE, Anderson CW, et al. The E3-10.4K protein of adenovirus is an integral membrane protein that is partially cleaved between Ala22 and Ala23 and has a Ccyt orientation. Virology, 1992, 187: 131-144.
    11 Fessler SP, Chin YR. Horwitz MS. Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J Virol, 2004, 78: 13113-13121.
    12 Chin YR, Horwitz MS.Mechanismfor removal of tumor necrosis factor receptor 1 from the cell surface by the adenovirus RIDalphaPbeta complex. Virol, 2005,79:13606-13617.
    13 Lichtenstein D L, Doronin K, Toth K. Adenovirus E3-6. 7K protein is required in conjunction with the E3 - RID protein complex for the internalization and degradation of TRAIL receptor 2. J Virol, 2004, 78: 12297-12307.
    14 Lichtenstein DL ,Krajcsi P , Esteban. The adenovirus RIDβsubunit contains a tyrosine residue that is critical for RID - mediated receptor internalization and inhibition of Fas - and TRAIL - induced apoptosis. J Virol, 2002, 76: 11329-11342.
    15 Fessler S P, Chin Y R, Horwitz M S. Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J Virol, 2004, 78: 13113-13121.
    16 Friedman J M,Horwitz M S. Inhibition of tumor necrosis factor alpha induced NF-κB activation by the adenovirus E3-10.4-14.5K complex. J Virol, 2002,76: 5515 - 5521.
    17 Moise A R, Grant J R, Lippe R,et al . The adenovirus E3-6.7K proteinadopts diverse membrane topologies following posttranslational translocation. J Virol, 2004, 78: 454 - 463.
    18 A R Moise, J R Grant, T Z Vitalis, et al. Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release. J Virol, 2002, 76: 1578 - 1587.
    19 Gooding L R, Sofola I O, Tollefson AE, et al . The adenovirus E3-14. 7K protein is a general inhibitor of tumor necrosis factormediated cytolysis. J Immunol, 1990 ,145: 3080 - 3086.
    20 Ranheim T S ,Shisler J ,Horton TM,et al . Characterization of mutants within the gene for the adenovirus E3 14.7-kilodalton protein which prevents cytolysis by tumor necrosis factor. J Virol, 1993, 67: 2159-2167.
    21 Kim HJ, Foster M P. Characterization of Ad5 E3-14.7K, an adenoviral inhibitor of apoptosis: Structure, oligometric state, and metal binding. Protein Science, 2002, 11:1117-1128.
    22 Tollefson A E, Scaria A, Ying B, et al . Mutations within the adenovirus death protein (ADP) alter the Kinetics of cell death of adenovirus infected cells. J Virol, 2003, 77: 7764 - 7778.
    23 Doronin K,Toth K,Kuppuswamy M,et al . Overexpression of the ADP (E3- 11. 6K) protein increases cell lysis and spread of adenovirus. Virology, 2003, 305: 378 - 387.
    24 Zoltick PW, Chirmule N, Schnell MA et al . Biology of E1-deleted adenovirus vectors in nonhuman primate muscle. J Virol, 2001, 75: 5222-5229.
    25 Hehir KM, Armentano D, Cardoza LM, et al. Molecular characterization of replication competent variants of adenovirus vectors and genome modifications to prevent their occurence. J Virol, 1996, 70: 8459-8467.
    26 Lieber A ,He CY, Kirillova I, et al. Recombinant adenoviruses with large deletions generated by remediated ecision exhibit different biological properties compared with first-generation vectors in vitro and in vivo. J Virol, 1996, 70: 8944-8960.
    27 Stephan A. Vorburger, Kelly K. Adenoviral Gene Therapy. The Oncologist. 2002; 7: 46-59.
    28 Schiedner G, Morral N, Parks RJ et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet, 1998, 18: 180-183.
    29 Gorziglia M I, Lapcevich C, Roy S et al. Generation of an adenovirus vector lacking E1, E2a, E3 and all of E4 except open reading frame 3. J Virol, 1999, 73: 6048-6055.
    30 Raper S E, Haskal ZJ, Ye X et al. Selective gene transfer into the liver of non-human primates with E1-deleted , E2A-defective ,or E1-E4 deleted recombinant adenoviruses. Hum Gene Ther, 1998, 9: 671-679.
    31 Resnick MA , Inga A. Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci USA, 2003, 100: 9934-9946.
    32 Biederer C, Ries S, Brandts CH et al . Replication-selective viruses for cancer therapy. J Mol Med, 2002, 80(3) :163-182.
    33 Kawashima T, Kagawa S, Kobayashi N et al. Telomerase-specific rep lication-selective virotherapy for human cancer. Clin Cancer Res, 2004, 10 (1 Pt 1) : 285-300.
    34 Shirakawa T, Hamada K, Zhang Z et al. A cox22-promoter-based replication-selective adenoviral vector to target the cox22-expressing human bladder cancer cells. Clin Cancer Res, 2004, 10: 4342-4350.
    35 Kesmodel S, Prabakaran I, Canter R et al. Virus mediated Oncolysis of Thyroid Cancer by a Replication-selective Adenovirus Driven by a Thyroglobulin Promoter-enhancer Region. J Clin Endocrinol Metab, 2005, 90: 3440-3452.
    36 Yu DC, Chen Y, Dilley J et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus , and paclitaxel and docetaxel. Cancer Res, 2001, 61: 517-
    37 Liu Q, Anne Z, Pina C, et al. The role of capsid endothelial interactions in the innate immume response to adenovirus vectors. Hum Gene Ther, 2003, 14: 627-643.
    38 Toyoda K, Nakane H, Heistad DD, et al. Cationic polymer and lipids augment adenovirus-mediated gene transfer to cerebral arteries in vivo. J Cereb Blood Flow Metab, 2001, 21: 1125-1131.
    39 Amalfitano A, Hauser MA, Hu H, et al . Production and characterization of improved adenovirus vectors wit h t he E1, E2a and E3 genes deleted. J Virol, 1998,72:926-933.
    40 Kochanek S, Schiedner G, Volpers C, et al . High-apacity“gutless”adenoviral vectors. Curr Opin Mol Ther, 2001, 3: 454-463.
    41 Everts B, van der Poel HG. Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther, 2005, 12:141-150.
    1. Bishop, J. M. The molecular genetics of cancer. Scienc 235, 305–311 (1987).
    2. Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).
    3. Hahn, W. C. & Weinberg, R. A. Rules for making human tumor cells. New England J. Med. 347, 1593–1603 (2002).
    4. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).
    5. Darnell, J. E. Jr Transcription factors as targets for cancer therapy. Nature Rev. Cancer 2, 740–749 (2002). Superb review that makes a persuasive case for targeting transcription factors for cancer therapy.
    6. Egan, S. E. & Weinberg, R. A. The pathway to signal achievement. Nature 365, 781–783 (1993).
    7. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nature Rev.Cancer 2, 489–501 (2002).
    8. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
    9. Darnell, J. E. Jr, Kerr, I. M. & Stark, G. R. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).
    10. Darnell, J. E. Jr STATs and gene regulation. Science 277, 1630–1635 (1997).
    11. Bromberg, J. & Darnell, J. E. Jr The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19, 2468–2473 (2000).
    12. Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene 19, 2474–2488 (2000).
    13. Darnell, J. E. Jr Studies of IFN-induced transcriptional activation uncover the Jak–Stat pathway. Interferon Cytokine Res. 18, 549–554 (1998).
    14. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. Howcells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).
    15. Levitzki, A. Protein tyrosine kinase inhibitors as novel therapeutic agents. Pharmacol. Ther. 82, 231–239 (1999).
    16. Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science 287, 1969–1973 (2000).
    17. Buettner, R., Mora, L. B. & Jove, R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 8, 945–954 (2002).
    18. Taga, T. & Kishimoto, T. gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 15, 797–819 (1997).
    19. Ihle, J. N. The Stat family in cytokine signaling. Curr. Opin. Cell Biol. 13, 211–217 (2001).
    20. Reddy, E. P., Korapati, A., Chaturvedi, P. & Rane, S. IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19, 2532–2547 (2000)
    21. Levy, D. E. & Darnell, J. E Jr Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).
    22. Hirano, T., Ishihara, K. & Hibi, M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19, 2548–2556 (2000).
    23. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).
    24. Silvennoinen, O., Schindler, C., Schlessinger, J. & Levy, D. E. Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science 261, 1736–1739 (1993).
    25. Zhong, Z., Wen, Z. & Darnell, J. E. Jr Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95–98 (1994).
    26. Ruff-Jamison, S. et al. Epidermal growth factor and lipopolysaccharide activate Stat3 transcription factor in mouse liver. J. Biol. Chem. 269, 21933–21935 (1994).
    27. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).
    28. Parsons, J. T. & Parsons, S. J. Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr. Opin. Cell Biol. 9, 187–192 (1997).
    29. Irby, R. B. & Yeatman, T. J. Role of Src expression and activation in human cancer. Oncogene 19, 5636–5642 (2000).
    30. Danial, N. N. & Rothman, P. JAK-STAT signaling activated by Abl oncogenes. Oncogene 19, 2523–2531 (2000).
    31. Lin, T. S., Mahajan, S. & Frank, D. A. STAT signaling in the pathogenesis and treatment of leukemias. Oncogene 19, 2496–2504 (2000).
    32. Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995). First report of persistent activation of STAT3 signalling by an oncoprotein.
    33. Garcia, R. et al. Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ. 8, 1267–1276 (1997).
    34. Bromberg, J. F., Horvath, C. M., Besser, D., Lathem, W. W. & Darnell, J. E. Jr Stat3 activation is required for cellular transformation by v-src. Mol. Cell. Biol. 18, 2553–2558 (1998). References 34 and 35 provide the first evidence for a requirement of activated STAT3 signalling in cell transformation by an oncoprotein.
    35. Turkson, J. et al. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol. Cell. Biol. 18, 2545–2552 (1998).
    36. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).
    37. Grandis, J. R. et al. Requirement of Stat3 but not Stat1activation for epidermal growth factor receptor-mediated cell growth in vitro. J. Clin. Invest. 102, 1385–1392(1998).Demonstration that STAT3 signalling is required for growth of human head and neck cancer cells.
    38. Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–115 (1999).The first direct evidence that inhibition of persistent STAT3 signalling in human tumour cells induces apoptosis.
    39. Lou, W., Ni, Z., Dyer, K., Tweardy, D. J. & Gao, A. C.Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 42, 239–242 (2000).
    40. Mora, L. B. et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res. 62, 6659–6666 (2002).
    41. Song, J. I. & Grandis, J. R. STAT signaling in head and neck cancer. Oncogene 19, 2489–2495 (2000).
    42. Hung, W. & Elliott, B. Cooperative effect of c-Src tyrosine kinase and Stat3 in activation of hepatocyte growth factor expression in mammary carcinoma cells. J. Biol. Chem.276, 12395–12403 (2001).
    43. Zhang, Y. W., Wang, L. M., Jove, R. & Vande Woude, G. F. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene 21, 217–226 (2002).
    44. Garcia, R. et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20, 2499–2513 (2001).
    45. Niu, G. et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21, 7001–7010 (2002).
    46. Song, L., Turkson, J., Karras, J. G., Jove, R. & Haura, E. B. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene 22, 4150–4165 (2003).
    47. Sriuranpong, V. et al. Epidermal growth factor receptorindependent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer Res. 63, 2948–2956 (2003).
    48. Xi, S. et al. Src kinases mediate STAT growth pathways in squamous cell carcinoma of the head and neck. J. Biol. Chem. 278, 31574–31583 (2003).
    49. Frank, D. A. STAT signaling in cancer: insights into pathogenesis and treatment strategies. Cancer Treat. Res.
    50. Schwaller, J. et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol. Cell 6, 693–704 (2000).
    51. Huang, M. et al. Inhibition of Bcr–Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 21, 8804–8816 (2002).
    52. Levis, M. et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 99, 3885–3891 (2002).
    53. Onishi, M. et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol. Cell. Biol. 18, 3871–3879 (1998).
    54. Bromberg, J. F., Horvath, C. M., Wen, Z., Schreiber, R. D. & Darnell, J. E. Jr Transcriptionally active Stat1 is required for the antiproliferative effects of both interferonαand interferonγ. Proc. Natl Acad. Sci. USA 93, 7673–7678 (1996).
    55. Shankaran, V. et al. IFNγand lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).
    56. Catlett-Falcone, R., Dalton, W. S. & Jove, R. STAT proteins as novel targets for cancer therapy. Curr. Opin. Oncol. 11, 490–496 (1999).
    57. Turkson, J. & Jove, R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19, 6613–6626 (2000).
    58. Sillaber, C., Gesbert, F., Frank, D. A., Sattler, M. & Griffin, J. D. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 95, 2118–2125(2000).
    59. Grandis, J. R. et al. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc. Natl Acad. Sci. USA 97, 4227–4232 (2000).
    60. Gesbert, F. & Griffin, J. D. Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 96, 2269–2276 (2000).
    61. Horita, M. et al. Blockade of the Bcr–Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J. Exp.Med. 191, 977–984 (2000).
    62. Zamo, A. et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21, 1038–1047 (2002).
    63. Epling-Burnette, P. K. et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J. Clin. Invest. 107, 351–362 (2001).
    64. Aoki, Y., Feldman, G. M. & Tosato, G. Inhibition of STAT3 signaling induces apoptosis and decreases surviving expression in primary effusion lymphoma. Blood 101, 1535–1542 (2003).
    65. Shen, Y., Devgan, G., Darnell, J. E. Jr & Bromberg, J. F. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc. Natl Acad. Sci. USA 98, 1543–1548 (2001).
    66. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).
    67. Prendergast, G. C. Mechanisms of apoptosis by c-Myc. Oncogene 18, 2967–2987 (1999).
    68. Bowman, T. et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc. Natl Acad. Sci. USA 98, 7319–7324 (2001).
    69. Ramana, C. V. et al. Regulation of c-myc expression by IFN-γthrough Stat1-dependent and-independent pathways. EMBO J. 19, 263–272 (2000).
    70. Martino, A., Holmes, J. H., Lord, J. D., Moon, J. J. & Nelson, B. H. Stat5 and Sp1 regulate transcription of the cyclin D2 gene in response to IL-2. J. Immunol. 166, 1723–1729 (2001).
    71. Kijima, T. et al. STAT3 activation abrogates growth factor dependence and contributes to head and neck squamous cell carcinoma tumor growth in vivo. Cell Growth Differ. 13, 355–362 (2002).
    72. Masuda, M. et al. Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res. 62, 3351–3355 (2002).
    73. Sinibaldi, D. et al. Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 19, 5419–5427 (2000).
    74. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).
    75. Raman, V. et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405, 974–978 (2000).
    76. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst. 82, 4–6 (1990).
    77. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).
    78. Folkman, J. in Cancer Medicine (eds. Holland, J. F. et al.) 181–204. (Williams and Wilkins, Baltimore, 1997).
    79. Rak, J., Yu, J. L., Klement, G. & Kerbel, R. S. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J. Investig. Dermatol. Symp. Proc. 5, 24–33 (2000).
    80. Grunstein, J., Roberts, W. G., Mathieu-Costello, O., Hanahan, D. & Johnson, R. S. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res. 59, 1592–1598 (1999).
    81. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominantnegative Flk-1 mutant. Nature 367, 576–579 (1994).
    82. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).
    83. Veikkola, T. & Alitalo, K. VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 9, 211–220 (1999).
    84. Veikkola, T., Karkkainen, M., Claesson-Welsh, L. & Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 60, 203–212 (2000).
    85. Niu, G. et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21, 2000–2008 (2002).
    86. Wei, D. et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22, 319–329 (2003).
    87. Wei, L. H. et al. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22, 1517–1527 (2003).
    88. Semenza, G. L. Involvement of hypoxia-inducible factor 1 in human cancer. Intern. Med. 41, 79–83 (2002).
    89. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).
    90. Ravi, R. et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev. 14, 34–44 (2000).
    91. Bartoli, M. et al. VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB J. 17, 1562–1564 (2003).
    92. Yahata, Y. et al. Nuclear translocation of phosphorylated STAT3 is essential for VEGF-induced human dermal microvascular endothelial cell migration and tube formation. J. Biol. Chem. 278, 40026–40031 (2003).
    93. Deo, D. D. et al. Phosphorylation of Stat-3 in response to basic fibroblast growth factor occurs through a mechanism involving platelet-activating factor, JAK-2, and Src in human umbilical vein endothelial cells: evidence for a dual kinase mechanism. J. Biol. Chem. 277, 21237–21245 (2002).
    94. Pardoll, D. M. Spinning molecular immunology into successful immunotherapy. Nature Rev. Immunol. 2, 227–238 (2002).
    95. Pardoll, D. M. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003).
    96. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).
    97. Lee, C. K. et al. Stat3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17, 63–72 (2002).
    98. Welte, T. et al. STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc. Natl Acad. Sci. USA 100, 1879–1884 (2003).
    99. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat3 signaling in tumor cells. Nature Med. 10, 48–54 (2004).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700