用户名: 密码: 验证码:
δ相对GH4169合金高温变形及再结晶行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了GH4169合金中δ相的静态溶解演变规律,分析了δ相的静态溶解过程并探讨了其动力学机制。通过热模拟试验,分别建立了固溶态和δ相时效态GH4169合金的本构关系方程,探讨了δ相对GH4169合金热加工性能的影响。利用光学显微镜(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)技术和透射电镜(TEM)等分析手段,研究了不同变形条件下固溶态和δ相时效态GH4169合金的微观组织演化过程,分析了其动态再结晶机制,并探讨了δ相对GH4169合金高温变形动态再结晶行为的影响。根据动态材料模型,分别得出了固溶态和δ相时效态GH4169合金的热加工图,确定了两种状态合金热加工的稳定区和失稳区,并提出了建议的工艺参数。
     研究结果表明,在温度为980℃和1000℃时,δ相的溶解量可达到稳定值;而在温度为1015℃、1025℃和1035℃时,δ相持续溶解。针状δ相在溶解过程中的形貌特征变化分为两个阶段,初期的变化主要表现为长针状δ相溶解成为短针状乃至球状,后期的溶解过程主要为短针状及球状δ相尺寸的减小。长针状δ相的溶解主要受Ni或Nb原子的长程扩散过程所控制,可用一维原子扩散动力学模型来描述;球状δ相的溶解主要受界面反应过程所控制,可用三维界面反应动力学模型来描述。
     固溶态和δ相时效态GH4169合金的高温压缩热模拟试验结果表明,双曲正弦函数适合于描述两种状态合金流变应力与变形条件之间的关系,其变形激活能分别为443kJ/mol和467kJ/mol。预析出δ相降低了GH4169合金高温变形的稳态流变应力和峰值应变,提高了合金峰值应力后的流变软化程度。固溶态GH4169合金的高温变形机制是以动态再结晶为主,伴随着位错的攀移过程;预析出δ相改变了GH4169合金的高温变形机制,提高了合金高温变形的表观激活能和表观激活体积。同时,预析出δ相提高了GH4169合金的高温变形延伸率,对合金高温成型性能起到有益作用。
     固溶态GH4169合金高温压缩变形试样的微观组织分析结果表明,合金的动态再结晶晶粒尺寸d_(DRX)和大角晶界频率f_(HAB)均可用Z参数来定量描述。合金的动态再结晶形核机制与Z参数值密切相关。在低Z值条件下,其主要形核机制为伴随着孪生的原始晶界的弓出机制;在高Z值条件下,原始晶界附近的动态再结晶形核机制主要为伴随着亚晶旋转的弓出机制,原始晶粒内部的形核主要集中在形变带上;同时,连续动态再结晶也会在合金的局部区域发生。
     δ相时效态GH4169合金高温压缩变形试样的微观组织分析结果表明,δ相在高温变形条件下的动态溶解速度远大于其在静态条件下的溶解速度。预析出δ相在一定程度上减小了GH4169合金动态再结晶的晶粒尺寸。预析出δ相改变了GH4169合金高温变形的动态再结晶机制,δ相时效态GH4169合金中的动态再结晶形核机制主要有δ相诱发动态再结晶形核和晶界弓出形核。
     固溶态和δ相时效态GH4169合金的热加工图分析结果表明,两种状态合金在中、低应变速率区均具有三个典型的动态再结晶区域。固溶态GH4169合金的始锻建议在应变速率为10~(-2.7)-10~(-1.5)s~(-1)、变形温度为1087.5-1100℃的区域内进行;终锻建议在应变速率为10~(-2.5)-10~(-1.5)s~(-1)、变形温度为1000-1065℃的区域内进行。在应变速率为10~(-0.25)-s~(-1)、变形温度为950~1100℃的区域,固溶态GH4169合金发生流变失稳,失稳的发生与局部塑性流动引发的裂纹形成有关。δ相时效态GH4169合金的热加工建议在应变速率为10~(-2.5)-10~(-1.5)s~(-1)、变形温度为950-1015℃的区域内进行;δ相诱发动态再结晶的发生对合金低温变形条件下(T=950℃)耗散效率的提高起较大作用;在高温低应变速率区出现的高耗散效率极大值,与δ相溶解对动态再结晶的促进作用有关;合金在应变速率为10~(-0.35)~1s~(-1)、变形温度为950~1100℃的区域发生的流变失稳与局部的剪切带有关。
The evolution ofδphase in alloy GH4169 during static state dissolution were studied, and the dissolution process and its mechanisms were analyzed. The constitution equations describing the hot deformation behavior of the alloy at annealed state and the delta-processed state were established by thermal simulation compression tests, respectively. The effect ofδphase on the hot working performance of the alloy was discussed. Microstructure evolution of the alloy at the annealed state and delta-processed state under different deformation conditions were investigated by optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The mechanism of dynamic recrystallization for the alloy was analyzed, and the effect ofδphase on the hot deformation behavior of the alloy was also discussed. According to the dynamic materials model, processing maps of the alloy at the annealed state and delta-processed state were obtained, respectively. The stable and instable regions for hot working of the alloy at the different states were determined, and the suggested processing parameters were presented.
     The results show that the dissolution amount ofδphase reaches to stable values at temperatures of 980℃and 1000℃, and theδphase are continuously dissolved at temperatures of 1015, 1025 and 1035℃. The morphology change of needle-shapedδphase during dissolution process can be divided into two stages: from a long needle shape into a short needle and globular ones at the early stage, and the decrease in the dimension of short needle-shaped and globularδphase at the late stage. The dissolution of the long-needle-shapedδphase is mainly controlled by long range diffusion of Ni or Nb, which can be described by one-dimensional atomic diffusion dynamic model. The dissolution of the globularδphase is mainly controlled by interfacial reaction, which can be described by three-dimensional interfacial reaction dynamics model.
     The results of the thermal simulation compression tests show that the hyperbolic sine-type function is suitable for describing the relationship between the flow stress and the deformation condition for the alloy at both the annealed state and the delta-processed state. The activation energies for hot compression are 443 and 467 kJ/mol, respectively. After delta processing, the stable stress and the peak strain for hot compression of the alloy are decreased, and the flow softening degree after peak stress is enhanced. The deformation mechanism of the alloy at annealed state is mainly the dynamic recrystallization accompanied dislocation climbing. After delta processing, the mechanism for hot deformation of the alloy is different, and the apparent activation energy and activation volume are increased due to the pre-precipitatedδphase. Meanwhile, the elongation of the alloy is increased due to the pre-precipitatedδphase, which is beneficial to the processability.
     The results of the microstructure analysis for hot compressed samples at annealed state show that both the size of dynamic recrystallization grains and the frequency of high angle boundary can be quantitatively described by the Zener-Hollomon parameter. The nucleation mechanisms of dynamic recrystallization for this alloy are closely related to the value of Zener-Hollomon parameter. Under low Z conditions, the main nucleation mechanism is the bulging of original grain boundaries accompanied by twinning. Under high Z conditions, the main nucleation mechanism nearby original grain boundaries is the bulging of original grain boundary accompanied by subgrain rotation. The nucleations inside the original grains focus on the deformation bands, and the continuous dynamic recrystallization can also occur in the local region for the annealed alloy.
     The results of the microstructure analysis for hot compressed samples at delta-processed state show that the dissolution rate ofδphase under hot deformation conditions is much faster than that under static state conditions. After delta processing, the size of dynamic recrystallization grain decreases to some extend. The nucleation mechanisms of dynamic recrystallization for the alloy are different because of the pre-precipitatedδphases. The main nucleation mechanisms of dynamic recrystallization for delta-processed alloy include theδphase stimulated nucleation and the bulging of original grain boundaries.
     The results of the processing maps for the alloy at annealed state and delta-processed state show that three classic zones of dynamic recrystallization appear in the region with moderate and low strain rates. The starting forging for the alloy at annealed state are suggested to be at strain rates between 10~(-2.7) and 10~(-1.5)s~(-1) and temperatures between 1087.5 and 1100℃, and the final forging are suggested to be at strain rates between 10~(-2.5) and 10~(-1.5)s~(-1) and temperatures between 1000 and 1065℃. The flow instability occurring at the strain rates between 10~(-0.25) and 1 s~(-1) and the temperatures between 950 and 1100℃at the annealed alloy is related to the cracking induced by the local plastic flow. The hot working parameters for the alloy at delta-processed state are suggested to be at strain rate between 10-2.5 and 10~(-1.5) s~(-1) and temperature between 950 to 1015℃. The higher dissipation efficiency occurring at the lower temperature region (T=950℃) is closely related to the occurrence ofδphase stimulated nucleation of dynamic recrystallization. The higher value of dissipation efficiency occurring at the region with higher temperatures and lower strain rates for this alloy is associated with the acceleration of dynamic recrystallization due to the dissolution ofδphase. The flow instability occurring at the strain rates between 10~(-0.35) and 1 s~(-1) and temperature between 950 to 1100℃for the alloy at delta-processed state is related to the local shear bandings.
引文
1 D. Zhao, P. K. Chaudhury. Effect of Starting Grain Size on As-deformed Microstructure in High Temperature Deformation of Alloy 718. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, eds. E. A. Loria, TMS, 1994: 303-313
    2谢锡善,董建新等.γ~-和γ~-复合析出强化新型镍基高温合金的研究.金属热处理学报. 1997, 18(3): 37-45
    3 R. L. Kennedy. Allvac? 718PlusTM, Superalloy for the Next Forty Years. Sixth International Symposium on Superalloys 718, 626, 706, and Derivatives, eds. E. A. Loria, TMS, 2005: 1-14
    4 C. Ruiz, A. Obabueki and K. Gillespie. Evaluation of the Microstructure and Mechanical Properties of Delta Processed Alloy 718. Seventh International Symposium on Superalloys, eds. S. D. Antolovich et al., TMS, 1992: 33-42
    5 J. F. Radavich. The Physical Metallurgy of Cast and Wrought Alloy 718. First International Symposium on the Metallurgy and Applications of Superalloy 718, eds. E. A. Loria, TMS, 1989: 229-240
    6 M. G. Burke, M. K. Miller. Precipitation in Alloy 718: A Combined AEM and APFIM Investigation. Second International Symposium on Superalloys 718, 625 and Various Derivatives, eds. E. A. Loria, TMS, 1991: 337-350
    7 S. T. Wlodek, R. D. Field. The Effects of Long Time Exposure on Alloy 718. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, eds. E. A. Loria, TMS, 1994: 659-670
    8 M. Sundararaman, S. Banerjee. Some Aspects of the Precipitation of Metastable Intermetallic Phase in Inconel 718. Metall. Trans. 1992, 23A(7): 2015-2028
    9 M. Sundararaman, P. Mukhopadhyay and S. Banerjee. Precipitation and Room Temperature Deformation Behavior of Inconel 718. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, eds. E. A. Loria, TMS, 1994: 419-440
    10 L. Geng, Y. S. Na, N. K. Park. Continuous Cooling Transformation Behavior of Alloy 718. Mater. Lett. 1997, 30: 401-405
    11 A. Kalogeridis, M. Kolbe and E. Nembach. The Effect of Chromium on the Solubility Limits of theγ?-Forming Elements in a Ni-Fe-Cr Base Superalloy. Scripta Metall. 1994, 31(9): 1239-1242
    12董建新,谢锡善,章守华. GH169高温合金中γ″相粗化的行为.北京科技大学学报. 1995, 17(2): 134-138
    13 I. Kirman, D. H. Warrington. The Precipitation of Ni3Nb Phases in a Ni-Fe-Cr-Nb Alloy. Metall. Trans. 1970, 1(10): 2667-2675
    14陈宗霖,刘文昌.应变诱发Inconel718合金γ″相析出和δ相转变.金属学报. 2000, 36(2): 150-154
    15 J. X. Dong, X. S. Xie and S. H. Zhang. Coarsening Behavior ofγ″Precipitates in Modified Inconel 718 Superalloy. Scripta Mater. 1995, 33(12): 1933-1939
    16 C. K. L. Davies, P. Nash and R. N. Stevens. The Effects of Volume Fraction on Ostwald Ripening. Acta Metall. 1980, 28: 179-189
    17 M. Sundararaman, P. Mukhopadhyay and S. Banerjee. Precipitation ofδ-Ni3Nb Phase in Two Nickel Base Superalloys. Metall. Trans. 1988, 19A(3): 453-465
    18 S. Azadian, L. Y. Wei, R. Warren. Delta Phase Precipitation in Inconel 718. Mater. Charact. 2004, 53: 7-16
    19董建新,谢锡善等. GH169高温合金主要相分析.兵器材料科学与工程. 1993, 16(2): 51-56
    20 J. P. Collier, S. H. Wong. The Effect of Varying Al, Ti and Nb Content on the Phase Stability of Inconel 718. Metall. Trans. 1988, 19A: 1657-1668
    21 J. X. Dong, X. S. Xie and S. H. Zhang. Enhancements of Thermal Structure Stability in a Ni-Base Superalloy. Scripta Metall. 1995, 33(12): 1933-1939
    22凌斌,钟炳文,杨玉荣等. GH169合金的相变研究.航空材料学报. 1994, 1(4): 1-7
    23 D. Y. Cai, W. H. Zhang, W. C. Liu. Dissolution Kinetics and Behavior ofδPhase in Inconel 718. Trans. Nonferrous Met. Soc. China. 2003, 13(6): 1338-1341
    24 D. Y. Cai, W. H. Zhang, W. C. Liu. Dissolution Kinetics ofδPhase and Its Influence on the Notch Sensitivity of Inconel 718. Mater. Charact. 2007, 58: 220-225
    25 G. Muralidharan, R. G. Thompson. Effect of Second Phase Precipitation onLimiting Grain Growth in Alloy 718. Scripta Mater. 1997, 36(7): 755-761
    26 M. J. Donachie, S. J. Donachie. Superalloys-A Technical Guide (Second Edition). The Materials Information Society, 2002: 245-251
    27 J. X. Dong, W. Xie, Z. C. Xu et al. Effect of Mg andδ-Phase on Mechanical Properties of Alloy GH169 (Inconel 718). Acta Metallurgica Sinica, Series A: Physical Metallurgy & Materials Science. 1993, 6(6): 405-409
    28白秉哲,杨鲁义,赵耀峰. GH4169合金等温锻造+直接时效工艺探讨.稀有金属. 2002, 26(1): 7-32
    29 J. L. Russd, M. L. Lasonde and L. A. Jackman. Microstructure Development and Thermal Response of Delta Processed Billet and Bar for Alloy 718. Sixth International Symposium on Superalloys 718, 626, 706, and Derivatives, eds. E. A. Loria, TMS, 2005: 363-372
    30 R. Srinivasan, V. Ramnarayan, U. Deshpande et al. Hot Deformation Behavior of Fine-grained IN718. Metallurgical Transaction A. 1993, 24: 2061-2069
    31 C. I. Garcia, G. D. Wang and D. E. Camus. Hot Deformation Behavior of Superalloy 718. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, eds. E. A. Loria, TMS, 1994: 293-302
    32 J. M. Zhang, Z. Y. Gao, J. Y. Zhuang, Z. Y. Zhong. Mathematical Modeling of the Hot Deformation Behavior of Superalloy IN718. Metallurgical and Materials Transactions A. 1999, 30: 2701-2713
    33刘东,罗子健. GH4169合金热加工过程中的显微组织演化数学模型.中国有色金属学报. 2003, 13: 1211-1218
    34 L. X. Zhou, T. N. Baker. Effect of Strain Rate and Temperature on Deformation Behavior of IN718 during High Temperature Deformation. Materials Science and Engineering A. 1994, 177: 1-9
    35 M. J. Weis, M. C. Mataya and S. W. Thompson. The Hot Deformation Behavior of an As-Cast Alloy 718 Ingot. First International Symposium on the Metallurgy and Applications of Superalloy 718, eds. E. A. Loria, TMS, 1989: 135-154
    36 J. M. Zhang, Z. Y. Gao and J. Y. Zhuang. Modeling of Grain Size in Superalloy IN718 during Hot Deformation. J. Mats. Proc. Tech. 1999, 88: 244-249
    37 A. J. Brand, K. Karhausen and R. Kopp. Microstructural Simulation of Nickel Base Alloy Inconel 718 in Production of Turbine Discs. Mater. Sci. Tech. 1996, 12: 963-969
    38 Y. S. Na, J. T. Yeom, N. K. Park, J. Y. Lee. Simulation of Microstructures for Alloy 718 Blade Forging using 3D FEM Simulator. Journal of Materials Processing Technology. 2003, 141: 337-342
    39 S. C. Medeiros, Y. V. R. K. Prasad, W. G. Frazier, R. Srinivasan. Microstructure Modeling of Metadynamic Recrystallization in Hot Working of IN718 Superalloy. Materials Science and Engineering A. 2000, 293: 198-207
    40 S. C. Medeiros, Y. V. R. K. Prasad, W. G. Frazier, N. Srinivasan. Modeling Grain Size during Hot Deformation of IN 718. Scripta Mater. 2000, 42(1): 17-23
    41 W. Carden. Modeling Microstructure Evolution in 718 Ingot to Billet Conversion. Sixth International Symposium on Superalloys 718, 626, 706, and Derivatives, eds. E. A. Loria, TMS, 2005: 713-716
    42 J. T. Yeom, C. S. Lee, J. H. Kim and N. K. Park. Finite-element Analysis of Microstructure Evolution in the Cogging of an Alloy 718 Ingot. Materials Science and Engineering A. 2007, 449-451: 722-726
    43 J. P. Thomas, E. Bauchet and C. Dumont. EBSD Investigation and Modeling of the Microstructure Evolutions of Superalloy 718 during Hot Deformation. Tenth International Symposium on Superalloys, eds. S. D. Antolovich et al., TMS, 2004: 959-968
    44 R. P. Guest, S. Tin. The Dynamic and Metadynamic Recrystallization of IN718. Sixth International Symposium on Superalloys 718, 626, 706, and Derivatives, eds. E. A. Loria, TMS, 2005: 373-383
    45 A. Thomas, M. El-Wahabi and J. M. Cabrera. High Temperature Deformation of Inconel 718. J. Mats. Proc. Tech. 2006, 177: 469-472
    46 Y. S. Na, J. T. Yeom, N. K. Park, J. Y. Lee. Electron Backscatter Diffraction Analysis of Dynamically Recrystallized Grain Structures in a Ni-Cr-Fe Base Alloy. Metallurgical and Materials Transactions A. 2006, 37: 41-47
    47 T. Banik, S. O. Mancuso and G. E. Maurer. An Evaluation of the Forgeability of Delta Processed Udimet Alloy 718DP. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, eds. E. A. Loria, TMS, 1994: 273-280
    48 H. Yuan, W. C. Liu. Effect of the Delta Phase on the Hot Deformation Behavior of Inconel 718. Materials Science and Engineering A. 2005, 408: 281-289
    49 A. M. Wusatowska-Sarnek, H. Miura, T. Sakai. Nucleation and MicrotextureDevelopment under Dynamic Recrystallization of Copper. Materials Science and Engineering A. 2002, 323: 177-186
    50 M. R. Drury, F. J. Humphreys. The Development of Microstructure in Al-5% Mg during High Temperature Deformation. Acta Metall. 1986, 34: 2259-2271
    51 H. Yamagata. In Situ Observation of Dynamic Recrystallization in Five-Fine Aluminum by a Transmission Laue Method. Scripta Metall. 1994, 30: 411-416
    52 M. E. Kassner, H. J. McQueen, J. Pol1ard et al. Restoration Mechanisms in Large-strain Deformation of High Purity Aluminum at Ambient Temperature. Scripta Metall. 1994, 31: 1331-1336
    53 D. Ponge, M. Bredehof, G. Gottstein. Dynamic Recrystallization in High Purity Aluminum. Scripta Mater. 1997, 37: 1769-1775
    54 M. G. Ardakani, F. J. Humphreys. The Annealing Behaviour of Deformed Particle-containing Aluminium Single Crystals. Acta Metall. 1994, 42: 763-780
    55 F. J. Humphreys, P. N. Kalu. Dislocation-Particle Interactions during High Temperature Deformation of Two-Phase Aluminium Alloys. Acta Metall. 1987, 35: 2815-2829
    56 L. P. Troeger, E. A. Starke Jr. Particle-stimulated Nucleation of Recrystallization for Grain-size Control and Superplasticity in an Al–Mg–Si–Cu Alloy. Materials Science and Engineering A. 2000, 293: 19-29
    57 F. J. Humphreys, M. Hatherly. Recrystallization and Related Annealing Phenomena. Pergamon Press, Oxford, 2004: 98-103, 427-440
    58 S. Gourdet, F. Montheillet. An Experimental Study of the Recrystallization Mechanism during Hot Deformation of Aluminium. Materials Science and Engineering A. 2000, 283: 274-288
    59 T. Furu, R. ?rsund, E. Nes. Subgrain Growth in Heavily Deformed Aluminium-experimental Investigation and Modelling Treatment. Acta Metall. 1995, 43: 2209-2232
    60 S. J. Hales, T. R. McNelley. Microstructural Evolution by Continuous Recrystallization in a Superplastic Al-Mg Alloy. Acta Metall. 1988, 36: 1229-1239
    61 O. Sitdikov, R. Kaibyshev. Dynamic Recrystallization in Pure Magnesium. Metallurgical and Materials Transactions A. 2001, 42(9): 1928-1937
    62 A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of Plastic Deformation andDynamic Recrystallization in Magnesium Alloy ZK60. Acta Mater. 2001, 49: 1199-1207
    63 J. C. Tan, M. J. Tan. Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy Sheet. Materials Science and Engineering A. 2003, 339: 124-132
    64刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展.中国有色金属学报. 2006, 16(1): 1-12
    65 S. E. Ion, F. J. Humphreys, S. H. White. Dynamic Recrystallisation and the Development of Microstructure during the High Temperature Deformation of Magnesium. Acta Metall. 1982, 30(10): 1909-1919
    66 H. J. McQueen, O. Knustad, N. Ryum, J. K. Solberg. Microstructural Evolution in Al Deformed to Strains of 60 at 400°C. Scripta Metall. 1985, 19: 73-78
    67 M. E. Kassner, M. E. McMahon. The Dislocation Microstructure of Aluminum. Metallurgical Transaction A. 1987, 18: 835-846
    68 G. A. Henshall, M. E. Kassner, H. J. McQueen. Dynamic Restoration Mechanisms in Al-5.8 At.Pct Mg Deformed to Large Strains in the Solute Drag Regime. Metallurgical Transaction A. 1992, 23: 881-889
    69 W. Blum, Q. Zhu, R. Merkel, H. J. McQueen. Geometric Dynamic Recrystallization in Hot Torsion of Al-5Mg-0.6Mn (AA5083). Materials Science and Engineering A. 1996, 205: 23-30
    70 M. T. Perez-Prado, S. R. Barrabes, M. E. Kassner, E. Evangelista. Dynamic Restoration Mechanisms inα-Zirconium at Elevated Temperatures. Acta Mater. 2005, 53: 581-591
    71 M. E. Kassner, S. R. Barrabes. New Developments in Geometric Dynamic Recrystallization. Materials Science and Engineering A. 2005, 410-411: 152-155
    72 R. Kaibyshev, N. Gajnutdinova, V. Valitov. Continuous Dynamic Recrystallization in a Ni-20%Cr Alloy in a Wide Temperature Range. Proceedings of the First Joint International Conference on Recrystallization and Grain Growth, eds. G. Gottstein, D. A. Molodov, Springer-Verlag, 2001: 949-954
    73 P. Poelt, C. Sommitsch, S. Mitsche, M. Walter. Dynamic Recrystallization of Ni-base Alloys - Experimental Results and Comparisons with Simulations. Materials Science and Engineering A. 2006, 420: 306-314
    74 X. Wang, E. Brünger, G. Gottstein. Microstructure Characterization andDynamic Recrystallization in an Alloy 800H. Materials Science and Engineering A. 2000, 290: 180-185
    75 M. Frommert, E. Brünger, X. Wang, G. Gottstein. Mechanisms of Dynamic Recrystallization in Austenitic Steel Alloy 800H. Proceedings of the First Joint International Conference on Recrystallization and Grain Growth, eds. G. Gottstein, D. A. Molodov, Springer-Verlag, 2001: 937-942
    76 K. Tiitto, G. Fitzsimons, A. J. Deardo. The Effect of Dynamic Precipitation and Recrystallization on the Hot Flow Behavior of a Nb-V Microalloyed Steel. Acta Metall. 1983, 31(8): 1159-1168
    77 J. D. Lecuyer, G. Lespérance. Precipitation Interactions with Dynamic Recrystallization of a HSLA Steel. Acta Metall. 1989, 37(4): 1023-1031
    78 J. van de Langkruis, W. H. Kool, C. M. Sellars, M. R. van der Winden, S. van der Zwaag. The Effect ofβ,β′andβ? Precipitates in a Homogenised AA6063 Alloy on the Hot Deformability and the Peak Hardness. Materials Science and Engineering A. 2001, 299: 105-115
    79 E. Koken, N. Chandrasekaran, J. D. Embury, G. Burger. The Role of Particle Distribution in Recrystallization in Two-Phase Alloys. Materials Science and Engineering A. 1988, 104: 163-168
    80 R. Sandstr?m, R. Lagneborg. A Model for Hot Working Occurring by Recrystallization. Acta Metall. 1975, 23: 387-398
    81 H. Stuwe, B. Ortner. Recrystallization in Hot Working and Creep. Methods Science. 1974, 8(6): 161-170
    82 P. Peczak. A Monte Carlo Study of Influence of Deformation Temperature on Dynamic Recrystallization. Acta Mater. 1995, 43: 1279-1291
    83 W. Roberts, B. Ahlblom. A Nucleation Criterion for Dynamic Recrystallization during Hot Working. Acta Metall. 1978, 26: 801-813
    84 B. Derby, M. F. Ashby. On Dynamic Recrystallisation. Scripta Metall. 1987, 21: 879-884
    85 R. Ding, Z. X. Guo. Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow during Dynamic Recrystallization. Acta Mater. 2001, 49: 3163-3175
    86 S. Takeuchi, A. S. Argon. Steady-state Creep of Single-phase Crystalline Matter at High Temperature. J. Mater. Sci. 1976, 11: 1542-1566
    87 H. J. Frost, M. F. Ashby. Deformation Mechanism Maps, the Plasticity and Creep of Metals and Ceramics. London: Pergamon Press, 1982: 265-276
    88 R. Raj. Development of a Proccessing Map for Use in Warm Forming and Hot Forming Processes. Metall Trans A. 1981, 12: 1089-1097
    89 Y. V. R. K. Prasad. Author’s Reply: Dynamic Materials Model: Base and Principles. Metallurgical and Materials Transactions A. 1996, 27: 235-236
    90 Y. V. R. K. Prasad, H. L. Gegel et al. Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-242. Metall. Trans. 1984, 15A: 1883-1892
    91 H. L. Gegel. Synthesis of Atomistic and Continuum Modeling to Describe Microstructure. Computer Simulation in Materials Science. OH: ASM, 1986: 291-344
    92 H. L. Gegel, J. C. Malas et al. Modeling Techniques Used in Forging Process Design. Metals Handbook. OH: ASM, 1988: 417-426
    93 J. C. Malas, V. Seetharaman. Using Material Behavior Models to Develop Process Control Strategies. JOM. 1992, 6: 8-14
    94 J. M. Alexander. Modelling of Hot Deformation of Steels. Berlin: Springer Verlag, 1989: 105-115
    95 Y. V. R. K. Prasad, T. Seshacharyulu. Modelling of Hot Deformation for Microstructural Control. Inter. Mater. Rev. 1998, 43(6): 243-258
    96王蕊宁,奚正平,赵永庆,戚运连,杜宇. Zr-4合金的热变形和加工图.稀有金属材料与工程. 2007, 36(5): 808-812
    97 H. Ziegler, I. N. Sneedon, R. Hill. Progress in Solid Mechanics. Wiley, New York, 1963: 4-63
    98 Y. V. R. K. Prasad, D. H. Sastry et al. Processing Maps for Hot Working of a P/M Iron Aluminide Alloy. Intermetallics. 2000, (8): 1067-1074
    99 Y. V. R. K. Prasad, T. Seshacharyulu et al. Influence of Oxygen Content on the Forging Response of Equiaxed (a+β) Perform of Ti-6Al-4V: Commercial vs ELI Grade. Journal of Materials Processing Technology. 2001, 108: 320-327
    100 S. Venugopal, S. L. Mannan et al. Optimization of Cold and Warm Workability in Stainless Steel Type AISI 316L Using Instability Maps. Journal of Nuclear Materials. 1995, 227: 1-10
    101 N. Srinivasan, Y. V. R. K. Prasad. Hot Working Characteristics of Nimonic75,
    80A and 90 Superalloys: a Comparison Using Processing Maps. Journal ofMaterials Processing Technology. 1995, 51: 171-192
    102 Y. V. R. K. Prasad, K. P. Rao. Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300-900 ?C. Mater. Sci. Eng. A. 2005, 391: 141-150
    103 J. K. Chakravartty, G. K. Dey et al. Characterization of Hot Deformation Behavior of Zr-2.5Nb-0.5Cu using Processing Maps. Journal of Nuclear Materials. 1995, 218: 247-255
    104 N. Ravichandran, Y. V. R. K. Prasad. Dynamic Recrystallization during Hot Deformation of Aluminum: a Study using Processing Maps. Metall. Trans. A. 1991, 22: 2339-2347
    105 O. Sivakesavam, Y. V. R. K. Prasad. Hot Deformation Behavior of As-cast Mg-2Zn-1Mn Alloy in Compression: a Study with Processing Map. Mater. Sci. Eng. A. 2003, 362: 118-124
    106 O. Sivakesavam,I. S. Rao, Y. V. R. K. Prasad. Proccessing Map for Hot Working of as-Cast Magnesium. Mater. Sci. Tech. 1993, 9: 805-810
    107 B. L. Xiao, J. Z. Fan, X. F. Tian, W. Y. Zhang, L. K. Shi. Hot Deformation and Processing Map of 15%SiCp/2009Al Composite. J. Mater. Sci. 2005, 40: 5757-5762
    108 S. V. S. Narayana Murty, B. Nageswara Rao, B. P. Kashyap. On the Hot Working Characteristics of 2014Al-20%Al2O3 Metal Matrix Composite. J. Mater. Processing Tech. 2005, 166, 279-285
    109 C. Y. Wang, X. J. Wang, H. Chang et al. Processing Maps for Hot Working of ZK60 Magnesium Alloy. Materials Science and Engineering A. 2007, 464: 52-58
    110 C. Y. Wang, K. Wu, M. Y. Zheng. Hot Deformation and Processing Maps of Al18B4O33w/ZK60 Composite. Materials Science and Engineering A. 2008, 477: 179-184
    111张仁鹏,李付国,王晓娜. FGH96合金的热变形行为及其热加工图.西北工业大学学报. 2007, 25(5): 652-656
    112曹金荣,刘正东,程世长,杨钢,谢建新. T122耐热钢热变形加工图及热成形性.北京科技大学学报. 2007, 29(12): 1204-1208
    113周军,曾卫东,舒滢,周义刚.应用热加工图研究TC17合金片状组织球化规律.稀有金属材料与工程. 2006, 35(2): 265-269
    114王蕊宁,奚正平,赵永庆,戚运连等. Zr-4合金的热变形和加工图.稀有金属材料与工程. 2007, 36(5): 808-812
    115曾卫东,徐斌,何德华,梁晓波等.应用加工图理论研究Ti2AlNb基合金的高温变形特性.稀有金属材料与工程. 2007, 36(4): 593-596
    116 N. Srinivasan, Y. V. R. K. Prasad. Microstructural Control in Hot Working of IN-718 Superalloy using Processing Map. Metall. Trans. A. 1994, 25: 2275-2284
    117 S. V. S. Narayana Murty, B. Nageswara Rao. On the Development of Instability Criteria during Hot Working with Reference to IN718. Materials Science and Engineering A. 1998, 254: 76-82
    118 E. A. Loria. Postscript: Reflection on Superalloy 718. Fourth International Symposium on Superalloys 718, 625, 706 and Various Derivatives, eds. E. A. Loria, TMS, 1997: 835-839
    119董建新. Inconel 718高温合金的发展.兵器材料科学与工程. 1996, 19(2): 46-50
    120 X. S. Xie, G. L. Wang, J. X. Dong, C. M. Xu et al. Structural Stability Study on a Newly Developed Nickel-base Superalloy-Allvac? 718plusTM. Sixth International Symposium on Superalloys 718, 626, 706, and Derivatives, eds. E. A. Loria, TMS, 2005: 179-191
    121 A. W. Dix, J. M. Hyzak, R. P. Singh. Application of Ultra Fine Grain Alloy 718 Forging Billet. Seventh International Symposium on Superalloys, eds. S. D. Antolovich et al., TMS, 1992: 23-32
    122 D. D. Krueger. The Development of Direct Age 718 for Gas Turbine Aging Disk Applications. First International Symposium on the Metallurgy and Applications of Superalloy 718, eds. E. A. Loria, TMS, 1989: 279-296
    123 T. Connolley, P. A. S. Reed, M. J. Starink. Short Crack Initiation and Growth at
    600 ?C in Notched Specimens of Inconel718. Materials Science and Engineering A. 2003, 340 (1-2): 139-154
    124 H. J. Lu, X. C. Jia, K. F. Zhang. Fine-grained Pretreatment Process and Superplasticity for INCONEL718 Superalloy. Materials Science and Engineering A. 2002, 326(2): 382-385
    125邓波,张荣武,杨玉荣等. GH4169合金时效动力学与强韧化的研究.北京科技大学学报. 1991, 13 (增刊): 253-259
    126李树祺,庄景云. Inconel718合金显微组织对合金裂纹扩展速率的影响.材料工程. 1998, 5: 26-27
    127 B. Pieraggi, J. F. Uginet. Fatigue and Creep Properties in Relation with Alloy
    718 Microstructure. Third International Symposium on Superalloys 718, 625,
    706 and Various Derivatives, eds. E. A. Loria, TMS, 1994: 535-544
    128 S. Q. Li, J. Y. Zhuang and J. Y. Yang. The Effect ofδPhase on Crack Propagation under Creep and Fatigue Conditions in Alloy 718. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, eds. E. A. Loria, TMS, 1994: 545-555
    129 H. B. Aaron, G. R. Kotler. Second Phase Dissolution. Metall. Trans. A. 1971, 2: 393-408
    130 R. A. Oriani. Ostwald Ripening of Precipitates in Solid Matrices. Acta Metall. 1964, 12: 1399-1409
    131 M. Nemoto. A Hvem Study of the Roles of Dislocation Movements and Vacancy Flow during Dissolution of Cementite in Steel. Acta Metall. 1974, 22: 847-862
    132 M. Enomoto, N. Nojiri. Influence of Interfacial Curvature on the Growth and Dissolution Kinetics of a Spherical Precipitate. Scripta Mater. 1997, 36: 625-632
    133 R. Zhang, Q. F. Cao, S. X. Pang, Y. Wei. L. Liu. Dissolution Kinetics of Primary Silicon in Hypereutectic Al-Si Melt. Science and Technology of Advanced Materials. 2001, 2: 3-5
    134张尚洲.碳对Ti-60高温钛合金组织演变的影响.中国科学院金属研究所博士学位论文. 2004: 16-19
    135 B. I. Bjφrneklett,Φ. Grong, O. R. Myhr and A. O. Kluken. Additivity and Isokinetic Behavior in Relation to Particle Dissolution. Acta Mater. 1998, 46(17): 6257-6266
    136张蓉,曹秋芳,庞述先,刘林. Al-Si过共晶合金中初生硅的溶解动力学.中国有色金属学报. 2000, 10(1): 89-91
    137 B. P. Kashyap, M. C. Chaturvedi. Activation Energy for Superplastic Deformation of IN718 Superalloy. Scripta Mater. 2000, 43: 429-433
    138胡荣祖,史启祯.热分析动力学.科学出版社, 2001: 1-8
    139 A. Ortega. The Incorrectness of the Temperature Criterion. Thermochimica Acta. 1996, 276: 189-198
    140 A. Ortega, L. A. Pérez-Maqueda, J. M. Criado. A New Point of View on the Evaluation of the Temperature Integral. Thermochimica Acta. 1996, 282/283:29-34
    141 A. Ortega. Some Successes and Failures of the Methods Based on Several Experiments. Thermochimica Acta. 1996, 284: 379-387
    142罗世永,张家芸,周土平.固/固相反应动力学模型及其应用.材料导报. 2000, 14(4): 6-7
    143 Y. Desvallees, M. Bouzidi, F. Bois, N. Beaude. Delta Phase in Inconel 718: Mechanical Properties and Forging Process Requirements. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, eds. E. A. Loria, TMS, 1994: 281-291
    144牛济泰.材料和热加工领域的物理模拟技术.国防工业出版社, 1999: 144-153
    145 S. I. Oh, S. L. Semiatin, J. J. Jonas. An Analysis of the Isothermal Hot Compression Test. Metallurgical Transactions A. 1992, 22(3): 963-975
    146罗子健,杨旗,姬婉华.考虑热变形效应的本构关系建立方法.中国有色金属学报. 2000, 10(6): 804-812
    147袁鸽成,张新民.新型AI-Sn-Si合金高温塑性变形流变应力的研究.实验力学. 2001, 16(1): 34-38
    148 Y. Wang, D. L. Lin. A Correlation between Tensile Flow Stress and Zener-Hollomon Factor in TiAl Alloy at High Temperatures. Journal of Materials Science. 2000, 19: 1185-1188
    149罗丰华,尹志民,左铁铺. CuZn(Cr, Zr)合金的热变形行为.中国有色金属学报. 2000, 2: 12-16
    150 C. M. Sellars, W. J. Tegart. Physical Metallurgy of Thermo-mechanical Processing of Steels and Other Metals. Science Review Methods. 1966, 63: 731-735
    151韩冰. 7055z铝合金高温塑性变形行为研究.广东工业大学硕士论文. 2003: 4-7
    152刘东,罗子健. GH4169合金热加工过程中的显微组织演化数学模型.中国有色金属学报. 2003, 13: 1211-1218
    153 M. R. Barnett. A Practical Condition for Migration Dynamic Recrystallization. Acta Mater. 2007, 55: 3271-3278
    154 X. J. Pang, D. J. Dwyer, M. Gao et al. Surface Enrichment and Grain Boundary Segregation of Niobium in Inconel 718 Single- and Poly-Crystals. Scripta Metall.1994, 31: 345-350
    155 M. Gao, R. P. Wei. Grain Boundaryγ~- Precipitation and Niobium Segregation in Inconel 718. Scripta Metall. 1995, 32: 987-990
    156 K. T. Aust, R. E. Hanneman, P. Niessen, J. H. Westbrook. Solute Induced Hardening near Grain Boundaries in Zone Refined Metals. Acta Metall. 1968, 16: 291-302
    157刘文昌. Inconel 718合金在冷热变形条件下组织变化的研究.哈尔滨工业大学博士学位论文. 1997: 86-94
    158 L. Karlsson, H. Norden and H. Odelius. Non-Equilibrium Grain Boundary Segregation of Boron in Austenitic Stainless Steel- ?. Large Scale Segregation Behavior. Acta Metall. 1988, 36: 1-12
    159 L. Karlsson, H. Norden. Non-Equilibrium Grain Boundary Segregation of Boron in Austenitic Stainless Steel- ??. Fine Scale Segregation Behavior. Acta Metall. 1988, 36: 13-24
    160 X. L. He, Y. Y. Chu and J. J. Jonas. The Grain Segregation of Boron during Isothermal Holding. Acta Metall. 1989, 37: 2905-2916
    161 E. M. Schulson, T. P. Weihs, I. Baker et al. Boron-induced Grain Boundary Accommodation of Slip in Ni3Al. Scripta Metall. 1985, 19(12): 1497-1498
    162 E. M. Schulson, T. P. Weihs, I. Baker et al. Grain Boundary Accommodation of Slip in Ni3Al Containing Boron. Acta Metall. 1986, 34: 1395-1399
    163 E. M. Schulson, I. Baker, H. J. Frost. Discussion of“the Role of Boron in Ductilizing Ni3Al”. Metall. Trans. A. 1987, 18(11): 1995
    164 D. H. Kim, J. H. Kim, J. W. Sa et al. Stress Rupture Characteristics of Inconel
    718 Alloy for Ramjet Combustor. Materials Science and Engineering A. 2007, 483-484: 262-265
    165 J. J. Jonas, C. M. Sellars, W. J. M. Tegart. Strength and Structure under Hot-working Conditions. Metall. Rev. 1969, 14: 1-24
    166童骏.超级双相不锈钢的拉伸性能及热变形行为研究.燕山大学硕士学位论文. 2006: 60-64
    167 S. Bystrzanowski et al. Characteristics of the Tensile Flow Behavior of Ti-46Al-9Nb Sheet Material - Analysis of Thermally Activated Processes of Plastic Deformation. Intermetallics (2008), doi:10.1016/j.intermet.2008.02.008
    168П.И.波卢欣.塑性变形的物理基础.冶金工业出版社, 1989: 281-282
    169 B. P. Kashyap, M. C. Chaturvedi. Activation Energy for Superplastic Deformation of In718 Superalloy. Scripta Mater. 2000, 43: 429-433
    170刘雪峰. 1420铝锂合金高温力学行为的研究.重庆大学博士学位论文. 2001: 63-65
    171 H. S. Zurob, Y. Brechet, G. Purdy. A Model for the Competition of Precipitation and Recrystallization in Deformed Austenite. Acta Mater. 2001, 49: 4183-4190
    172 W. Chen, M. C. Chaturvedi. Dependence of Creep Fracture of Inconel 718 on Grain Boundary Precipitates. Acta Mater. 1997, 45(7): 2735-2746
    173 D. L. Lin, Y. Wang, C. C. Law. Thermal Activation Processes of Tensile Deformation inγ–TiAl Alloy. Materials Science and Engineering A. 1997, 239-240: 369-377
    174王瑜,林栋梁.γ-TiAl合金拉伸形变的热激活参量.金属学报. 1997, 33: 1171-1181
    175 F. Appel, M. Oehring, R. Wagner. Novel Design Concepts for Gamma-base Titanium Aluminide Alloys. Intermetallics. 2000, 8: 1283-1312
    176 E. López-Chipres, I. Mejía, C. Maldonado, A. Bedolla-Jacuinde et al. Hot Flow Behavior of Boron Microalloyed Steels. Materials Science and Engineering A. 2008, 480: 49-55
    177伊晓.热处理及显微组织对Inconel 718合金高温低周疲劳行为的影响.哈尔滨工业大学硕士学位论文. 1991: 12-14
    178王疆.电子背散射衍射(EBSD)技术在材料领域的应用.浙江大学硕士学位论文. 2006: 1-25
    179李龙飞.低碳钢中铁素体动态再结晶规律及机制的研究.北京科技大学博士学位论文. 2005: 6-16
    180 T. Sakai. Dynamic Recrystallization Microstructures under Hot Working Conditions. Journal of Materials Processing Technology. 1995, 53: 349-361
    181 C. Chovet, S. Gourdet, F. Montheillet. Modelling the Transition from Discontinuous to Continuous Dynamic Recrystallization with Decreasing Purity in Aluminium. Metall. Trans. A. 2000, 41: 109-112
    182李龙飞,杨王明,孙祖庆.低碳钢在Ac1点以下温度变形时的铁素体动态再结晶.金属学报. 2003, 39: 419-425
    183 D. Jorge-Badiola, A. Iza-Mendia, I. Gutiérrez. Study by EBSD of the Development of the Substructure in a Hot Deformed 304 Stainless Steel.Materials Science and Engineering A. 2005, 394: 445-454
    184 E. Brünger, X. Wang, G. Gottstein. Nucleation Mechanisms of Dynamic Recrystallization in Austenitic Steel Alloy 800H. Scripta Mater. 1998, 38: 1843-1849
    185 X. Wang, E. Brünger, G. Gottstein. The Role of Twinning during Dynamic Recrystallization in Alloy 800H. Scripta Mater. 2002, 46: 875-880
    186 S.-I. Kim, B.-C. Ko, C.-M. Lee, S.-K. Hwang, Y.-C. Yoo. Evolution of Dynamic Recrystallisation in AISI 304 Stainless Steel. Materials Science and Technology. 2003, 19: 1648-1652
    187 A. Belyakov, H. Miura, T. Sakai. Dynamic Recrystallization under Warm Deformation of a 304 Type Austenitic Stainless Steel. Materials Science and Engineering A. 1998, 255: 139-147
    188 G. Gottstein, U. F. Kocks. Dynamic Recrystallization and Dynamic Recovery in <111> Single Crystals of Nickel and Copper. Acta Metall. 1983, 31: 175-188
    189 S. Mahajan, C. S. Pande, M. A. Imam, B. B. Rath. Formation of Annealing Twins in F.c.c. Crystals. Acta Mater. 1997, 45: 2633-2638
    190 C. Chovet, S. Gourdet, F. Montheillet. Modelling the Transition from Discontinuous to Continuous Dynamic Recrystallization with Decreasing Purity in Aluminium. Metall. Trans. A. 2000, 41: 109-112
    191 D. A. Hughes, N. Hansen, D. J. Bammann. Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations. Scripta Mater. 2003, 48: 147-153
    192 H. Gao, Y. Huang. Geometrically Necessary Dislocation and Size-dependent Plasticity. Scripta Mater. 2003, 48: 113-118
    193 H. Mughrabi. The Effect of Geometrically Necessary Dislocations on the Flow Stress of Deformed Crystals Containing a Heterogeneous Dislocation Distribution. Materials Science and Engineering A. 2001, 319-321: 139-143
    194 H. Yamagata, Y. Ohuchida, N. Saito, M. Otsuka. Nucleation of New Grains during Discontinuous Dynamic Recrystallization of 99.998 Mass% Aluminum at 453K. Scripta Mater. 2001, 45: 1055-1061
    195 R. Kaibyshev, N. Gajnutdinova, V. Valitov. Continuous Dynamic Recrystallization in a Ni-20%Cr Alloy in a Wide Temperature Range. Proceedings of the First Joint International Conference on Recrystallization andGrain Growth, Springer-Verlag, 2001, 949-954
    196 F. C. Ma, W. J. Lu,J. N. Qin. Microstructure Evolution of near-αTitanium Alloys during Thermomechanical Processing. Materials Science and Engineering A. 2006, 416: 59-65
    197 S. Chattopadhyay, C. M. Sellars. Kinetics of Pearlite Sphemidisation during Static Annealing and during Hot Deformation. Acta Metall. 1982, 30: 157-17
    198 J. J. Jonas, C. M. Sellars, W. J. M. Tegart. Strength and Structure under Hot -working Conditions. Metall. Rev. 1969, 14: 1-5
    199 M. Eddahbi, F. Carre?o, O. A. Ruano. Microstructural Changes during High Temperature Deformation of an Al-Li (8090) Alloy. Scripta Mater. 1998, 38: 1717-1723
    200 C. L. Hale, W. S. Rollings, M. L. Weaver. Activation Energy Calculations for Discontinuous Yielding in Inconel 718SPF. Materials Science and Engineering A. 2001, 300: 153-164
    201 N. Srinivasan, Y. V. R. K. Prasad, P. R. Rao. Hot Deformation Behaviour of Mg-3Al Alloy - a Study using Processing Map. Materials Science and Engineering A. 2008, 476: 146-156
    202 V. V. Balasubrahmanyam, Y. V. R. K. Prasad. Deformation Behaviour of Beta Titanium Alloy Ti–10V–4.5Fe–1.5Al in Hot Upset Forging. Materials Science and Engineering A. 2002, 336: 150-158
    203 Y. V. R. K. Prasad, S. Sasidhara. Hot Working Guide: A Compendium on Processing Maps. ASM International, Metals Park, OH, 1997
    204戚运莲. Ti600高温钛合金的热变形行为及加工图研究.西北工业大学硕士学位论文. 2007: 45-50
    205 N. Srinivasan, Y. V. R. K. Prasad. Characterisation of Dynamic Recrystallization in Nickel using Processing Map for Hot Deformation. Materials Science and Technology. 1992, 8: 206-212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700