干扰对东北次生林结构与过程影响的模拟体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林动态模拟是获取森林演替过程中定量信息的重要途径,也是验证各种干扰假说的重要方法。为预测次生林在不同干扰情景下的动态变化过程,本文在Visual Studio2005平台下,运用C#开发语言,在Access数据库和地理信息系统二次开发控件Arcgis Engine的支持下,建立了干扰的一体化模拟体系,以描述次生林结构动态与变化过程。干扰模拟体系由地形数据预处理、气候数据预处理、植被动态模拟(含干扰)、结果分析四大模块组成。该体系在原有基于个体的集水区森林动态模型(CFDM)的基础上,改进了模型的部分结构,修正了模型的输入参数,并加入了干扰模块,以探索次生林对干扰的动态响应过程。本研究以老爷岭张家沟次生林集水区为模拟区域,首先对该地区的次生林在无干扰情景下发展变化的模拟过程进行验证与分析,然后分别探讨在3种预设干扰情景下次生林的响应动态过程。
     结果表明:1)在自然模拟情景——模拟区域天然次生林在当地原生地带性顶极群落优势种——红松缺失的情况下,由水曲柳、色木槭、紫椴等主要阔叶树种组成的天然次生林能够顺利的完成演替与更新,使次生林长期处于相对稳定的亚顶极状态。验证结果表明,模拟的个体数量和次生林蓄积量的时间变化与树木的特性和森林演替规律相吻合;次生林中的树种组成和群落结构的时空分布状况也与集水区次生林的实际分布状况相似;模拟的树种年龄结构符合树种的生态对策。2)各种干扰模拟情景——单次大范围干扰并不是摧毁次生林的决定因素;皆伐干扰中,周期的选取非常关键,对于每一个采伐带,最佳干扰周期出现在60年-80年之间;择伐干扰情景中,多次干扰采伐总量最大值出现在起始采伐胸为10cm及干扰间隔周期为20年的方案中,该方案下林分密度维持在较为适中的水平,林内光照条件的优化使林木产生生长释放。通过各种干扰场景的模拟,揭示了景观水平上潜在的自然植被分布、受干扰后植被的恢复与重建等规律,探索了干扰因素对次生林景观结构和过程的影响。
Forest dynamic simulation is a significant approach of acquiring quantitative information in forest succession and a vital method of verifying various disturbance hypotheses. In order to predict dynamic changes of secondary forest in different disturbances, an integrative disturbance simulation system describing the process of structure changes of secondary forest was established on the development platform of Visual Studio by using C# language, Access database and ArcGIS Engine. The system comprised terrain and meteorological data pre-process module, vegetation dynamic simulation module (including disturbance) and results analysis module. Based on CFDM, the model structure was improved, parameters were optimized and a disturbance module for studying dynamic response of secondary forest to disturbances was integrated in the system. Taking the catchment of Zhangjiagou as study area, the dynamics of secondary forest without disturbance was firstly simulated in this study, and then, dynamic response processes of secondary forest to three predetermined disturbance scenarios were discussed respectively. Results showed that:
     1) In natural simulation, the secondary forest, composed of major broadleaved tree species such as Fraxinus mandshurica、Acer tegmenlosum、Tilia amurensis, could complete succession and regeneration smoothly and then stayed in a long and relative steady subclimax status without Korean pine(Pinus koraiensis); the original climax dominant species. The verification result showed that, numbers of trees and time dependant variations of volume for secondary forest coincided with characteristics of trees and succession regulation of forest; spatial and temporal distribution of species composition and community structure of secondary forest was similar to the practical distribution; the simulated age structure of species conformed to ecological strategy.
     2) In different disturbance simulations, singe and wide-range disturbance is not the determinants of destroying secondary forest in different disturbances. Period selection is the key point in clear cutting disturbance. The best disturbance period appeared between 60 and 80 years for each cutting strip. In selection cutting, the maximum of total cutting of multi-disturbances appeared in the scheme of initial cutting diameter at breast height of 10cm and disturbance period of 20 years. Under this disturbance scenario, forest density was maintained in a moderate level and the optimum of light illumination under the forest canopy produced biomass increasing sharply. Potential distribution regulation of natural vegetation, restoration and reconstruction regulation of vegetation after disturbance on landscape level were revealed and the disturbance influences on landscape structure and process of secondary forest were explored by simulating different disturbances conditions.
引文
[1]Dezzotti A. Austrocedrus chilensis and Nothofagus dombeyi stand development during secondary succession in northwestern Patagonia Argentina[J]. Forest Ecology and Management,1996,89(1-3):125-137.
    [2]黄世能,王伯荪.热带次生林群落动态研究:回顾与展望[J].世界林业研究,2000,13(6):7-13.
    [3]Green RH. A multivariant statistical approach the Hutchinson niche:bivalve molluscs of central Canada [J]. Ecology,1971,52(4):543-556.
    [4]郭全邦,马平安,刘玉成.缙云山次生林优势种群实际生态位动态[J].地理学与国土研究,1998,14(1):49-51.
    [5]李德志,董世艳,膝建国.天然次生林群落中四种阔叶幼树树冠叶层结构的初步研究[J].吉林林学院学报,1996,11(2):69-74.
    [6]任青山.天然次生林主要种群生态位结构的研究[J].东北林业大学学报,1998,26(2):5-10.
    [7]李茹秀,任青山,郭永安.次生林主要类型生态位土地分类方法[J].东北林业大学学报,1996,24(5):43-49.
    [8]安树青,洪必恭,李朝阳,张亚,刘志礼.紫金山次生林林窗植被和环境的研究[J].应用生态学报,1997,8(3):245-245.
    [9]张建国,叶芬,盛炜彤.福建邵武洪墩采育场丝栗栲次生林类型与树种多样性研究[J].林业科学研究,1998,11(1):45-51.
    [10]娄安如.神农架3种天然次生林的种群结构和演替趋势[J].北京师范大学学报(自然科学版),1996,32(1):124-128.
    [11]陈喜军,邢树名,藏军,何向阳,何兆田,谭喜卿,许国华,盖玉利.天然次生林森林类型的树种多样性[J].林业科技,1997,20(5):13-14.
    [12]李国猷.北方次生林经营[M].北京:中国林业出版社,1992:20-24.
    [13]陈大珂,周晓峰,祝宁等.天然次生林——结构、功能、动态与经营.哈尔滨:东北林业大学出版社,1994:149-158.
    [14]李德志,秦艾丽,杨茂林,刘鹏飞.天然次生林群落中主要树木种群间联结关系的研究[J].植物生态学报,1996,20(3):263-271
    [15]Mesquita R C G. The effect of different proportions of canopy opening on the carbon cycle of a central Amazonian secondary forest[D]. Georgia:University of Georgia, Athens, Georgia, USA,1995:
    [16]Mesquita R C G. Management of advanced regeneration in secondary forests of the Brazilian Amazon[J]. Forest Ecology and Management,2000,130 (1-3):131-140.
    [17]Aiba S, Hill D A, Agetsuma N. Comparison between old-growth stands and secondary stands regenerating after clear-felling in warm-temperate forests of Yakushima, [J]. Forest Ecology and Management,2001,140(2-13):163-175
    [18]庄雪影,Richard T C.香港次生林树种种子生理生态学特性的研究[J].生态科学,1999,18(1):1-6
    [19]Adjers G, Hadengganan S, Kuusipalo J, Nuryanto K, Vesa L. Enrichment planting of dipterocarps in logged-over secondary forests:effect of width, direction and maintenance method of planting line on selected Shorea species [J]. Forest Ecology and Management, 1995,73(1-3):259-270.
    [20]Higo M, Shinohara A, Kodama S. The regeneration behavior of major component species in the secondary forest dominated by Pinus densiflora and Quercus serrata in central Japan[J]. Forest Ecology and Management,1995,76(1-3):1-10.
    [21]Guariguata M R. Early response of selected tree species to liberation thinning in a young secondary forest in Northeastern Costa Rica[J]. Forest Ecology and Management,1999, 124(2-3):255-261.
    [22]李涛,赵春玲,吕海军,李志刚,等.中德合作宁夏贺兰山封山育林育草项目区天然次生林更新调查[J].宁夏农林科技,2000,(S1):23-25
    [23]王百兴,梁金彪,高庆春.次生林区天然更新规律初探[J].内蒙古林业科技,2000,(2):33-35
    [24]朱教君.次生林经营基础研究进展[J].应用生态学报,2002,13(12):1689-1694
    [25]伍业钢,李哈滨.景观生态学的理论发展[A].见:刘建国.当代生态学博论.北京:中国科学技术出版社,1992:30-39
    [26]Pickett S T A, White P S. The Ecology of Natural Disturbance and Patch Dynamics[M]. New York:Academic Press,1985:472.
    [27]梁建萍,王爱民,梁胜发.林业科学研究[J],2002,15(4):490-498.
    [28]陈利顶,傅伯杰.干扰的类型、特征及其生态学意义[J].生态学报,2000,20(4):581-586.
    [29]朱教君,刘足根.森林干扰生态研究.应用生态学报[J],2004,15(10):1703-1710.
    [30]Blay D. Tropical secondary forest management in humid Africa:Reality and perspectives[R]. Proceedings:Workshop on Tropical Secondary Forest Management in Africa, FAO,2003:2-4.
    [31]Zhu J J, Li X F, Xiu ZG, et al. Factors affecting the snow/wind induced damage of a montane secondary forest in northeastern China[J]. Silva Fennica,2006,40 (1):37-51.
    [32]Pascarella J B, Aide T M, Zimmerman K Z. Short-term response of secondary forests to hurricane disturbance in Puerto Rico, USA[J]. Forest Ecology and Management,2004, 199(2-3):379-393
    [33]Connell J H. Diversity in tropical rainforests and coral reefs[J]. Science,1978,199(4335): 1302-1310.
    [34]Petraitis P S, Latham R E, Niesenbaum R A. The maintenance of species diversity by disturbance[J]. The Quarterly Review of Biology,1989,64(4):393-418.
    [35]Hill M O, Roy D B, Thompson K. Hemeroby, urbanity and ruderality:Bioindicators of disturbance and human impact[J]. Journal of Applied Ecology,2002,39 (5):708-720.
    [36]Steinhardt U, Herzog F, Lausch A, et al Hemeroby index for landscape monitoring and evaluation:environmental indices[A]. In:Pykh YA, Hyatt DE, Lenz RJ (eds) System analysis appraoch. Landon:Oxford, EOLSS Publications,1999:236-254
    [37]Kim Y M, Zerbe S, Kowarik I. Human impact on flora and habitats in Korean rural settlements[J]. Preslia,2002,74(1):409-419
    [38]李迈和,Norbert K,杨健.生态干扰度:一种评价植被天然性程度的方法[J].地理科学进展,2002,21(5):450-458.
    [39]朱教君,刘世荣.次生林概念与生态干扰度[J].生态学杂志,2007,26(7):1085-1093.
    [40]桑卫国,马克平,陈灵芝,等.森林动态模型概论[J].植物学通报,1999,16(3):193-200
    [41]Leemans R, I C Prentice. FORSKA, a general forest succession model[R]. Uppsala: Institute of Ecological Botany,1989:
    [42]葛建平.森林生态学建模与仿真.哈尔滨:东北林业大学出版社,1996:42,106-107
    [43]Mueller, G M. Systematics of Laccaria (Agaricales) in the Continental United States and Canada, with Discussions on Extralimital Taxa and Descriptions of Extant Types. Fieldiana, Botany, n.s.,1992,30(1):158
    [44]Vasconcelos J M T Carvalho J M R, Extraction of Zinc by Alkyl Thio phosphoric Acids with Emulsion Liquid Membranes[J]. Chemical Engineering & Technology,1993,16(3): 213-217.
    [45]Baker W L, Lgbert S L, Frazier G F. A spatial model for studying the effects of climatic change on the structure of landscapes subject to large disturbances[J]. Ecological Modelling,1991,56:109-125
    [46]Wallin D O, Swanson F J, Marks B. Landscape pattern response to changes in pattern generation rules:Land-use legacies in forestry[J]. Ecological Applications,1994,4(3): 569-580
    [47]Gardner R H, Hargrove W W, Turner MG Climate change, disturbances and landscape dynamic[A]. In:Walker B H, Steffen W L eds. International Geosphere-Biosphere Program, Book Series Number 2.Cambridge:Cambridge University Press,1996:149-172
    [48]Haydon D T, Friar J K, Pianka E R. Fire-driven dynamic mosaics in the Great Victoria Desert, Australia Ⅱ:A spatial and temporal landscape model[J]. Landscape Ecology,2000, 15:407-423
    [49]Wallin D O, Swanson F J, Marks B, et al. Comparison of managed and pre-settlement landscape dynamics in forest of the Pacific Northwest[J], USA. Forest Ecology and Management,1996,85(1-3):291-309
    [50]Keane R E, Arno S E, Brown K. JFIRESUM—An Ecological Process Model for Fire Succession in Western Conifer Forests[R]. Ogden:USA Deptment of Agriculture, Forest Service, Intermountain Research Station,1989:
    [51]Pacala S W, Canham C D, Saponara J, Silander J A, Kobe R K, Ribbens E. Forest models defined by field measurement:estimation, error analysis and dynamics[J]. Ecol Monog, 1996,66(1):1-43
    [52]Scheller R M. and Mladenoff D J. A spatially dynamic simulation of the effects of climate change, harvesting, wind, and tree species migration on the forest composition, and biomass in northern Wisconsin, USA[J]. Global Change Biology,2005, 11(2):307-321.
    [53]Ward B C, Mladenoff D J, Scheller R M. Simulating landscape-level effects of the interaction between residential development and public forest management in northern Wisconsin, USA[J]. Forest Science,2005,51(6):616-632.
    [54]Uusitalo J, Orland B. Virtual forest management:possibilities and challenges[J]. International Journal of Forest Engineering,2001,12 (2):57-66
    [55]廖邦洪,陈东立.北美地区森林景观可视化研究与应用[J].世界林业研究,2005,18(5):57-64
    [56]常禹,布仁仓.地理信息系统与基于个体的空间直观景观模型[J].生态学杂志,2001,20(2):61-65
    [57]徐崇刚,胡远满.空间直观景观模型LANDIS I:运行机制[J].应用生态学报,2004,15(5):837-844.
    [58]徐崇刚,胡远满.兴安落叶松老头林对大兴安岭森林景观变化的影响研究[J].生态学杂志,2004,23(5):77-83.
    [59]陈喜全,欧阳华.帽儿山实验林场的土壤[J],东北林业大学学报,1986,14(增刊).
    [60]国庆喜,葛建平.基于个体的集水区森林动态模型[J].应用生态学报,2007,18(8):1778-1784.
    [61]Busing R. A spatial model of forest dynamics[J], Vegtatio,1991,92(2):167-169
    [62]潘建峰,国庆喜,王化儒.山地小气候模型在帽儿山地区气候模拟中的应用[J].东北林业大学学报,2007,35(5):51-54.
    [63]Botkin D B. Forest Dynamics:An Ecological Model[M]. Oxford:Oxford University Press, 1993:1-30
    [64]Pacala S W, Canham C D, Silander J A. Forest models defined by measurements I. The design of a northeastern forest simulator[J]. Cancer Research,1993,23(7):1980-1988
    [65]Smith E, Rose K A. Model goodness-of-fit analysis using regression and related techniques[J]. Ecological Modelling,1995,77(1):49-64
    [66]丁圣彦.常绿阔叶林的植被动态研究[J].河南大学学报,2001,31(3):82-86
    [67]祝宁,王义弘,李茹秀等.天然次生林合理结构的研究[C].哈尔滨:东北林业大学出版社,1990:9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700