Cd胁迫对水稻材料根系形态特征及解剖结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工农业的迅速发展,土壤中Cd含量增加,土壤—植物—食品系统中的Cd污染问题日趋严重。水稻是对Cd敏感的作物,其产量和品质较易受到Cd的影响。由于根系直接与污染土壤接触,其形态解剖结构随之发生改变。目前,有关水稻在逆境胁迫下外部形态结构变化的研究较多,但对Cd胁迫下水稻材料根系形态解剖结构的比较研究还未见报道。为此,本试验以4份遗传特性和根系Cd积累能力不同的保持系、恢复系水稻育种材料为供试对象,采用水培试验结合石蜡切片技术,比较了Cd胁迫下不同水稻材料根系形态解剖结构的差异,探讨Cd胁迫对水稻根系解剖结构的伤害特点,旨在为选育低吸收低积累型水稻材料提供解剖学方面的依据。主要研究结果如下:
     (1)随Cd浓度升高,四份水稻材料根系Cd含量逐渐上升,材料间增幅变化各异,各处理间均达显著性差异。在不同供Cd下,保持系、恢复系水稻材料根系Cd含量均是Cd高积累型显著高于Cd低积累型,表现出各自对Cd高积累和低积累的特性,且随着Cd浓度升高和生育期推进,差异逐渐增大;整体上看,同一Cd积累型水稻根系Cd含量均是保持系明显大于恢复系,恢复系表现出较强的抗Cd性;各水稻材料随生育期的推进,根系Cd含量递增、涨幅递减。
     (2)水稻根系形态解剖性状值在不同Cd浓度和生育期对Cd的反应各异,材料间存在差异。低Cd水平,保持系、恢复系水稻材料根系根直径、皮层厚度、中柱直径、导管直径、大导管数均较对照有不同程度的增加,高Cd水平,则较对照有所下降;同系的Cd低积累型根系形态解剖性状值均高于Cd高积累型(形态解剖性状值高,受Cd伤害较小,表现更正常),即Cd高积累型受Cd毒害较为严重,对Cd适应性更差,抗Cd能力不如Cd低积累型;从同一Cd积累型看,在不同Cd水平下均是保持系根系形态解剖性状值低于恢复系,且前者的增、降幅度更大、稳定性更差、受Cd毒害更重,而恢复系根系对Cd的适应能力更好,具有更强的抗Cd性;就生育期而言,根系各形态解剖性状值以孕穗期最高,灌浆期次之,成熟期最低,即随水稻的成熟,各指标逐渐下降,Cd毒害逐渐加深。
     (3)水稻根系形态解剖结构在不同Cd浓度和生育期对Cd的反应各异,材料间变化不同。以孕穗期为例,保持系两材料在低Cd下皮层出现新生根,高积累型宜香B新生根直径较低积累型E2B更粗、染色更深;在高Cd下均发生表皮脱落、皮层破损且出现黑色斑点,高积累型宜香B表皮及皮层破损较低积累型E2B严重,出现的黑点更靠近中柱,表明低积累型E2B较高积累型宜香B受Cd迫害更轻,忍耐性更强。恢复系材料在Cd胁迫下皮层均出现新生根,低Cd下高积累型R892出现新生根较低积累型绵恢725多一条,直径也较绵恢725粗,且更靠近中柱;高Cd下高积累型R892皮层破损较低积累型绵恢725严重,表明低积累型绵恢725受Cd毒害较高积累R892轻,耐Cd性更强,即保持系、恢复系均是高积累型受Cd毒害较低积累型严重。同为高积累型材料,恢复系R892仅出现新生根,保持系宜香B不仅出现新生根、皮层严重破损、还产生黑色斑点,表明恢复系R892根系解剖结构受损较保持系宜香B轻,受Cd毒害相对轻微;同为低积累型材料,保持系E2B根系皮层出现1条新生根和少量黑色斑点,恢复系绵恢725仅有一条靠近表皮的新生根,未见黑色斑点,表明恢复系绵恢725根系解剖结构变化较保持系E2B小,表现更稳定,具有更好的抗Cd性。不同生育时期来看,灌浆期和成熟期根系形态解剖结构在Cd胁迫下表现出与孕穗期类似的规律(即高Cd下水稻材料根系受Cd毒害较低Cd下严重,保持系、恢复系均是高积累型受Cd毒害较低积累型严重,同一积累型水稻材料均是保持系受Cd毒害较恢复系严重),Cd对水稻根系解剖结构的影响以成熟期最重,灌浆期次之,孕穗期最低,而其根系的自我调节能力表现为灌浆期>孕穗期>成熟期。
With the rapid development of modern industry and agriculture, the Cd content in soil has increased. As a result, the problem about the Cd content in the soil-plant-food system has been more and more serious. Rice is the Cd-sensitive crop which is vulnerable to the impact of Cd, especially on the yield and quality. As the root directly contacted the contaminated soil, the morphological and anatomical structure of the plant have been changed. At present, there are many researches about the external morphology changes of rice which is under stress. However, the comparative study about the root morphological and anatomical structure of rice which is under Cd stress has not been reported. For this reason, in this experiment,4 maintain lines and restorer lines of rice breeding copies which are different in the genetic characteristics and root Cd accumulation capacity have been the test object. Through hydroponics experiment and paraffin sections, the difference of root morphological and anatomical structure from different rice materials has been compared. The injury characteristics of rice root anatomy under the Cd stress has been investigated. The research was designed to be the anatomical basis for the rice seed selection which kind is low absorption and low accumulation. The main findings are as follows:
     (1)With the increase of Cd concentration, Cd content of 4 rice root increased gradually, the different changes between materials and different treatments were significant. Under different Cd concentration, maintainer, restorer root Cd content of rice materials were high accumulation-type was significantly higher than the low accumulation-type materials, demonstrated their ability of high accumulation or low on the Cd accumulation characteristics, and with the increase of Cd concentration and the promoted of growth stage, the differences increased. On the whole, both as high or low accumulation-type of rice materials, the Cd content of the maintainer line was higher than the restorer line, and restorer line had stronger capacity of anti-Cd; all rice materials with the growth stages,Cd content of roots increased and the scale of rise decreased.
     (2)Morphological and anatomical traits values of rice root in different growth stages and Cd concentration reacted differently to Cd,varied among the 4 tested materials.Under low Cd level, root diameter, cortex thickness, central cylinder diameter, xylem vessel diameter, the number of large xylem vessel of maintainer, restorer root of rice materials were increased at different degrees compared to control;Under high Cd level, both of them decreased at different degrees compared to control.Both as the same line materials, rice root morphological and anatomical traits values of low accumulation-type were higher than the high accumulation-type(Indicated that the morphological and anatomical traits values was higher, less stressed by Cd, showed a more normal).It was indicated when compared with low accumulation-type, high accumulation-type was more stressed by Cd,the ability of adapt to Cd toxicity even worse,with weaker capacity of anti-Cd. From the same accumulation-type to Cd, both as high or low accumulation-type of rice materials, the rice root morphological and anatomical traits values of the maintainer line was lower than the restorer line. The increase and decrease range of the maintainer line was higher than the restorer line, stability was worse than the restorer line, and root of restorer line had a better adapt ability to Cd toxicity, its means had a stronger capacity of anti-Cd. From growth stages,the morphological and anatomical traits values of rice root was booting stage highest, filling stage the second, maturity stage the lowest, with the boosting of the growth stages, all parameters decreased gradually, root affected by Cd toxicity deepen gradually.
     (3)Morphological and anatomical structure of rice root in different growth stages and Cd concentration reacted differently to Cd,varied among the 4 tested materials.Take booting stage for example, under low Cd level, new root appeared in the cortex of maintainer line materials. Compared with the low accumulation-type E2B, the diameter of the new root of high accumulation-type Yixiang B was thicker, and the stain was deeper; under high Cd level, epidermal off, cortex damage and dark spots appeared in both materials. Compared with the low accumulation-type E2B, the phenomenon of epidermal off, cortex damage of high accumulation-type Yixiang B were more serious, and the dark spots were closer to central cylinder. It was indicated when compared with high accumulation-type Yixiang B, low accumulation-type E2B with stronger capacity of anti-Cd, was less stressed by Cd. New root appeared at cortex in both restorer line materials, but under low Cd level, for high accumulation-type of R892, there was one more root than low accumulation-type of Mianhui 725, and the root with thicker diameter was closer to the central cylinder; under high Cd level, cortex damage of high accumulation-type R892 were more serious than the low accumulation-type Mianhui 725, which indicated that low accumulation-type Mianhui 725 was less stressed by Cd and had stronger capacity of anti-Cd.Both as high accumulation type of rice materials, just new root appeared in cortex of restorer line material R892, but in maintainer line material YixiangB, not only did new root appeare, but also serious cortex damage and dark spots appeared. It was indicated that damage to root structure of restorer line material R892 was slighter than maintainer line material YixiangB, and R892 was less affected by Cd toxicity; both as low accumulation type of rice materials, there were one new root and some dark spots appeared in root cortex of maintainer line materials E2B, but for restorer line Mianhui 725, there was only one root near by epidermis, and no dark spot was discovered. It was indicated that the changes in anatomical structure of roots in restorer line Mianhui 725 was slighter than maintainer line E2B, and restorer line Mianhui 725 had better stability and stronger capacity of anti-Cd. Look from different growth stages,the root morphological and anatomical structure of filling stage and maturity stage had the similar rules to booting stage under Cd stress(Under high Cd level,the rice root damaged by Cd were more serious than it's under low Cd level; maintainer, restorer root of rice materials damage caused by Cd were high accumulation-type more serious than the low accumulation-type materials; both as high or low accumulation-type of rice materials, the damage caused by Cd of the maintainer line were more serious than the restorer line).The morphological and anatomical structure of rice root effected by Cd was maturity stage deepest, filling stage the second,booting stage the slightest, and root system of self-regulating capacity presented as filling stage>booting stage>maturity stage.
引文
[1]白嵩,纪秀娥,白宝璋.水体镉污染对水稻幼株生长及某些生理特性的影响[J].吉林农业大学学报,2004,26(3):245-247
    [2]程旺大,等.我国优质安全稻米生产的现状及发展对策[J].上海交通大学学报(农业科学版),2003,21(2):144-151
    [3]程旺大,姚海根,张国平,等.镉胁迫对水稻生长和营养代谢的影响[J].中国农业科学,2005,38(3):528-537
    [4]陈冬梅.不同pH和不同形态氮对几种作物生物量积累和根系解剖结构的影响[D].扬州大学,2005
    [5]陈冬梅,司江英,封克.介质pH和氮形态对玉米苗期根系发育的影响[J].扬州大学学报:农业与生命科学版,2006,27(2):36-39
    [6]仇硕,黄苏珍.镉胁迫对黄菖蒲不同部位组织结构的影响[J].江苏农业科学,2008,(1):109-111
    [7]段增强,高致明,孙金花,等.栽培与野生丹参根解剖结构比较研究[J].河南农业大学学报,2006,40(2):191-196
    [8]方金梅,应朝阳,黄毅斌,等.铝胁迫对决明属水土保持牧草幼苗根系的影响[J].中国水土保持,2003(7):30-32
    [9]封克,司江英,汪晓丽,等.不同水分条件下水稻根解剖结构的比较分析[J].植物营养与肥料学报,2006,12(3):346-351
    [10]高静.小麦苗期根的分枝规律与解剖结构[D].中国农业大学,2004
    [11]郭艳梅.Cd胁迫对杂交水稻及其亲本生理特性和Cd含量的影响[D].四川农业大学,2008
    [12]黄秋婵,黎晓峰,耀燕.镉对水稻的毒害效应及耐性机制的研究进展[J].安徽农业科学,2007,35(7):1971-1974
    [13]黄玉山,罗广华,关綮文.镉诱导植物的自由基过氧化损伤[J].植物学报,1997,39(6):522-526
    [14]何龙飞,刘友良,沈振国.铝对小麦根营养元素吸收和分布的影响[J].电子显微学报,2000,19(5):685-694
    [15]何翠屏,王慧忠.植物根系对镉毒害的防御及其代谢[J].重庆环境科学,2003,25(11):51-67.
    [16]胡田田,康绍忠.植物淹水胁迫响应的研究进展[J].福建农林大学学报(自然科学版),2005,34(3):90-102
    [17]焦石,段玉玺,孙华,等.大豆根部冰冻切片最佳方法试验[J].湖北农业科学,2009,4:806-808
    [18]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99
    [19]柯庆明,林文雄,梁康迳,等.镉胁迫对不同水稻基因型生长的影响[J].农业资源与环境科学,2008,24(3):383-340
    [20]孔妤.关于稻根通气组织形成和外皮层边缘厚壁细胞发育的研究[D].扬州大学,2009
    [21]林庆宇,李建平,闫研.超积累植物富集机制研究方法进展[J].分析化学,2008,8(3):30-32
    [22]李明辉,吕占军.貉发情期卵巢和子宫解剖结构的观察[J].现代畜牧兽医,2009,3:29-30
    [23]李坤权,刘建国,陆小龙,等.水稻不同品种对镉吸收及分配的差异[J].农业环境科学学报,2003,22(5):529-532
    [24]李秧秧,邵明安Axial change in root xylem water potenial and radial hydraulic conductivity of corn[J]土壤学报,2003,40(2):200-204
    [25]李德华,贺立源,刘武定.玉米自交系耐铝性评价及根系形态解剖特征[J].作物学报,2004,30(9):947-950
    [26]李正理.植物解剖学[M].北京:高等教育出版社,1983
    [27]刘东华,蒋悟生.镉对洋葱根生长和细胞分裂的影响[J].环境科学学报,1992,12(4):440-444
    [28]刘东华,蒋悟生,李海峰,等.镉对大蒜根生长和根尖细胞超微结构的影响[J].华北农学报,2000,15(3):66-71
    [29]刘莉.镉胁迫对水稻幼苗干物质积累和活性氧代谢的影响[J].浙江农业学报,2005,17(3):147-150
    [30]刘穆.种子植物形态解剖学导论[M].北京:科学出版社,2001
    [31]刘胜群,宋凤斌.不同耐旱性玉米根系解剖结构比较研究[J].干旱地区农业研究,2007,25(2):86-90
    [32]刘文菊,刘玉双.镉在水稻根际的生物有效性[J].农业环境保护,2000,19(3):184-187
    [33]刘延吉,田晓艳,曹敏建.低钾胁迫对玉米苗期根系生长和钾吸收特性的影响[J].玉米科学,2007,15(2):107-110
    [34]刘延盛,鲁家米,周晓阳.Pb在豌豆幼苗细胞中的超微结构分布与毒性研究[J].应用与环境生物学报,2007,13(5):647-651
    [35]刘莹,盖钧镒,吕彗能.作物根系形态与非生物胁迫耐性关系的研究进展[J].植物遗传资源学报,2003,4(3):265-269
    [36]龙联文,童嫒,赵永洲.快速冰冻切片病理诊断在乳腺肿瘤诊治中的价值分析[J].西南军医,2008,10(2):67-68
    [37]罗文泊,谢永宏,宋凤斌.洪水条件下湿地植物的生存策略[J].生态学杂志,2007,26(9):1478-1485
    [38]卢布,周殿玺.稻抗旱机理的研究——早稻水稻根解剖结构比较[J].作物杂志,1994,(2):39
    [39]吕建波,徐应明,贾堤,等.土壤镉、铅污染对油菜生长行为及重金属累积效应的影响[J].天津城市建设学院学报,2005,11(2):107-110
    [40]马引利,佘小平.铝、镉对小麦幼苗生长的影响及其DNA损伤效应研究[J].西北植物学报,2006,26(4):0729-0735
    [41]马元喜,王晨阳,贺德先,等.小麦的根[M].北京:中国农业出版社,1999
    [42]马元喜,段增强,等.冬小麦根系各级分枝形成及其解剖结构研究[J].作物学报,2002,28(3):327-332
    [43]盂庆辉,潘青华,鲁韧强,等.4个品种扶芳藤茎叶解剖结构及其与抗旱性的关系[J].中国农学通报,2006,22(4):138-142
    [44]倪才英.铜对紫云英根系生长发育的影响[J].江西师范大学学报自然科学版,2000,24(2):176-180
    [45]倪才英,陈英旭,骆永明.红壤模拟铜污染下紫云英根表形态及其组织和细胞结构变化[J].环境科学,2003,5:116-121
    [46]倪才英,李华,骆永明.铜、镉及其交互作用对泡泡草细胞超微结构的影响[J].环境安全学报,2004,24(2):343-348
    [47]欧巧明,倪建福,马瑞君.春小麦根系木质部导管与其抗早性的关系[J].麦类作物报,2005,25(3):27231
    [48]庞士铨.植物逆境生理学基础[M].哈尔滨:东北林业大学出版社,1990
    [49]秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320-325
    [50]司江英,陈冬梅,封克.介质pH和氮形态对玉米苗期根系导管发育的影响[J].安徽农业科学,2007,35(6):1587-1588
    [51]史静,潘根兴,李恋卿.外加Cd对两水稻品种细胞超微结构的影响研究[J].生态毒理学报,2008,3(4):403-409
    [52]宋阿琳,娄运生,梁永超.不同水稻品种对铜镉的吸收与耐性研究[J]中国农学通报,2006,22(9):408-411
    [53]宋世文,曹享云,耿明建,等.对缺硼反应不同的油菜品种根系生长特性研究[J].植物营养与肥料学报,2000,6(2):202-206
    [54]孙彩霞,沈秀瑛.玉米根系生态型及生理活性与抗旱性关系的研究[J].华北农学报,2002,17(3):20-24
    [55]邵国胜,Muhammaod J.H.,等.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J].中国水稻科学,2004,18(3):239-244
    [56]檀建新,尹君,王文忠,等.镉对小麦、玉米幼苗生长和生理生化反应的影响[J].河北农业大学学报,1994,17(增):83-87
    [57]单长卷,田雪亮,吴雪平.小麦根系抗旱适应性研究进展[J].安徽农业科学,2006,34(3):419-420
    [58]田艳芬,史锟.镉对水稻等作物的毒害作用[J].垦殖与稻作,2003,(5):26-28
    [59]田晓锋,魏虹,贾中民,等.重金属镉(镉2+)对梧桐幼苗根生长及根系形态的影响[J].西南师范大学学报自然科学版,2008(4):93-96.
    [60]屠乃美,郑华,邹永霞,等.不同改良剂对铅镉污染稻田的改良效应研究[J].农业环境保护,2001,19(6):324-326
    [61]王丹,骆建霞,史燕山,等.两种地被植物解剖结构与抗旱性关系的研究[J].天津农学院学报,2005,12(2):15-17,25
    [62]王锋尖,黄英金,李德荣,等.水稻形态解剖性状问的相关分析研究[J].江西农业大学学报,2004,26(4):477-481
    [63]王法宏,郑丕尧,王树安,等.大豆不同抗旱性品种根系性状的比较研究-形态特征及解剖组织结构[J].中国油料作物学报,1989,1:007
    [64]王化岑,马元喜,王晨阳,等.小麦不同时期根系分支与解剖学研究[J].河南农业大学学报,1996,30(3):263-266
    [65]王化岑,刘万兴.超高产冬小麦根系生长动态与解剖学结构初步观察[J].作物学报,1998,24(6):952-956
    [66]王静,黄薇.不同品种春小麦种子根的解剖结构与抗旱性关系的初探[J].兰州大学学报(自然科学版),1998,34(4):154-156
    [67]王凯荣,郭炎,何电源,等.重金属污染对稻米品质的研究[J].农业环境保护,1993,12(6):254-257
    [68]王凯荣,龚惠群.不同生育期镉胁迫对两种水稻的生长、镉吸收及糙米镉含量的影响[J],生态环境,2006,15(6):1197-1203
    [69]王琴儿,曾英,李丽美.镉毒害对水稻生理生态效应的研究进展[J].北方水稻,2007,(4):12-16
    [70]王敏,姚维传,张从宇,等.小麦抗旱性的形态性状及初生根解剖结构研究[J].种子,2002(6):14-18,25
    [71]王文泉,郑永战,梅鸿献,等.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化[J].植物遗传资源学报,2003,4(3)214-219
    [72]王一喆,王强.镉对植物根系的毒害作用[J].广东微量元素科学,2008,15(4):1-5
    [73]吴启堂,陈卢,王广寿,等.水稻不同品种对镉吸收累积的差异和机理研究[J].生态学报,1999,19(1):104-107
    [74]吴永成,周顺利,王志敏.小麦与抗旱性有关的根系遗传改良研究进展[J].麦类作物学报,2004,(3):101-104
    [75]吴志强.杂交水稻根系发育研究[J].福建农学院学报,1982,2:19-27
    [76]肖美秀,梁义元,梁康迳,等.水稻重金属污染及其控制技术的研究进展[J].亚热带农业研究,2005,1(3):40-43
    [77]肖美秀,林文雄,陈祥旭,等.镉在水稻体内的分配规律与水稻镉耐性的关系[J].中国农学通报,2006,22(2):379-381
    [78]熊礼明,鲁如坤.几种物质对水稻吸收镉的影响及机理[J].土壤,1992,24(4):197-200
    [79]杨春刚,朱智伟,章秀福,等.重金属镉对水稻生长影响和矿质元素代谢的关系[J].植物生理科学,2005,21(11):176-192
    [80]杨捷频.常规石蜡切片方法的改良[J].生物学杂志,2006,23(1):45-46
    [81]杨居荣,贺建群,等.农作物Cd耐性的种内和种间差异[J].应用生态学报,1994,5(2):192-196
    [82]杨清伟,蓝崇裕,束文圣.铅锌矿废水污染水稻土镉的化学形态与生物有效性研究[J].农业环境科学学报,2007,26(2):500-504
    [83]杨世勇,谢建春,刘登义.镉的生物学效应及植物的耐性机制[J].生物学教学,2000,25(9):6-7
    [84]姚春馨,隆四清,和立忠.水稻Cd积累基因型差异及其对Cd胁迫的反应[J].湖南大学学报(自然科学版),2007,8(33):37-40
    [85]衣纯真,傅桂平.不同钾肥对水稻镉吸收和运移的影响[J].中国农业大学学报,1996,1(3)65-70
    [86]余炳生,张仪.生物学显微技术[M].北京:北京农业大学出版社,1989,3-27
    [87]詹洁,寇瑞杰,何龙飞.铝对花生根尖细胞形态结构的影响[J].中国油料作物学报,2008,30(1):79-83
    [88]张潮海,华村章,邓汉龙,等.水稻对污染土壤中Cd、铝、铜、锌的富集规律的探讨[J].福建农业学报,2003,18(3):147-150.
    [89]张红霞,刘果厚,崔秀萍.干旱对浑善达克沙地榆叶片解剖结构的影响[J].植物研究,2005,25(1):39-44
    [90]章秀福,王丹英,储开富,等.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异[J].中国水稻科学,2006,20(2):194-198
    [91]张杰,梁永超,娄运生.镉胁迫对两个水稻品种幼苗光合参数、可溶性糖和植株生长的影响[J].植物营养与肥料学报,2005,11(6):774-780
    [92]张利红,李培军,李雪梅,等.镉胁迫对小麦幼苗生长及生理特性的影响[J].生态学杂志,2005,24(4):458-460
    [93]张艳馥,沙伟,王晓琦等.三江平原不同生境条件下小叶章根解剖结构的研究[J].中国草地学报,2006,28(5):110-112
    [94]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究[J].环境科学学报,1997,17(2):199-205
    [95]张玉秀,柴团耀,Burkard G.植物耐重金属机理研究进展[J].植物学报,1999,41(5):453-457
    [96]张志权,束文圣,蓝祟钰,等.土壤种子库与矿业废弃地植被恢复研究:定居植物对重金属的吸收和再分配[J].植物生态学报,2001,25(3):306-311
    [97]赵步洪,张洪熙,奚岭林,等.杂交水稻不同器官镉浓度与累积量[J].中国水稻科学,2006,20(3):306-312
    [98]赵昕,谢国恩,宋瑞清,等.一种同步观察喜树碱与菌根丛枝结构的方法[J].植物生理学通讯,2008,44(5):985-988
    [99]赵艺,赵保卫.土壤污染对植物根系生长影响的研究进展[J].环境科学与管理,2002,33(6):13-15
    [100]祝沛平,李凤玉,梁海曼.铜对植物器官分化的影响[J].植物生理学通讯,1999,35(4):332-334
    [101]Andrei A B.Vera I S,Viktor E T,et al.Genetic vareability in tolerance to Cadmium and accumulation of heavy metals in pea (Pisum sativum L.)[J].Euphytica,2003,131:25-50
    [102]Armstrong W, Armstrong J,et al.Convective gas flows in wet land plant aeration[A].In:Jackson M B,Davies D D,LambersH(eds).Plant Life under Oxygen Deprivation[C].SPB Academic Publishing by,The Hague,The Netherland.1991:283-302
    [103]Bingham IJ, Blackwood JM, Stevenson EA.Site,scale and time-course for adjustments in lateral root initiation in wheat following changes in C and N supply[J].Annals of Botany,1997,80:97-106
    [104]Boussama N.,Ouariti O.,Ghorbel M.H.Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress[J]. Journal of Plant Nutrition and Soil Science,1999,22:4-5
    [105]Chen S,Wilson D B.Construction and Characterization of Eserichia coli Genetically Engineered for Bioremediation of Hg2+ Contaminated Environments[J].Applied and Environmental Microbiology,1997,63(6):2442-2450
    [106]Cristian B, Dennis H B, Fernando C. The cellular location of Gu in lichens and its effects on membrance integrity and chlorophyll fluorescence[J].Environ & exper botany.1997,38:165-179
    [107]Das P,Samantaray S,Rout GR.Studies on cadmium toxicity in plants:a review[J].Environ Pollut.1997,98:29-36
    [108]Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Ann Rev Plant Physiol Plant Mol Biol,1991,42:55-76
    [109]Doussan C.,Vercambre G.,Pages L.Water uptake by two contrasting root systems (maize, peach tree):results from a model of hydraulic architecture[J].Agronomie,1999,19:3-4
    [110]F.C. Lidon,F.S. Henriques.Effects of Copper toxicity on growth and the uptake and translocation of metals in rice plants[J].Journal of Plant Nutrition.1993,16:1449-1464
    [111]Fitter,A.H.Functional significance of root morphology and root system architecture.In:Ecological interactions in soil. Special Publication Number 4 of the British Ecological Society. Blackwell Scientific Publications,Oxford,1985,87-106
    [112]Florijn P.J.,De J.A.,Knecht M.L.,et al.Phytochelatin concentration and binding state of Cd in roots of maize genotypes differing in shoot/root Cd partitioning[J].Journal of Plant Physiology.1993,142:537-542
    [113]Grant C.A., Buckley W.T., Bailey L.D.,et al.Cadmium accumulation in crops[J]. Canadian Journal of Plant Science,1998,78:1-17.
    [114]Geraldine S., Pierre S.L., Valerie B.Forms of Zinc Accumulated in the Hyperaccumulator Arabidopsis halleri[J].Plant Physiol,2002,130:1815-1826
    [115]Hans-WernerK.Ultrastructural and physiological change in root cells of sorghum plants(Sorghum bicolor×S.sudanensis cv. Sweet Sioux)induced by NaCl[J].Journalof Expermental Botany,1997,48(3):693-706
    [116]Helen P.F.,Artemios M. Bosabalidis.Root structural aspects associated with copper toxicity in oregano(Origanum vulgare subsp. hirtum)[J].Plant Science,1999,166:1497-1504
    [117]Jackson M B, Armstrong W. Formation of aerenehyma and the processes of plant ventilation in relation to soil flooding and submerge[J].Plant Siol,1999,(1):274-287
    [118]J.Robb,L.Busch,W.E.Rauser,Zinc toxicity and xylem vessel alterations in white beans[J].Ann.Bot.46(1980)43-50.
    [119]M.D.Vazquez,Ch.Poschenrider,J.Barcelo,Chromium VI induced structural and ultra-structural changes in bush bean plants(Phaseolus vulgaris L.)[J].Ann.Bot.,1987,59,427-438.
    [120]Mitch M. L. Phytoextraction of toxic metal:a renew of biolotical mechanisms[J].Journal of Environmental Quality,2002,31:109-120.
    [121]Nicoletta R.,Francesca D.V.,Nicoletta L.R.,et al.Metal accumulation and damage in rice(cv. Vialone nano)seedlings exposed to Cadmium[J].Environmental and Experimental Botany.2008,62:267-278
    [122]Nobel P S.Root distributions and seasonal production in the Northwestern Sonoran Desert for a C3 subshrub, a C3 bunchgrass,and a CAM leaf succulent[J]. American Journal of Botany,1997,84:949-955
    [123]Prasad M N V.Inhibition of maize leaf chlorophylls, carotenords and gas exchange function by Cadmium[J].Photo synthetica(Prague),1995,31(4):635-640
    [124]Priscila L.G.,Carolina C.M.,Monica L.R.i,et al..Differential ultrastructural changes in tomato hormonal mutants exposed to Cadmium[J].Environmental and Experimental Botany,2009,2063:1-8
    [125]Robert J.,Lamoreaux, William R.Chaney.Growth and water movement in silver maple seedlings affected by cadmium[J].Environ.Qual,1977,6:201-205
    [126]Rieger M., Litvin P. Root system hydraulic conductivity in species with contrasting root anatomy[J].Journal of Experimental Botany,1999,50:201-209
    [127]R.J.Bennet,C.M.Breen,M.V.Fey,Aluminium-induced changes in the morphology of the quiescent center,proximal meristem and growth region of the root of Zea mays[J]. Journal of Botany,1985,51:355-362
    [128]Samantory S, Das P. Effcct of chromite minewaste on seed germination growth,biomas syield of Oryza Sativa L.cv.Pathara[J].Orissn J Agri Res,1991,4(1-2):38-43
    [129]Saul V.,Mercedes F.P.,Beatriz S. P.,et al.Subcellular compartmentalisation of Cadmium in white lupins determined by energy-dispersive X-ray microanalysis[J]. Journal of Plant Physiology,2007,164:1235-1238
    [130]Schiefebein J.W., Benfey P.N., The development of plant roots-New approaches to underground problems[J].Plant Cell,1991,3:1147-1154
    [131]Shah K.,Dubey R.S.Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings[J].Plant Physiol.Biochem,1995,33:577-584
    [132]S. Karatagli L.,Symeonidis M.,Moustakas,et al.Effect of toxic metals on the multiple forms of esterases of Triticum aestivum cv.Vergina[J].Crop Science,1988,160:106-112
    [133]Solis-Dominguez F.A.,Gonzalez-Chavez M.C.,et al.Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system[J].Journal of Hazardous Materials,2007,141(3):630-636
    [134]Stelzer R.,Lfiuchli A.Salt and flooting tolerance of Puncin-eltia peisonis. Ⅲ. Distribution and localization of ions in the plant[Z].Pflanzen physiol,1978,88:437-448
    [135]Sriprangr,Hayashi M, Onoh,et al.Enhanced Accumulation of Cd2+ by a Mesorhizobiumsp. Transformed With a GeneFrom Arabidopsu thaliana Coding for Phytochelatin Synthase[J].Applied and Environmental Microbiology,2003,69 (3):1791-1796
    [136]Van assch E F, Cluter S H.Effects of metal on enzyme activity in plant[J].Plant Cell Environ,1990,13:195-206
    [137]Wu Fei-bo,Dong Jing.Genotypic Difference in the Responses of Seedling Growth and Cd Toxicity in Rice(Oryza sativa L.)[J].Agricultural Sciences in China,2006,5(1):68-76.
    [138]Varney GT,Canny MJ.Rates of water uptake into the mature root system of maize plants[J].New Phytologist,1993,123:775-786
    [139]Wong SC, Li XD, Zhang G.Heavy metals in agricultural soils of the Pearl River Delta, South China[J].Environmental Pollution,2002,119(8):33-44.
    [140]Zhou Q, Huang XH, Tu KG.,et al. Ecophymsiological effeets of La on Glycine max seeding under Cd stress[J].China Environmental Science,1998,18(5):442-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700