黄河三角洲湿地大型底栖动物时空变化规律及其功能群研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型底栖动物在湿地生态系统的物质和能量转化过程中发挥重要的作用。然而相关研究目前还仅仅集中在物种编目的层面上,为完善黄河三角洲湿地生态系统的组成和结构,揭示大型底栖动物时空分布变化规律,分别于2006年春季、夏季以及2008年夏季,在黄河三角洲湿地典型生态系统内,使用自制0.1m~3箱式采泥器采取土壤样品,对大型底栖动物进行调查和监测,包括种类组成、多样性、时空分布及环境因子,在此基础上对大型底栖动物功能群进行划分。结果如下:
     (1)大型底栖动物空间分布
     水平空间上,由入海口向内陆延伸过程中,软体动物种类逐渐减少且80%以上分布在低潮滩;环节动物表现为水生植物群落>中生植物群落>旱生植物群落;节肢动物由甲壳纲动物向昆虫纲动物过渡大型底栖动物群落的种数、生物量、多样性指数均表现为水生植物群落>中生植物群落>旱生植物群落,均匀度指数和丰富度指数表现为中生植物群落>水生植物群落>旱生植物群落。
     垂直空间上,95%的种类和个体都分布在0~20cm土层范围内,且表聚性非常明显。
     (2)大型底栖动物时间分布
     大型底栖动物春末、夏末种类变化不大,不同季节各生境大型底栖动物生物量变化均表现为芦苇地>农田棉花>潮间带(低潮滩和高潮滩)>防护林(刺槐林、白蜡林和杨树林)>草地;整体上大型底栖动物生物量夏季明显高于春季。
     (3)大型底栖动物功能群划分
     41种大型底栖动物中,有植食者14种,为优势功能群,大灰象虫等为代表种;浮游生物食者7种,光滑河篮蛤等为代表种;肉食者6种,双齿围沙蚕等为代表种;碎屑食者6种,直隶环毛蚓为代表种;杂食者8种,日本黑褐蚁等为代表种。
     从空间分布来看,入海口向内陆延伸过程中,浮游生物食者主要分布在水生植物群落,而植食者主要分布在中生植物群落中。时间分布上,各生境不同季节大型底栖动物功能群组成及物种多样性差异不大,芦苇地差异最大,春季碎屑食者2种,到了夏季消失。
     (4)大型底栖动物与环境因子关系分析
     在土壤理化因子中,含水量与大型底栖动物相关性最大,除了种类以外均达显著水平以上;土壤盐度对大型底栖动物丰富度影响较大,土壤无机碳与大型底栖动物种类显著正相关,而水溶性有机碳与生物量、土壤速效氮与种类极显著负相关,速效钾与丰富度指数显著负相关,速效磷与均匀度指数极显著相关。
     (5)大型底栖动物群落的相似性
     对黄河三角洲湿地大型底栖动物环境因子聚类分析和大型底栖动物群落相似分析比较发现生活环境越相近的植物群落,大型底栖动物相似性越高,林地与农田之间群落相似性较高,其余生境之间较低。
The large zoobenthos played an important role on the transformation process of substance and energy in wetland ecosystem. However, the correlation study centralized on the level of species inventory presently. To perfect the structure and composition in Yellow River delta wetlands, and revealed the spatial and temporal variation of large zoobenthos, field surveys carried out on their species composition, diversities, community structures and environmental factors in different habitats on spring and summer in 2006 and summertime in 2008. Moreover, we compartmentalized the functional groups of the zoobenthos. A total of 41 zoobenthos species were found, of which consisted of Mollusk, Annelid and Arthropod, Planktophagous group, phytophagous group, camivorous group, omnivorous group, detritivorous group composed the functional groups of the zoobenthos of Yellow River delta wetlands. The contents and results were summarized as follows:
     (1) The spatial distribution of zoobenthos
     In the horizontal space, from the estuary to inland, 80% of the Mollusk dispersed in low tidal beach. The number of Annelid in descending order is aquatic plant community, mesophyte community, and xerophyte community. The Arthropod gradually converted from crustacea to insectacra. Dominant species varied clearly among different habitats. High community similarities of zoobenthos existed between woodland and farmland and lower community similarities existed between other habitats. Species number, biomass and diversity index in descending order was aquatic plant community, mesophyte community, xerophyte community, and that of evenness index, abundance index was mesophyte community, aquatic plant community, xerophyte community.
     In vertical distribution, 95% of the species and individuals distributed within top 10cm depth of the surface layer.
     (2) The temporal distribution of zoobenthos
     Species number of zoobenthos in spring has little difference when compared with that of the summer, Comparing with other investigation, species in Yellow River delta wetlands is short of. Biomass in different habitats and in different season changed a little. Biomass in descending order was bulrush land, cotton field, intertidal zone, shelter forest and grassland. Biomass in summer is higher than biomass in spring.
     (3) Compartmentalize the functional groups of the zoobenthos
     There are 14 kinds phytophagous group, its representative species are Sympiezomias velatus, Agrotis segetum, Holotuichia parallela. phytophagous group is preponderant group. There are 7 kinds planktophagous group, its representative species are Stenothyra glabar, Assiminea lutea. There are 6 kinds detritivorous group, its representative species arePerinereis aibuhutensis, Pirata boesenberget. There are 6 kinds detritivorous group, its representative species are Perinereis aibuhutensis, Pirata boesenberget. There are 6 kinds camivorous group, its representative species are Capitella capitata, Phertima tschiliensis.There are 8 kinds omnivorous group, its representative species are Formica japonica, Artemia sp, Hyale grandicornis.
     In the space distribution, from estuary to inland, planktophagous group distributed in aquatic plant community. phytophagous group distributed in mesophyte community. In the temporal distribution, there was little diversity in functional groups composition and diversity indexes of zoobenthos between different seasons. Bulrush land had most difference. There was 2 kinds detritivorous group in spring, and disappeared in summer.
     (4)Analysis of the relationship between zoobenthos and environmental factors
     In all of the soil physical factors, the relativity between moisture in the soil and zobenthos is the most significant one, except species, others are all above the significant level; the influence of soil salinity on zoobenthos abundance is large, the relativity between them was 0.604. Diversity indexes of zoobenthos negatively correlated with the soil PH expect species. Water-solubility organic C much negatively correlated with biomass, correlational index is -0.738. Inorganic C much positive correlated with biomass. Available N much negatively correlated with biomass. Available K much negatively correlated with Abundance index. Available P much correlated with Evenness index (0.810).
     (5) Comparability of zoobenthos and Cluster analysis
     The environmental factor at sampling points are the more similar, the similarity of benthic fauna are also higher. Through the analysis of the comparability index of zoobenthos showed that the similarity of zoobenthos community and the differences of zoobenthos community composition. The cluster analysis of environmental factor of zoobenthos and the similarity analysis of the comparison between zoobenthos communities, the results showed that the more similar living environment, the higher the coefficient of similarity. The similarity index between forest land and farmland was highest, but lower on the other habitat.
引文
[1]安传光,赵云龙,林凌等.崇明岛潮间带夏季大型底栖动物多样性[J].生态学报,2008,28(2):577-586
    [2]鲍毅新,葛宝明,郑祥,等.温州湾天河滩涂大型底栖动物群落分布与季节变化[J].动物学报,2006,52(1):45-52
    [3]蔡庆华,吴刚,刘建康.流域生态学:水生态系统多样性研究和保护的一个新途径[J].科技导报,1997,14:24-26
    [4]蔡学军.黄河三角洲潮间带动物多样性的研究[J].海洋湖沼通报,2000,45(4)45-52
    [5]曹正光,蒋忻坡.几种环境因子对梨形环棱螺的影响[J].上海水产大学学报,1998,7(3):200-205
    [6]陈荷生.太湖生态修复治理工程[J].长江流域资源与环境,2001,10(2)173-178
    [7]陈灵芝,钱迎倩.生物多样性科学前沿[J].生态学报,1997,17(6):552-572
    [8]陈其羽,梁彦龄,吴天慧.武汉东湖底栖动物群落结构和动态的研究[J].水生生物集刊,1980,7(1):41-55
    [9]陈其羽,谢翠娴,梁彦龄,等.望天湖底栖动物种群密度与季节变动的初步观察[J].海洋与湖沼,1982,13(1):78-86
    [10]陈其羽.武汉东湖铜锈环棱螺种群变动和生物量的初步观察[J].水生生物学报,1987,11(2):117-130
    [11]戴友芝,唐受印,张建波.洞庭湖底栖动物种类分布及水质生物学评价[J].生态学报,2000,20(2):277-282
    [12]邓红兵,王庆礼,蔡庆华.流域生态学—新学科、新思想、新途径[J].应用生态学报,1998,9(4):443-449
    [13]付荣恕,刘林德.北京:生态学实验教程, 2005:89-92
    [14]高矮跟,杨俊毅,曾江宁等.海洲湾潮间带大型底栖动物的分布特征[J].海洋学研究,2009,27(1):22-29
    [15]高六礼,田家怡.黄河三角洲附近海域底栖动物多样性及其保护措施[J].海洋环境科学,1999,18(1):39-44
    [16]龚志军.长江中游浅水湖泊大型底栖动物的生态学研究(博士论文).武汉:中科院水生生物研究所,2002
    [17]韩洁,张志南,于子山.渤海大型底栖动物丰度和生物量的研究[J].青岛海洋大学学报,2001,31(6):889-896
    [18]何文珊.河口湿地生态演替及其干扰研究—以长江口九段沙湿地为例(博士学位论文).上海:华东师范大学,2002
    [19]胡知渊,鲍毅新等.中国自然湿地底栖动物生态学研究进展[J].生态学杂志,2009,28(5):959-968
    [20]黄勃,张本,陆健健,等.东寨港红树林区大型底栖动物生态与滩涂养殖容量的研究[J].海洋科学,2002,26(3):65-68
    [21]黄玉瑶,滕德兴,赵忠宪.利用人型无脊椎动物群落结构特征及其多样性指数监测蓟运河污染[J].动物学集刊,1982,2:133-460
    [22]黄玉瑶.水污染生物监测[J].环境保护,1982,11(2):88-89
    [23]贾建华,田家怡.黄河三角洲淡水底栖动物名录[J]. 2003,海洋湖沼通报,(2):83-86
    [24]蒋万祥,贾兴焕等.香溪河大型底栖动物群落结构季节动态[J].应用生态学报,2009,20(4):923-928
    [25]李宝泉,李新正,王洪法,等.长江口附近海域大型底栖动物群落特征[J].动物学报,2007,53(1):76-82
    [26]李会新.黄河三角洲湿地生态环境现状的调查研究[J].中国环境管理干部学院学报,2006,16(3):33-36
    [27]李强.西若溪大型底栖无脊椎动物的空间分布及生物完整性研究(硕士论文).南京:南京农业大学,2007
    [28]刘茂奇.龙湿地自然保护区大型底栖动物群落结构和多样性研究(硕士论文).哈尔滨:东北林业大学,2009
    [29]刘玉等.珠江、流溪河大型底栖动物分布和氮磷因子的相关分析[J].中山大学学报(自然科学版),2003,42(1):95-99
    [30]陆健健.河口生态学[M].北京:海洋出版社,2003
    [31]吕绍生.七里海湿地的生态修复[J].城市环境与城市生态,2003,16(5):45-47
    [32]罗民波,陆健健,沈新强,等.大型海洋工程对洋山岛周围海域大型底栖动物生态分布的影响[J].农业环境科学学报,2007,26(1):97-102
    [33]马徐发,熊邦喜,王明学,等.湖北道观河水库大型底栖动物的群落结构及物种多样性[J].湖泊科学,2004,16(1):49-55
    [34]欧伏平,黄艳芳,田琪,等.洞庭湖区内湖生态环境现状及修复对策[J].内陆水产,2003,28(12):36-38
    [35]潘保柱,王海军,梁小民,等.长江故道底栖动物群落特征及资源衰退原因分析[J].湖泊科学,2008,20(6):806-813
    [36]任淑智.北京小型湖泊底栖无脊椎动物群落结构特征与营养状况的研究[J].应用生态学报,1991,2(3):221-225
    [37]任淑智.京津及邻近地区底栖动物群落特征与水质等级[J].生态学报,1991,2(3):262-268
    [38]申保忠,田家怡等.黄河三角洲米草入侵对滩涂底栖动物多样性的影响[J].海洋科学进展,2009,27(3):384-392
    [39]沈新强,陈亚瞿,全为民等.底栖动物对长江口水域生态环境的修复作用[J].水产学报,2007,31(2):199-203
    [40]宋宪国.用底栖动物评价水环境[J].山西水利科技,1997,116(2):88-89
    [41]宋玉珍.黄河兰州段底栖动物的生态分布及其对水质的评价[J].甘肃环境研究与监测,1994,7(8):27-30
    [42]田家怡,潘怀剑,傅荣恕.黄河三角洲土壤动物多样性初步调查研究[J].生物多样性,2001,9(3):228-236
    [43]童春富,章飞军,陆健健.长江口海三棱藨草带生长季大型底栖动物群落变化特征[J].动物学研究,2007,28(6):640-646
    [44]王忠,2002.植物生理学[M].北京:中国农业出版社.
    [45]王备新,陆爽,等.水质生物评价指数筛选[J].南京农业大学学报,2003,26(4):46-50
    [46]王备新,杨莲芳.大型底栖无脊椎动物水质快速生物评价的研究进展[J].南京农业大学学报,2001,24(4):107-111
    [47]王备新,杨莲芳,等.应用底栖动物完整指数B-IBI评价溪流健康[J].生态学报,2005,25(6):1481-1489
    [48]王晓晨等.黄河口岔尖岛、大口河岛和望子岛潮间带秋季大型底栖动物生态学调查[J].动物学杂志,2008,43(6):77-82
    [49]王银东.武汉市南湖大型底栖动物生态学和优势种群的遗传多样性(博士论文).武汉:华中农业大学,2005
    [50]王宇庭,曲晓,张月辉,等.黄河三角洲平原型大型底栖动物对磷的积累效应[J].湖泊科学,2006,18(6):173-178
    [51]王玉珍.黄河三角洲湿地资源及生物多样性研究[J].安徽农业科学,2007,35(6):1745-1746
    [52]吴天慧.新疆福海底栖动物的研究[J].水生生物学报,1991,15(4):303-313
    [53]谢志发,何文珊,刘文亮,等.不同发育时间的互花米草盐沼对大型底栖动物群落的影响[J].生态学杂志,2008,27(1):63-67
    [54]熊金林,梅兴国,胡传林.不同污染程度湖泊底栖动物群落结构及多样性比较[J].湖泊科学,2003,15(2):160-168
    [55]徐巧倩,王洪铸,张世萍.河蟹过度放养对湖泊底栖动物群落的影响[J].水生生物学报,2003,27(1):41-46
    [56]许巧情.湖泊不同利用方式对底栖动物群落的影响(硕士论文).武汉:华中农业大学,2001
    [57]杨泽华,童春福,陆健健.长江口湿地三个演替阶段大型底栖动物群落特征[J].动物学研究,2006,27(4):411-418
    [58]于洪贤,蒋超.放养河蟹对黑龙江东湖水库底栖动物和水生维管束植物的影响[J].水生生物学报,2005,29(4):430-434
    [59]愈大维,虞左明.杭州西湖底栖动物群落的研究[J].水生生物学报,1991,15(1):63-72
    [60]袁兴中,陆健健.潮滩微地貌元素-“生物结构”与小型底栖动物的空间分布[J].生态学杂志,2003,22(6):124-126
    [61]袁兴中,陆健健.围垦对长江口南岸底栖动物群落结构及多样性的影响[J].生态学报,2001,21(10):1642-1647
    [62]张金屯.数量生态学[M].北京:中国科学技术出版社,2004,120-178
    [63]张培玉.渤海湾近岸海域底栖动物生态学与环境质量评价研究(博士论文).青岛:中国海洋大学,2005
    [64]张志南,李永贵,图立红,等.黄河口水下三角洲及其邻近水域小型底栖动物的初步研究[J].海洋与湖沼,1989,20(3):197-208
    [65]张志南,图立红,于子山.黄河口及其邻近海域大型底栖动物的初步研究(一)生物量[J].青岛海洋大学学报,1990,20(1):37-45
    [66]张志南,图立红,于子山.黄河口及其邻近海域大型底栖动物的初步研究(二)生物与沉积环境的关系[J].青岛海洋大学学报,1990,20(2):45-52
    [67]赵延茂,宋朝枢.黄河三角洲自然保护区科学考察集[M].北京:中国林业出版社,1995
    [68]郑莉,李传荣,许景伟,等.黄河口湿地大型底栖动物名录初报[J].山东农业大学学报(自然科学版),2010,41(1):60-64
    [69]郑荣泉,张永普,李灿阳,等.乐清湾滩涂大型底栖动物群落结构的时空变化[J].动物学报,2002,53(2):390-398
    [70]钟非,刘保元,等.水生态修复对莲花湖底栖动物群落的影响[J].应用与环境生物学报,2007,13(1):55-60
    [71]周时强,郭丰,吴荔生,等.福建海岛潮间带底栖生物群落生态的研究[J].海洋学报,2001,23(5):104-109
    [72]周晓,葛振鸣,等.长江口新生湿地大型底栖动物群落时空变化格局[J].生态学杂志,2007,26(3):372-377
    [73]周晓,王天厚,等.长江口九段沙湿地不同生境中大型底栖动物群落结构特征分析[J].生物多样性,2006,14(2):165-171
    [74]朱晓佳,钦佩.外来种互花米草及米草生态工程[J].海洋科学,2003,27(12):14-19
    [75]朱晓君,陆健健.长江口九段沙潮间带底栖动物的功能群[J].动物学研究,2003,24(5):355-361
    [76]朱晓君.长江河口潮间带湿地底栖动物功能群及其生态学意义研究(硕士论文).武汉:华东师范大学,2004
    [77] Armonies W. On the spatial scale needed for benthos community monitoring in the coastal North Sea[J]. Journal of Sea Research,2000,43:121-133.
    [78] Borgmanna U. Nowierskib M. Assessing the cause of impacts on benthic organisms near Rouyn-Noranda,Quebec[J]. Environmental pollution,2004,129:39-48
    [79] Brown J. H.Nicoletto P. F. Spatial scaling of species composition: body masses of North American and mammals[J]. American Natrualist,1991,138:1478-1512
    [80] Chapin F. S.,Walker B. H.,R.J. Hobbs,et al. Biotic control over the functioning of ecosystems[J]. Science,1997,277:500-503
    [81] Chung C. H. Thirty years of ecological engineering with Spartina plantations in China [J]. Ecological Engineering,1993,2:555-558
    [82] Covich A. P. The food web of a tropical rain fores. The Stream Community,1996,433-459
    [83] Creed R. P. Direct and indirect effects of crayfish grazing in a stream community[J]. Ecology,1994,75:2091-2103
    [84] Donald S. The Estuarine Ecosystem[M]. New York:Chapman and Hall,1989,113-132
    [85] Engel V. D. , Summers J. K.. Latitudinal gradients in benthic community composition in western Atlantic estuaries[J]. Journal of Biogeography,1999,26:1007-1023.
    [86] Greig S. P. Quantitative Plant Ecology[M]. Oxford Scientific Publications,1983
    [87] Grime J. P. Biodiversity and ecosystem function:the debate deepens[J]. Science,1997,277:1260-1261
    [88] Hawkins C. P.,Macmahon J. A. Guilds: the multiple meanings of a concept[J]. Annual Review of Entomology,1989,34:423-451
    [89] Hooper D. U. & Vitousek P. M. Effect of plant composition and diversity on nutrient cycling[J]. Ecological Monographs,1998,68:121-149
    [90] Ives A. R.,Gross K.,Klug J. L. Stability and variability in competitive communities [J]. Science,1999,286:542-544
    [91] Jensen K. T. Macrozoobenthos on an Intertldal mudflat in the Danish wadden sea:cinparis on of surveys made in the 1930s,1940s and 1980s[J]. Helgol der Meeresunters,1992,46:363-376
    [92] Levin S. A. The problem of pattern and scale in ecology[J]. Ecology,1993,73(6):1943-1967
    [93] Lindegaard C. The role of zoobenthos in energy flow in two shallow lakes[J]. Hydrobiologia,1994,275:313-322
    [94] McCann K. S. The diversity-stability debate[J]. Nature,2000,405:228-233
    [95] Sarda R.,Foreman K.,Valiela I. Long-term changes of macroinfaunal assemblagees in exper imientally enricged salt maesh tidal crdal creeks[J]. Biol. Bull,1994,187:282-283
    [96] Schlapfer F. & Schmid B. Ecosystem effects of biodiversity:a classification of hypotheses and exploration of empirical results[J]. Ecological Applications,1999,9:893-912
    [98] Thorp T. K. Seasonal riation of Maerozoobenthic Conllnu nity Structure at Low Salinities in a Medltrranesn Lagoon[J]. Intemat.Re.Hydrobiol,1981,89(4):407-442
    [99] Tilman D.,Knops J.,Wedin D.,et al. The influence of functional diversity andcomposition on ecosystem processes[J]. Science,1997,277:1300-1302
    [100]Wallace J. B. The role of macroinvertebrates in stream ecosystem function[J]. Annual Review of Entomology,1996,41:115-139
    [101]Warwick R. M. A new method for detecting pollution effects on marine macrobenethic communities[J]. Mar. Biol.,1986,92:557-562
    [102]Wiens A. Spatial scaling in ecology[J]. Functional Ecology,1989,3:385-397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700