时空异质条件下的大气CO_2施肥效应对全球碳水循环影响的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气CO2浓度的持续增加及气候变化对全球陆地生态系统相关过程产生了重要影响,已经成为陆地生态系统中碳循环和水循环研究的重要内容。在气候变化的大环境下,全球各国面临着严峻挑战。本研究旨在利用ENVISAT卫星SCIAMACHY传感器反演大气CO2柱浓度数据与集成生物圈模型IBIS (Integrated Biosphere Simulator)研究和探讨在大气CO2浓度时空异质性及其上升带来的施肥效应条件下,历史时期全球陆地生态系统的碳收支与碳水循环耦合的动态变化及发展趋势。基于这一研究目的,论文首先分析了卫星反演的大气CO2平均柱浓度混合比(XCO2)的数据特点及其全球时空动态特征,并对比本底大气CO2浓度观测网络(GLOBALVIEW)的结果,建立了大气XCO2浓度与近地面浓度经验转换模型;制作了气象数据集、植被、土壤和地形等下垫面数据作为IBIS模型的输入,同时收集了大量碳收支与水平衡数据建立了模型验证数据集,整理近二十年大型生态控制实验结果,验证模型模拟的CO2施肥效应;最后在对模型进行部分改进及充分验证的基础上,结合SCIAMACHY反演XCO2获得的近地面大气CO2浓度时空动态,分析了异质性大气CO2施肥效应及气候变化对全球陆地生态系统碳收支与水分利用效率格局的动态变化及发展趋势,研究的主要结论如下:
     1) SCIAMACHY反演卫星观测大气CO2平均柱浓度数据的季节性变化与不同植被类型之间碳源/汇能力的差异有关;SCIAMACHY反演结果与本底数据相关系数可以达到0.75以上,证明该传感器观测大气CO2浓度具有较高的近地面敏感性,但因大气本底观测网缺乏在热带地区的观测因而无法验证在该地区的敏感性;纬向的大气CO2浓度不是呈现从北半球高纬度向南半球逐渐递减的趋势,而是在赤道纬度存在一个相对持续较高的高浓度的空间格局;南半球中纬度地区存在逐渐增加的大气CO2浓度;北半球高纬度地区(30。-60。N)则因人类活动频繁,人为CO2排放较多,导致该区域大气CO2浓度的遥感观测存在极端高值较多的情况;全球大气CO2浓度上升主要与北半球的排放有关;通过GLOBALVIEW的对比,建立了XCO2浓度与近地面浓度的线性经验转换模型,其精度约为2.7±2.0ppm,并设计一种有效的针对大气CO2浓度的空间插值方法,结果显示:CO2近地面浓度的空间插值结果在非生长季(11月-2月)的模拟效果较好,而在生长季(如4月到9月)的效果不佳,总体上空间插值的结果平均相对误差为0.74%,标准误差为4.05ppm,基本满足陆面过程模型模拟的要求。
     2)除去植被类型匹配、空间尺度匹配等因素的影响外,IBIS模型模拟的碳收支结果在全球大部分区域取得了较好的效果,模型模拟的NPP格局与其他研究结果较为接近,但碳源/汇总量的估算要略高于其他研究结果,这与IBIS模型目前未将土地覆盖变化因素加入模型有关;从对蒸散发的模拟结果比较来看,中纬和高纬度地区的模拟效果较好,热带地区的模拟差异较大。冬季和夏季差异较大,春秋两季的效果较好:通过对主要碳水循环变量的验证,IBIS模拟结果在空间格局及值域范围上与现有研究结果较为吻合,模型精度较高。
     3) IBIS模型模拟的全球NPP及NEP与传统使用均质背景模拟的全球碳收支总量分别存在0.5%和7%的差异。其中大气CO2均质背景对亚马逊、热带非洲等热带森林主要覆盖的地区的碳收支存在约15Gg C/yr/grid的低估,而对世界其他大部分地区有约为0-3Gg C/yr/grid的轻微高估。气候变化及大气C02浓度变化是影响全球碳收支变化的重要因素。气候变化因素分别平均降低全球陆地生态系统NPP和NEP约0.4Tg C/yr和0.3TgC/yr。异质性背景CO2施肥效应对陆地生态系统的NPP和NEP分别带来平均约0.1TgC/yr和0.07Tg C/yr的正向影响,总量上异质性背景与均质背景结果差异不大,但异质性背景下全球碳收支的年际波动更为平缓。全球约有60%-70%的非冰原覆盖地表与气温因子存在显著的相关关系,而约有70-80%的陆地表面与降水因子存在显著的相关关系。在全球尺度上,大气CO2浓度(包括人源因素引起的)并不会对陆地生态系统碳收支的基本空间格局产生显著的影响。
     4) IBIS模型模拟的生态系统WUE大小顺序为温带常绿林>热带森林>寒温带森林>热带稀树草原>密灌丛>草地>苔原>沙漠。WUE的高值区主要分布在美国东部、加拿大东部、以及欧洲和俄罗斯西部等温带常绿林覆盖的区域;低值区主要分布在格陵兰、北非、澳大利亚中部、以及中亚地区。全球陆地生态系统的WUE利用效率总量比传统估计水平低约0.3%,这意味着陆地生态系统的碳收支对干旱等气候变化事件的响应比以往估计的要大。CO2均质背景下,亚马逊、热带非洲、以及东南亚和中国东南的部分地区存在5mgC mm-1m-2的低估;北半球高纬度大部分地区、美国东南部、以及中国青藏高原地区存在约5mgC mm-1m-2的高估;而世界其他地区的差异在1mgC mm-1m-2以内。气候变化因素是影响陆地生态系统WUE变化最为重要的因素,影响约3.9%的全球WUE总量,而异质性大气CO2浓度及均质大气CO2浓度施肥效应分别影响0.36%和0.7%的WUE总量。全球约有27%的地表与气温因子存在显著的相关关系,而约有30%的陆地表面与降水因子存在显著的相关关系。从总量上看,CO2浓度上升带来的对碳水循环耦合的影响要小于气候变化带来的影响。从地理分布上看,大气CO2浓度(包括人源因素引起的)并不会对陆地生态系统WUE的空间分布基本格局产生显著的影响。
Climate change is one of the biggest major concerns in our time, with great impacts on the carbon and water cycle of global terrestrial ecosystems. As atmospheric CO2substantially increase, understanding the CO2dynamic and the carbon sources and sinks at global scale is a prerequisite for a climate change control strategy. This study aims to discuss the global carbon budget and its interactions with water cycle under climate change and heterogeneous atmospheric CO2enrichment effect by using Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) retrievals of column-averaged dry air mole fractions of CO2(denoted XCO2) and Integrated Biosphere Simulator (IBIS). For these purposes, this paper investigated the spatial-temporal patterns of atmospheric XCO2and its relationship with ground-based background monitoring network (GLOBALVIEW), establishing a linear regression model between XCO2and near surface CO2. Several global datasets with spatial resolution of0.5degree were built up as input of the model such as climate datasets, land surface characteristic datasets, and environmental factors. Numerous field data were collected for model validation, including the results of Free Air CO2enrichment experiment (FACE) across major ecosystems. Based on the combination of the near surface CO2variations under heterogeneous scenario which were established from SCIAMACHY XCO2retrievals and the simulated results with reasonable validation, several conclusions were drawn as below:
     1) The seasonal amplitudes of atmospheric XCO2retrieved from SCIAMACHY have relationship with local vegetation types which determine the carbon sinks and sources capability. The correlation coefficient between XCO2and ground CO2were larger than0.75, indicating the high near surface sensitivity of SCIAMACHY XCO2, albeit of the undetectability in Amazon regions. Latitudinal distribution of XCO2has three differences with comparison to ground CO2:(1) substantial high concentration in equatorial regions;(2) extreme high value occurred in mid-and high latitude (30°N-60°N) regions of Northern Hemisphere;(3) disturbances from anthropogenic emission, dust, ice cover, and aerosol. From the relationship between GLOBALVIEW and SCIAMACHY XCO2, the linear regression model had been established. The precision of the model was validated by independent ground observations with the accuracy of2.7±2.0ppm. The processes of spatial extrapolation have a relative mean bias of0.74%and standard error of4.05ppm.
     2) As to carbon balance, the model simulated NPP and NEP well in most regions of the world. The amount of annual carbon sinks from terrestrial ecosystem in IBIS was higher than other studies'results. This is because the land cover and land use change did not considered into model simulations. The simulations of evaportranspiration captured the yearly and monthly variations well. The simulated carbon budget results showed reasonable variety and spatial patterns compared with other works.
     3) Under the spatial heterogeneity of atmospheric CO2scenario, the estimation of global mean annual NPP and NEP were0.5%and7%differ from traditional C sequestration assessments, respectively. The Amazon, Southeast Asia, and Tropical Africa showed higher C sequestration than traditional assessment with about15Gg C/yr/grid, and the rest of areas around the world showed slightly lower C sequestration than traditional assessment with about0-3Gg C/yr/grid. Climate change had great negative effects on global NPP and NEP with0.3Tg C/yr decline respectively, while spatial heterogeneous CO2had positive effects on NPP and NEP with0.1Tg C/yr and0.07Tg C/yr respectively. The spatial variation of NPP is associated with temperature in60to70%of the area of nonpolar terrestrial ecosystems, while70to80%of terrestrial land is colimited by precipitation. The spatial variations of atmospheric CO? have limited effects on spatial patterns of NPP, indicating that anthropogenic emission did not lead to significant effets on carbon budget at global scale.
     4) The Water Use Efficiency (WUE) showed a decreasing order for terrestrial vegetation types:Warm Temperate Forest>Temperate Forest>Tropical Forest> Boreal Forest>Savanna>Dense Shrubland>Grassland>Tundra>Desert.The high WUE distributed in southeastern US,eastern Canada, and Eurpoe and Russia where boreal forest mainly covered.In contrast,the low WUE distributed in Greenland, North Africa, and Central Asia. The estimation of global total WUE was0.3%lower than traditional C sequestration assessments, indicating larger response of global carbon budget to extreme event such as drought. The Amazon, Southeast Asia, and Tropical Africa showed higher WUE (~5mgC mm-1m-2yr-1) than traditional assessment, and the rest of areas around the world showed slightly lower C sequestration than traditional assessment within about1mgC mm-1m-2yr-1. Climate change, spatial heterogeneous CO2and uniform CO2scenarios had positive effects on global total WUE with3.9%,0.36%, and0.7%, respectively. The spatial pattern of WUE is associated with temperature and precipitation in27%and30%areas of terrain respectively. The spatial variations of atmospheric CO2did not have considerable effects on spatial patterns of WUE.
引文
Ainsworth E. and S. Long, What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising C02. New Phytologist[J],2005,165(2):351-372.
    Ainsworth E.A., P.A. Davey, C.J. Bernacchi, et al., A meta-analysis of elevated [C02] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology[J],2002,8(8): 695-709.
    Alo C.A. and G.L. Wang, Hydrological impact of the potential future vegetation response to climate changes projected by 8 GCMs. Journal of Geophysical Research-Biogeosciences[J],2008, 113(G3):114-121.
    Amthor J.S., Scaling CO2-Photosynthesis Relationships from the Leaf to the Canopy. Photosynthesis Research[J],1994,39(3):321-350.
    Amthor J.S., Terrestrial higher-plant response to increasing atmospheric [C02] in relation to the global carbon cycle. Global Change Biology[J],1995,1(4):243-274.
    Arnone J. and C. Kurner, Soil and biomass carbon pools in model communities of tropical plants under elevated CO2. Oecologia[J],1995,104(1):61-71.
    Atwell B.J., M.L. Henery and M.C. Ball, Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO2 enrichment? Plant Cell and Environment[J],2009,32(5):553-566.
    Bosch H., G.C. Toon, B. Sen, et al., Space-based near-infrared C02 measurements:Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin.J. Geophys. Res.[J],2006,111(D23):D23302.
    Baldocchi D., E. Falge, L. Gu, et al., FLUXNET:A New Tool to Study the Temporal and Spatial Variability of Ecosystem' CScale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society[J],2001,82(11):2415-2434.
    Barkley M., P. Monks and R. Engelen, Comparison of SCIAMACHY and AIRS CO2 measurements over North America during the summer and autumn of 2003. Geophysical Research Letters[J],2006,33(20):
    Barkley M., P. Monks, U. Friess, et al., Comparisons between SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS to ground based FTIR data and the TM3 chemistry transport model. Atmos. Chem. Phys[J],2006,6(4483-4498.
    Barkley M.P., P.S. Monks, A.J. Hewitt, et al., Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS. Atmos. Chem. Phys.[J],2007, 7(13):3597-3619.
    Barnola J.M., D. Raynaud, Y.S. Korotkevich, et al., Vostok ice core provides 160,000-year record of atmospheric CO2. Nature[J],1987,329(6138):408-414.
    Beaulieu E., Y. Godderis, Y. Donnadieu, et al., High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Clim. Change[J],2012,2(5):346-349.
    Beer C., M. Reichstein, P. Ciais, et al., Mean annual GPP of Europe derived from its water balance. Geophysical Research Letters[J],2007,34(5):5401.
    Beer C., M. Reichstein, E. Tomelleri, et al., Terrestrial Gross Carbon Dioxide Uptake:Global Distribution and Covariation with Climate. Science[J],2010,329(5993):834.
    Berntson G. and F. Bazzaz, Regenerating temperate forest mesocosms in elevated CO2: belowground growth and nitrogen cycling. Oecologia[J],1997,113(1):115-125.
    Bousquet P., A. Gaudry, P. Ciais, et al., Atmospheric CO2 concentration variations recorded at Mace Head, Ireland, from 1992 to 1994. Physics and Chemistry of the Earth[J],1996,21(5-6): 477-481.
    Bovensmann H., M. Buchwitz, J.P. Burrows, et al., A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmospheric Measurement Techniques[J],2010,3(4):781-811.
    Bradford M., H. Schumacher, S. Catovsky, et al., Impacts of invasive plant species on riparian plant assemblages:interactions with elevated atmospheric carbon dioxide and nitrogen deposition. Oecologia[J],2007,152(4):791-803.
    Brienen R., W. Wanek and P. Hietz, Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. Trees-Structure and Function[J],2011,25(1):103-113.
    Brienen R.J.W., E. Gloor and P.A. Zuidema, Detecting evidence for CO2 fertilization from tree ring studies:The potential role of sampling biases. Global Biogeochem. Cycles[J],2012,26(1): GB1025.
    Brown A., Carbon cycle:Certainty about uncertainty. Nature Clim. Change[J],2012,2(6): 395-395.
    Buchwitz M, R. De Beek, J. Burrows, et al., Atmospheric methane and carbon dioxide from SCIAMACHY satellite data:initial comparison with chemistry and transport models. Atmos. Chem. Phys[J],2005,5(941-962.
    Buchwitz M.,0. Schneising, J. Burrows, et al., First direct observation of the atmospheric CO2 year-to-year increase from space. Atmos. Chem. Phys[J],2007,7(4249-4256.
    Bunce James a., Responses of Seedling Growth to Daytime or Continuous Elevation of Carbon Dioxide. International Journal of Plant Sciences[J],2003,164(3):377-382.
    Butz A., S. Guerlet, O. Hasekamp, et al., Toward accurate CO2 and CH4 observations from GOSAT. Geophys. Res. Lett.[J],2011,38(14):L14812.
    Caemmerer S. and G.D. Farquhar, Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta[J],1981,153(4):376-387.
    Chevallier F., R.J. Engelen and P. Peylin, The contribution of AIRS data to the estimation of CO2 sources and sinks. Geophys. Res. Lett.[J],2005,32(23):L23801.
    Ciais P., P. Peylin and P. Bousquet, Regional biospheric carbon fluxes as inferred from atmospheric CO2 measurements. Ecological Applications[J],2000,10(6):1574-1589.
    Collatz G., J. Ball, C. Grivet, et al., Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration:a model that includes a laminar boundary layer. Agricultural and Forest Meteorology[J],1991,54(2-4):107-136.
    Conway T, P. Tans, L. Waterman, et al., Evidence for interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network. J. Geophys. Res[J],1994,99(22): 831-855.
    Conway T.J. and P.P. Tans, Development of the CO2 latitude gradient in recent decades. Global Biogeochemical Cycles[J],1999,13(4):821-826.
    Cramer W., A. Bondeau, F.I. Woodward, et al., Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models. Global Change Biology[J],2001,7(4):357-373.
    Crisp D., B.M. Fisher, C. O'dell, et al., The ACOS CO2 retrieval algorithm-Part Ⅱ:Global X-CO2 data characterization. Atmospheric Measurement Techniques[J],2012,5(4):687-707.
    Cure J.D. and B. Acock, Crop responses to carbon dioxide doubling:a literature survey. Agricultural and Forest Meteorology[J],1986,38(1-3):127-145.
    Curry R., R. Peart, J. Jones, et al., Simulation as a tool for analyzing crop response to climate change. Transactions of the ASAE[J],1990,33(3):981-990.
    Dai Y., R.E. Dickinson and Y.P. Wang, A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. Journal of Climate[J],2004,17(12):2281-2299.
    Deng Q., G. Zhou, J. Liu, et al., Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences[J],2010,7(1): 315-328.
    Dewar R.C., The Ball-Berry-Leuning and Tardieu-Davies stomatal models:synthesis and extension within a spatially aggregated picture of guard cell function. Plant, Cell & Environment[J],2002,25(11):1383-1398.
    Engelen R.J., E. Andersson, F. Chevallier, et al., Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system:Methodology and first results. Journal of Geophysical Research-Atmospheres[J],2004,109(D19):
    Erbs M., J. Franzaring, P. Hogy, et al.. Free-air CO2 enrichment in a wheat-weed assembly-effects on water relations. Basic and Applied Ecology[J],2009,10(4):358-367.
    Farquhar G.D., S. Caemmerer and J.A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta[J],1980,149(1):78-90.
    Farquhar G.D. and T.D. Sharkey, Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology[J],1982,33(1):317-345.
    Field C.B., R.B. Jackson and H.A. Mooney, STOMATAL RESPONSES TO INCREASED CO2 IMPLICATIONS FROM THE PLANT TO THE GLOBAL-SCALE. Plant Cell and Environment[J],1995, 18(10):1214-1225.
    Foley J.A., I.C. Prentice, N. Ramankutty, et al., An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles[J], 1996,10(4):603-628.
    Friedlingstein P., R.A. Houghton, G. Marland, et al., Update on CO2 emissions. Nature Geosci[J], 2010,3(12):811-812.
    Gibbs H., L. Olsen and T. Boden, Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation:An Updated Database Using the GLC2000 Land Cover Product. Oak Ridge National Laboratory, Oak Ridge, USA[J],2006,
    Gurney K., R. Law, A. Denning, et al., Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature [J],2002,415(6872):626-630.
    Hamilton J., E. Delucia, K. George, et al., Forest carbon balance under elevated CO2. Oecologia[J],2002,131(2):250-260.
    Hammerling D.M., A.M. Michalak and S.R. Kawa, Mapping of C02 at high spatiotemporal resolution using satellite observations:Global distributions from OCO-2. J. Geophys. Res.[J],2012, 117(D6):D06306.
    Hammerling D.M., A.M. Michalak, C. O'dell, et al., Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophys. Res. Lett.[J],2012,39[8]:L08804.
    Hattenschwiler S. and C. Korner, Effects of elevated CO2 and increased nitrogen deposition on photosynthesis and growth of understory plants in spruce model ecosystems. Oecologia[J],1996, 106[2]:172-180.
    Hendrey G., K. Lewin and J. Nagy, Free air carbon dioxide enrichment:development, progress, results. Plant Ecology[J],1993,104[1]:17-31.
    Hogy P., C. Zorb, G. Langenkamper, et al., Atmospheric CO2 enrichment changes the wheat grain proteome. Journal of Cereal Science[J],2009,50[2]:248-254.
    Houghton R.A., Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences[J],2007,35[1]:313-347.
    Houweling S., I. Aben, F.M. Breon, et al., The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements. Atmospheric Chemistry and Physics[J],2010,10[20]:9981-9992.
    Hu Z., G. Yu, Y. Fu, et al., Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Global Change Biology[J],2008,14(7): 1609-1619.
    Hungate B., C. Lund, H. Pearson, et al., Elevated CO2 and nutrient addition after soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry[J],1997,37(2):89-109.
    Ito A., A historical meta-analysis of global terrestrial net primary productivity:are estimates converging? Global Change Biology[J],2011,17(10):3161-3175.
    Jassal R., T. Black, D. Spittlehouse, et al., Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands. Agricultural and Forest Meteorology[J],2009, 149(6-7):1168-1178.
    Jiang X., M.T. Chahine, E.T. Olsen, et al., Interannual variability of mid-tropospheric CO2 from Atmospheric Infrared Sounder. Geophys. Res. Lett.[J],2010,37(13):L13801.
    Jones C.D., M. Collins, P.M. Cox, et al., The Carbon Cycle Response to ENSO:A Coupled Climate-Carbon Cycle Model Study. Journal of Climate[J],2001,14(21):4113-4129.
    Kammann C., L. Grunhage, U. Gruters, et al., Response of aboveground grassland biomass and soil moisture to moderate long-term CO2 enrichment. Basic and Applied Ecology[J],2005,6(4): 351-365.
    Kampman N., N.M. Burnside, Z.K. Shipton, et al., Pulses of carbon dioxide emissions from intracrustal faults following climatic warming. Nature Geosci[J],2012, advance online publication (
    Kao-Kniffin J. and T. Balser, Elevated CO2 differentially alters belowground plant and soil microbial community structure in reed canary grass-invaded experimental wetlands. Soil Biology and Biochemistry[J],2007,39(2):517-525.
    Karnosky D.F., D.R. Zak, K.S. Pregitzer, et al., Tropospheric 03 moderates responses of temperate hardwood forests to elevated C02:a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology[J],2003,17(3):289-304.
    Keeling C., R. Bacastow, A. Bainbridge, et al., Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus[J],1976,28(6):538-551.
    Kim Y., R.G. Knox, M. Longo, et al., Seasonal carbon dynamics and water fluxes in an Amazon rainforest. Global Change Biology[J],2011, n/a-n/a.
    Kimball B.A., J.R. Mauney, F.S. Nakayama, et al., Effects of increasing atmospheric C02 on vegetation. Plant Ecology[J],1993,104-105(1):65-75.
    King J., M. Kubiske, K. Pregitzer, et al., Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytologist[J],2005,168(3):623-636.
    King J., K. Pregitzer, D. Zak, et al., Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia[J],2001,128(2):237-250.
    Knapp A., E. Hamerlynck and C. Owensby, Photosynthetic and water relations responses to elevated CO2 in the C4 grass Andropogon gerardii. International Journal of Plant Sciences[J],1993, 154(4):459-466.
    Kucharik C.J., C.C. Barford, M. El Maayar, et al., A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites:Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange. Ecological Modelling[J],2006,196(1-2):1-31.
    Kuglitsch F., M. Reichstein, C. Beer, et al., Characterisation of ecosystem water-use efficiency of European forests from eddy covariance measurements. Biogeosciences Discussions[J],2008, 5(4481-4519.
    Luscher A., U. Aeschlimann, M.K. Schneider, et al., Short-and Long-Term Responses of Fertile Grassland to Elevated CO2. Managed Ecosystems and C02[J],2006,187(139-155.
    Lammertsma E.I., H.J. De Boer, S.C. Dekker, et al., Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences[J], 2011,108(10):4035-4040.
    Law B.E., E. Falge, L. Gu, et al., Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology[J],2002,113(1-4): 97-120.
    Le Quere C, M.R. Raupach, J.G. Canadell, et al., Trends in the sources and sinks of carbon dioxide. Nature Geosci[J],2009,2(12):831-836.
    Leuning R., A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment[J],1995,18(4):339-355.
    Lewin K.F., G.R. Hendrey, J. Nagy, et al., Design and application of a free-air carbon dioxide enrichment facility. Agricultural and Forest Meteorology[J],1994,70(1-4):15-29.
    Lieth H., Modeling the primary productivity of the world. Primary productivity of the biosphere[J],1975,14(237-263.
    Liu C, Geographical and seasonal distribution of tropical tropopause thin clouds and their relation to deep convection and water vapor viewed from satellite measurements. J. Geophys. Res.[J],2007,112(D9):D09205.
    Liu J.X., D.T. Price and J.A. Chen, Nitrogen controls on ecosystem carbon sequestration:a model implementation and application to Saskatchewan, Canada. Ecological Modelling[J],2005, 186(2):178-195.
    Liu L., J. King and C. Giardina, Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiology[J],2005,25(12):1511.
    Luo Y., D. Hui and D. Zhang, Elevated CO2 Stimulates Net Accumulations of Carbon and Nitrogen in Land Ecosystems:A Meta-Analysis. Ecology[J],2006,87(1):53-63.
    Luo Y., D.A. Sims and K.L. Griffin, Nonlinearity of photosynthetic responses to growth in rising atmospheric CO2:an experimental and modelling study. Global Change Biology[J],1998, 4(2):173-183.
    Martin K.C., D. Bruhn, C.E. Lovelock, et al.. Nitrogen fertilization enhances water-use efficiency in a saline environment. Plant Cell and Environment[J],2010,33(3):344-357.
    McCarthy H.R., R. Oren, K.H. Johnsen, et al., Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site:interactions of atmospheric CO2 with nitrogen and water availability over stand development. New Phytologist[J],2010,185(2):514-528.
    Mccormack M., S. Pritchard, S. Breland, et al., Soil Fungi Respond More Strongly than Fine Roots to Elevated CO2 in a Model Regenerating Longleaf Pine-Wiregrass Ecosystem. Ecosystems[J],2010,1-16.
    Mcguire A.D., J.M. Melillo, D.W. Kicklighter, et al., Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide:Sensitivity to changes in vegetation nitrogen concentration. Global Biogeochem. Cycles[J],1997,11(2):173-189.
    Mcguire A.D., S. Sitch, J.S. Clein, et al., Carbon balance of the terrestrial biosphere in the twentieth century:Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles[J],2001,15(1):183-206.
    Miyazaki K., P.K. Patra, M. Takigawa, et al., Global-scale transport of carbon dioxide in the troposphere. Journal of Geophysical Research-Atmospheres [J],2008,113(D15):
    Montzka S.A., E.J. Dlugokencky and J.H. Butler, Non-C02 greenhouse gases and climate change. Nature[J],2011,476(7358):43-50.
    Morgan P.B., E.A. Ainsworth and S.P. Long, How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell & Environment[J],2003,26(8): 1317-1328.
    Neftel A., E. Moor, H. Oeschger, et al., Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature[J],1985,315(6014):45-47.
    New M., D. Lister, M. Hulme, et al., A high-resolution data set of surface climate over global land areas. Climate Research[J],2002,21(1):1-25.
    Niklaus P., J. Alphei, D. Ebersberger, et al., Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. Global Change Biology[J],2003,9(4): 585-600.
    Niklaus P. and C. K Rner, Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecological Monographs[J],2004,74(3):491-511.
    Norby R.J. Hartz-Rubin and M. Verbrugge, Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology[J],2003,9(12):1792-1801.
    Norby R.J., E.H. Delucia, B. Gielen, et al., Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America[J],2005,102(50):18052-18056.
    Olsen S.C. and J.T. Randerson, Differences between surface and column atmospheric CO2 and implications for carbon cycle research. J. Geophys. Res[J],2004,109(D02301):
    Pan Y., R.A. Birdsey, J. Fang, et al., A Large and Persistent Carbon Sink in the World's Forests. Science[J],2011,333(6045):988-993.
    Paruelo J., W. Lauenroth, I. Burke, et al., Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems[J],1999,2(1):64-68.
    Penuelas J., J.G. Canadell and R. Ogaya, Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography[J],2010, 20(4):597-608.
    Perez-Ruiz E.R., J. Garatuza-Payan, C.J. Watts, et al., Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS). Journal of Arid Environments[J],2010,74(5):556-563.
    Peters W, A. Jacobson, C. Sweeney, et al., An atmospheric perspective on North American carbon dioxide exchange:CarbonTracker. Proceedings of the National Academy of Sciences[J], 2007,104(48):18925.
    Peterson G., A. Schlegel, D. Tanaka, et al., Precipitation use efficiency as affected by cropping and tillage systems. Journal of production agriculture (USA)[J],1996,
    Picon-Cochard C., F. Teyssonneyre, J. Besle, et al., Effects of elevated CO2 and cutting frequency on the productivity and herbage quality of a semi-natural grassland. European Journal of Agronomy[J],2004,20(4):363-377.
    Pingintha N., M.Y. Leclerc, J.P. Beasley, et al., Hysteresis response of daytime net ecosystem exchange during drought. Biogeosciences[J],2010,7(3):1159-1170.
    Ponton S., L.B. Flanagan, K.P. Alstad, et al., Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology[J],2006,12(2):294-310.
    Poorter H. and M.-L. Navas, Plant growth and competition at elevated CO2:on winners, losers and functional groups. New Phytologist[J],2003,157(2):175-198.
    Potter C., S. Klooster, R. Myneni, et al., Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998. Global and Planetary Change[J],2003,39(3-4):201-213.
    Pregitzer K., A. Burton, J. King, et al., Soil respiration, root biomass, and root turnover following long(?)\term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytologist[J],2008,180(1):153-161.
    Reich P.B., S.E. Hobbie, T. Lee, et al., Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature[J],2006,440(7086):922-925.
    Reuter M., H. Bovensmann, M. Buchwitz, et al., Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY:Validation with FTS measurements and comparison with model results. J. Geophys. Res[J],2011,116(D04301.
    Reuter M., M. Buchwitz,O. Schneising, et al., A simple empirical model estimating atmospheric CO2 background concentrations. Atmospheric Measurement Techniques[J],2012, 5(6):1349-1357.
    Reuter M., M. Buchwitz, O. Schneising, et al., A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds. Atmospheric Measurement Techniques[J],2010, 3(1):209-232.
    Robredo A., U. Perez-Lopez, J. Miranda-Apodaca, et al., Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environmental and Experimental Botany[J],2011,71(3):399-408.
    Runion G., M. Davis, S. Pritchard, et al., Effects of Elevated Atmospheric Carbon Dioxide on Biomass and Carbon Accumulation in a Model Regenerating Longleaf Pine Community. Journal of Environmental Quality[J],2006,35(4):1478-1486.
    Saiz G., M.I. Bird, T. Domingues, et al., Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Global Change Biology[J],2012, n/a-n/a.
    Scanlon T.M. and J.D. Albertson, Canopy scale measurements of CO2 and water vapor exchange along a precipitation gradient in southern Africa. Global Change Biology[J],2004,10[3]: 329-341.
    Schneising 0., P. Bergamaschi, H. Bovensmann, et al., Atmospheric greenhouse gases retrieved from SCIAMACHY:comparison to ground-based FTS measurements and model results. Atmospheric Chemistry and Physics[J],2012,12(3):1527-1540.
    Schneising 0., M. Buchwitz, J. Burrows, et al., Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite Part 1:Carbon dioxide. Atmospheric Chemistry & Physics[J],2008,8(3827-3853.
    Schneising 0., M. Buchwitz, M. Reuter, et al., Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmos. Chem. Phys.[J], 2011,11(6):2863-2880.
    Shindell D. and G. Faluvegi, Climate response to regional radiative forcing during the twentieth century. Nature Geosci[J],2009,2(4):294-300.
    Sinclair T. and T. Horie, Leaf nitrogen, photosynthesis, and crop radiation use efficiency:a review. Crop Science[J],1989,29(1):90-98.
    Singh B.P., Nontraditional crop production in Africa for export. Trends in new crops and new uses[J],2002,86-92.
    Sonnleitner M., M. Giinthardt-Goerg, I. Bucher-Wallin, et al., Influence of soil type on the effects of elevated atmospheric CO2 and N deposition on the water balance and growth of a young spruce and beech forest. Water, Air,& Soil Pollution[J],2001,126(3):271-290.
    Stephens B., K. Gurney, P. Tans, et al., Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science[J],2007,316(5832):1732.
    Stover D.B., F.P. Day, B.G. Drake, et al., The long-term effects of CO2 enrichment on fine root productivity, mortality, and survivorship in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. Environmental and Experimental Botany[J],2010,69(2):214-222.
    Strain B.R. and R.B. Thomas, Field measurements of CO2 enhancement and climate change in natural vegetation. Water, Air,& Soil Pollution[J],1992,64(1):45-60.
    Tans P.P., I.Y. Fung and T. Takahashi, Observational Contrains on the Global Atmospheric CO2 Budget. Science[J],1990,247(4949):1431-1438.
    Taylor J.A. and J.C. Orr, The natural latitudinal distribution of atmospheric CO2. Global and Planetary Change[J],2000,26(4):375-386.
    Thoning K., P. Tans and W. Komhyr, Atmospheric carbon dioxide at Mauna Loa Observatory,2, Analysis of the NOAA/GMCC data,1974-1985. J. Geophys. Res[J],1989,94(D6):
    Thornley J.H.M. and I.R. Johnson, Plant and crop modelling:a mathematical approach to plant and crop physiology. Plant and crop modelling:a mathematical approach to plant and crop physiology. [J],1990, Tian H., J.M. Melillo, D.W. Kicklighter, et al., Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecology and Biogeography[J],2000,9(4):315-335. Tian H.Q., G.S. Chen, M.L. Liu, et al., Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007. Forest Ecology and Management[J],2010,259(7):1311-1327.
    Tyree M.T. and J.D. Alexander, Plant water relations and the effects of elevated C02:a review and suggestions for future research. Plant Ecology[J],1993,104-105(1):47-62.
    Uchijima Z. and H. Seino, Agroclimatic Evaluation of Net Primary Productivity of Natural Vegetations. J. Agr. Met[J],1985,40(4):343-352.
    Walther G., E. Post, P. Convey, et al., Ecological responses to recent climate change. Nature[J], 2002,416(6879):389-395.
    Wang K., H. Jiang, X. Zhang, et al.. Analysis on Spatial and Temporal Variations of Carbon Dioxide over China using SCIAMACHY Satellite Observations during 2003-2005. International Journal of Remote Sensing[J],2011,32(3):815-832.
    Wang Y.P. and R. Leuning, A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I::Model description and comparison with a multi-layered model. Agricultural and Forest Meteorology[J],1998,91(1):89-111.
    Webb N.P., A. Chappell, C.L. Strong, et al., The Significance Of Carbon-Enriched Dust For Global Carbon Accounting. Global Change Biology[J],2012, n/a-n/a.
    Winkler J. and M. Herbst, Do plants of a semi-natural grassland community benefit from long-term CO2 enrichment? Basic and Applied Ecology[J],2004,5(2):131-143.
    Yang Y.H., J.Y. Fang, W.H. Ma, et al., Large-scale pattern of biomass partitioning across China's grasslands. Global Ecology and Biogeography[J],2010,19(2):268-277.
    Yu G.R., X. Song, Q.F. Wang, et al., Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist[J],2008,177(4):927-937.
    Zak D.R., K.S. Pregitzer, J.S. King, et al., Elevated atmospheric CO2, fine roots and the response of soil microorganisms:a review and hypothesis. New Phytologist[J],2000,147(1):201-222.
    Zhang D., J. Tang, G. Shi, et al., Temporal and spatial variations of the atmospheric CO2 concentration in China. Geophysical Research Letters[J],2008,35(3):L03801.
    Zhao M. and S.W. Running, Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science[J],2010,329(5994):940-943.
    Zheng D., S. Prince and R. Wright, Terrestrial net primary production estimates for 0.5° grid cells from field observations-a contribution to global biogeochemical modeling. Global Change Biology[J],2003,9(1):46-64.
    Zhu Q., H. Jiang, C. Peng, et al., Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China. Ecological Modelling[J],2011, 222(14):2414-2429.
    朱林and许兴,植物水分利用效率的影响因子研究综述.干旱地区农业研究[J], 2005,23(6):204-208.
    周凌晞,刘立新,张晓春,et al.,我国温室气体本底浓度网络化观测的初步结果.应用气象学报[J],2008,19(6):5.
    胡中民,于贵瑞,王秋凤,et al.,生态系统水分利用效率研究进展.生态学报[J],2009,29(3):
    曹生奎,冯起,司建华,et al.,植物叶片水分利用效率研究综述.生态学报[J],2009,29(7):3882-3892.
    刘志红,L. Lingtao and T. Mcvicar,专用气候数据空间插值软件ANUSPLIN及其应用.气象[J],2008,34(2):92-100.
    罗亚勇,赵学勇,黄迎新,et al.,植物水分利用效率及其测定方法研究进展.中国沙漠[J],2009,29(4):648-655.
    钱维宏,陆波and梁浩原,年际和年代际冷暖变化是人类活动碳排放量增减的诱因Sci Bull[J],2011,56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700