链霉菌接种对小麦秸秆腐解过程影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从分子生物学角度鉴定了链霉菌菌株CM19;并从物理,化学和生物学参数方面研究了该菌株对小麦秸秆堆腐进程的影响。表明接种链霉菌对小麦秸秆堆腐过程的含水量,pH和C/N,酶活性和微生物群落变化的影响,得到以下主要结论:
     1.链霉菌菌株CM19的分子生物学鉴定:通过稀释涂布平板分离得到菌株,液体培养菌丝体,提取菌丝DNA,聚合酶链式反应扩增核DNA内部转录间隔区序列,进行测序,比对结果显示该菌株为Streptomyces thermovulgaris,标记为Streptomyces thermovulgaris CM19。
     2.链霉菌接种对小麦秸秆腐解过程温度、pH、含水量、C/N和电导率的影响:堆腐过程受到很多环境因素的影响。探讨了接种链霉菌对堆体温度pH、含水量、C/N和电导率变化的影响。结果表明,链霉菌对小麦秸秆堆腐产生显著影响。整个堆肥过程含水率呈下降趋势,接菌使得堆体含水量提高。接种链霉菌可以加速堆体温度的升高,整个过程中平均温度为44.66℃和39.55℃,接菌处理比不接菌处理高12.93%。整个堆腐过程接菌处理总的C/N为213.71,而不接菌的处理为284.03。接菌处理比不接菌处理高出33.33%。接链霉菌CM19可以提高堆体的电导率,在堆腐第15d时,接菌处理的电导率达到最大值,而且整个过程接菌处理的电导率均高于不接菌处理。可见,接链霉菌可以提高堆体中的离子浓度,从而加速堆腐进程。
     3.链霉菌接种对小麦秸秆堆肥进程微生物群落和酶活性的影响:进一步研究微生物菌剂在农业废弃物资源化利用中的作用及其生物学机理。采用稀释涂布平板法、BIOLOG法和分光光度法,研究了小麦秸秆堆肥体系中接种链霉菌(Streptomyces thermovulgaris)后,堆体中微生物群落结构及酶活性的动态变化。在整个堆肥过程中,接种(+M)和不接种(-M)处理的细菌和放线菌数量呈现高-低-高的趋势,真菌数量呈现一直降低的趋势。接种链霉菌菌剂,改变了堆体中细菌群落结构组成,堆体细菌总代谢活性和细菌群落多样性均增加,主成分分析显示,在整个堆肥过程,不接菌(-M)处理堆体细菌群落结构典型变量值的变异很小,而接菌(+M)的变异较大。整个堆肥过程,接菌处理(+M)的蔗糖酶活性比不接菌处理(-M)高50.07%,蛋白酶活性高21.63%。接种链霉菌(S. thermovulgaris)菌剂能够促进细菌数量的增加,可以提高堆体蔗糖酶和蛋白酶活性,但是接种处理(+M)堆体中细菌群落稳定性低于不接菌处理(-M)。
This study investigated the effects of Streptomyces thermovulgaris inoculation chemical, physical, biology perimeters, such as temperature, pH, water content, EC, C/N, enzyme activity, and microbial community diversity. The strain was identified by molecular method. The mainly results are follows:
     1. Identification of strain CM19 by molecular method-rDNA-ITS. Medium culture method was employed to isolate fungi strain, and the strain CM19 was identified by rDNA- ITS sequence in the study. After analyzing the data got from sequence and NCBI. The strain was belonging to Streptomyces thermovulgaris, CM19.
     2. Effect of Streptomyces thermovulgaris inoculation on temperature, pH, water content, EC, and C/N during the wheat straw composting process. The process of composting was influenced by many environmental factors, such as temperature, pH, water content, EC, and C/N. This study investigated the effects of inoculation Streptomyces thermovulgaris on composting process of wheat straw. The results shown that inoculation Streptomyces thermovulgaris could strongly influence the composting process. Briefly, inoculation can improve water content of the wheat straw in the whole composting process, which compared with the non-inoculation treatment. The average temperatures of the two treatments were 44.66℃and 39.55℃, respectively. The C/N value of inoculation treatment was 213.71, higher than non-inoculation treatment by 33.33%. EC values reached peak value in 15 d, and the inoculation treatment was higher than non-inoculation. Therefore, inoculation can improve composting process.
     3. Effects of Streptomyces thermovulgaris on microbial community and enzyme activity during wheat straw composting process. In order to assess the role and biology mechanism of microbial in agricultural waste utilization, microbial cultural, BIOLOG and spectrophotometry method were employed to investigate the effects of Streptomyces thermovulgaris on microbial community and enzyme activity during wheat straw composting process. The trends of the number of bacteria and antionmies were high-low-high, and the number of fungi decreases during the composting process. Bacteria community structure was changed after incubating S. thermovulgaris agent. AWCD and bacteria community diversity were increased, respectively. Principal component analyses indicated that the variation of inoculation treatment (+M) were larger than non-inoculation treatment (-M) thought out the composting process. Sucrose enzyme activity and protein enzyme activity of inoculation treatment (+M) were higher than non-inoculation treatment (-M) for 50.07% and 21.63%, respectively. The number of bacteria, sucrose enzyme activity and protein enzyme activity were improved after inoculating S.thermovulgaris agent, however, the stability of bacteria community in inoculation treatment (+M) was lower than that of non-inoculation treatment(-M).
引文
[1]杨文钰,王兰英.作物秸秆还田的现状与愿望[J].四川农业大学学报, 1999, 17(2): 211-216
    [2]刘丽香,吴承祯,洪伟,等.农作物秸秆综合利用的进展[J].亚热带农业研究, 2006, 2 (1): 75-80
    [3]徐泰平,朱波,汪涛,等.秸秆还田对紫色土坡耕地养分流失的影响[J].水土保持报, 2006, 20 (1): 30-33
    [4]刘荣乐,金继运,吴荣贵,等.我国北方土壤-作物系统内钾素循环特征及秸秆还田与施钾肥的影响[J].植物营养与肥料学报, 2000, 6 (2): 12-13
    [5]张娥.浅谈利用秸秆覆盖改良土壤技术措施[J].甘肃林业, 2005, (2): 29
    [6]刘和平,李红艳.秸秆堆肥最新技术-酵素菌[J].榆林科技, 2004, (1): 65
    [7]王丽宏,张立峰.农作物秸秆资源的开发利用[J].河北农业大学学报, 2003, (5): 31-33
    [8]朱军平,黄振侠,邹昌谆,等.秸秆(稻草)生物气化技术研究与应用[J].江西农业学报, 2007, 19 (11): 99-101
    [9]郑凤英,张英珊.我国秸秆资源的利用现状及其综合利用前景[J].西部资源, 2007, (16): 25-26
    [10] Bcchko J, Klassen G R. Detection of length heterogeneity in the ribosomal DNA of Pythium ultimum by PCR amplification of the intergenic region[J]. Current genetics, 1990, 18: 203-205
    [11] Moran M A, Torsvik V L, Torsvik T, et al. Direct extraction and purification of rRNA for ecological studies[J]. Applied and Enovironmental Microbiology, 1993, 59: 915-918
    [12]谷洁,李生秀,秦清军,李鸣雷,高华.氧化还原类酶活性在农业废弃物静态高温堆腐过程中变化的研究[J].农业工程学报, 2006, 22(2): 138-141
    [13] Tuomela M, Vikman M, Hatakka A, It?vaara M. Biodegradation of lignin in a compost environment: a review [J]. Bioresour Technol, 2000, 72: 169-183
    [14] Iannotti D A, Grebus M E, Toth B L, Madden L V, Hoitink HAJ. Oxygen respirometry to assess stability and maturity of composted municipal solid waste [J]. J Environ Qual, 1994, 23: 1177-1183
    [15] Mondini C, Fornasier F, Sinicco T. Enzymatic activity as a parameter for the characterization of the composting process [J]. Soil Biology and Biochemistry, 2004, 36:1587-1594
    [16] Zheng H, Ouyang Z Y, Wang X K, et al. Effects of regenerating forest cover on soil microbial communities: A case study in hilly red soil region Southern China [J]. Forest Ecology and Management, 2005, 17: 244-254
    [17]林瑞余,戎红,周军建,等.苗期化感水稻对根际土壤微生物群落及其功能多样性的影响[J].生态学报, 2007, 27(9): 3644-3654
    [18]徐华勤,肖润林,宋同清,等.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J].生物多样性2008, 16(2): 166-174
    [19]张海涵,唐明,陈辉,等.不同生态条件下油松(Pinus tabulaeformis)菌根根际土壤微生物群落[J].生态学报, 2007, 27(12): 5463-5470
    [20] Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol, 1991, 57: 2351-2359
    [21] Konopka A, Oliver L, Turco R F J. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol, 1998, 35: 103-115
    [22]冯宏,张新明,李华兴,等.接种菌剂对堆肥微生物利用碳源能力的影响[J].华南农业大学学报, 2005, 26(4): 19-22.
    [23]郁红艳,曾光明,习兴梅,等.蔬菜-秸秆废物堆肥化中细菌群落变化研究[J].微生物学报, 2007, 47(2): 98-102.
    [24] Christiane K, Gerd G.Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils[J]. Soil Biology & Biochemistry, 2006, 38: 3267-3278
    [25]李季,彭生平.堆肥工程实用手册.北京:化学工业出版社, 2005: 2-10
    [26]魏源送.中、小型污水处理厂高效低耗污泥堆肥技术研究: [博士学位论文].北京:中国科学院, 2000
    [27] Golueke C G, Diaz L F. Historical review of composting and its role in mun icipal waste management.In: The Science of Composting. Ed. By M.de Bertoldi, Paolo S equi, Bert Lemmes and Tiziano PaPi. Blackie Academic&Professional, 1999, pp: 3-l4
    [28] Haug R T. The practical handbook of compost engineering [M]. Lewis Publishers, Boca Raton, Florida, 1993
    [29]魏源送,王敏健,王菊思.堆肥技术及进展[J].环境科学进展, 1999, 7(3): 11-23
    [30]陈世和.中国大陆城市生活垃圾堆肥技术概况[J].环境科学, 1994, 15(l): 53-56
    [31]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制.北京:科学出版社, 2006.
    [32]朱昌雄,李俊等.我国生物肥料标准研究进展及建议.磷肥与复肥[J] 2005, 20(4): 5-7
    [33]马放,冯玉杰,任南琪.环境生物技术[M].北京:化学工业出版社, 2003, 5
    [34]席北斗,刘鸿亮,孟伟,等.高效复合微生物菌群在垃圾堆肥中的应用[J].环境科学, 2001, 22(5):122-125
    [35]李明.垃圾渗出液微牛物循环接种强化堆肥试验研究[硕士学位论文].重庆:重庆大学, 2005
    [36]孙英华,梁静思,龙广宇.用木素木霉与凤尾菇菌两菌交替发酵法提高纤维素酶活力研究[J] .菌物系统, 1999, 18( 2) : 184-191.
    [37]陈世和.城市生活垃圾堆肥处理的微生物特性研究[J].上海环境科学, 1989, 8(8): 17-21
    [38]汪恒英,周守标,常志州,等.接种一株嗜热球杆菌对堆肥腐熟进程的影响[J].江苏农业科学, 2004, 3: 78-81
    [39]沈根祥,袁大伟,凌霞芬,等. Hsp菌剂在牛粪堆肥中的试验应用[J].农业环境保护, 1999, 18(2:
    [40]顾希贤,许月蓉.垃圾堆肥微生物接种试验[J].应用环境生物学报, 1995, 1(3: 274-278
    [41]赵京音,姚政.微生物制剂促进鸡粪堆肥腐熟和臭味控制的研究[J].上海农学院学报, 1995, 13(3):193-197
    [42]张敏,薛晓珍.微生物活干菌发酵玉米秸秆有效成份分析.仪器仪表与分析监测, 2003, 3: 45-46
    [43]马放,杨基先,金文标,等.环境微生物制剂的开发与应用[M].北京:化学工业出版社, 2004
    [44]崔宗,李美丹,朴哲,等.一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J].环境科学,2002,23(3):36-39
    [45]刘婷,陈朱蕾,周敬宜.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学学报(城市科学版), 2002, 19(2): 57-59
    [46]陈胜男,谷洁,高华,等.接种微生物菌剂对小麦秸秆和尿素静态堆腐过程的影响.农业工程学报, 2009, 3(25): 198-201
    [47]石其伟,刘强,荣湘民,等.不同微生物菌剂对水稻秸秆发酵效果的影响.湖南农业大学学报(自然科学版), 2006, 32(3): 264-268
    [48]白彩霞,李娟,任丽哲.微生物发砖秸杆的条件.黑龙江畜牧兽医, 2008, 1: 52
    [49]牛俊玲.高温堆肥中复合菌系对木质纤维素和林丹降解效果的研究[J].农业环境科学学报,2005,24(2):375-379
    [50]刘悦秋,刘克锋,石爱平,等.生活垃圾堆肥优良菌剂的筛选[J].农业环境科学学报, 2003, 22(5): 597-601
    [51]孙先锋,等.高效堆肥菌种的筛选及在城市污泥堆肥上的应用[J].环境污染治理技术与设备[J], 2006,7(2): 108-111
    [52]邱向阳,陆文静,王洪涛,等.蔬菜一花卉秸秆混合联合堆肥性状表征及纤维素分解菌群选育研究[J],北京大学学报(自然科学版). 2003, 39(2):254-261
    [53]黄懿梅,曲东,李国学等.两种外源微生物对鸡粪高温堆肥的影响.农业环境保护[J]. 2002, 21(3):208-210
    [54]黄得扬,陆文静,王洪涛,等.高效纤维素分解菌在蔬菜一花卉秸秆联合好氧堆肥中的应用[J].环境科学, 2004, 25(2): 145-149
    [55] Bolta S V, Mih elic R, Lobnik F, et al. Microbial community structure during composting with and without mess Inoculation. Compost Sci&Utili, 2003, 11(1):6-15
    [56] Singh A, Sharma S. Effect of microbial inoculation on solid waste composting, vermicomposting and plant response [J]. Compost Science and Utilization, 2003, 11(3):l90-199
    [57]Spela Velikonja Bolta, ROk Mihelic. Microbial community structure during composting with and without mass inoculation. Compost Science & Utilization.2003, 11(1):6-15
    [58]比嘉照夫. EM在自然农业和可持续发展农业中的作用EM技术研究与应用[M].北京:中国农业科学出版社,1996
    [59]比嘉照夫. EM—有益人类的生物技术, EM技术研究与应用[M].北京:中国农业科学出版社,1996
    [60]冯宏,李华兴.菌剂对堆肥的作用及其应用[J].生态环境,2004,13(3):439-441
    [61] Waksman S. A. Cordon T. C. Hulpoi N. Influence of temperature upon the microbiological population and ecomposition processes in composts of stable manure [J]. Soil Science, 1939b, 47: 83-114.
    [62]张毅民,吕学斌,万先凯,等.一株纤维素分解菌的分离及其粗酶性质研究[J].华南农业大学学报(自然科学版), 2005, 26(2):69
    [63]孟会生,刘卫星,洪坚平.纤维素分解菌群的筛选组建与羧甲基纤维素酶活初探[J].山西农业大学学报(自然科学版),2006,26(1):27
    [64]谷嵩,刘昱辉.纤维素酶的研究进展[J].安徽农业科学,2007,35(25):7736-7737
    [65]张平平,刘宪华.纤维素生物降解的研究状况与进展[J ].天津农学院学报,2004,11(3):48-54
    [66]周正红,高孔荣.纤维素酶在食品发酵工业中的应用及前景[J].暨南大学学报:自然科学版,1998,19(5):125-130
    [67]林风.纤维素酶的生物化学和分子生物学研究进展[J].生命科学,1994, 6 (l):19-23
    [68]高培基,曲音波,汪天虹,等.微生物降解纤维素机制的分子生物学研究迸展[J].纤维素科学与技术, 1995, 3(2): 15
    [69]曾大兴.适于RAPD分析的真菌DNA提取方法[J].生物技术, 2003, 13(2): 20-21
    [70]郭建国,刘永刚,吕和平,等.农作物秸秆的青贮和高温堆肥利用进展[J].甘肃农业科技,2008,4:31-35
    [71]蒲一涛,郑宗坤,石春芝,等.静态好氧堆肥城市垃圾的工艺特征[J].环境科学与技术,2004,27(4):54- 55
    [72] P. Bueno, R. Tapias, F. Lopez, M.J. Diaz. Optimizing composting parameters for nitrogen conservation in composting. Bioresource Technology 99 (2008) 5069-5077
    [73]牛俊玲,高军侠,李彦明,等.堆肥过程中的微生物研究进展[J].中国生态农业学报, 2007, 15(6): 185-189.
    [74]黄丹莲,曾光明,黄国和,等.微生物接种技术应用于堆肥化中的研究进展[J].微生物学杂志, 2005, 25(2): 60-64.
    [75]徐智,汤利,李少明,等.两种微生物菌剂对西番莲果渣高温堆肥腐熟进程的影响[J].应用生态学报, 2007, 18(6): 1270-1274.
    [76]王岩,李玉红,李清飞.添加微生物菌剂对牛粪高温堆肥腐熟的影响[J].农业工程学报, 2006, 12(2): 220-223.
    [77] Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment: a review [J]. Bioresource Technology, 2000, 72(2): 169-183.
    [78] Vargas-García M C, Suarez-Estrella F F, Lopez M J, et al. Influence of microbial inoculation and co-composting material on the evolution of humic-like substances during composting of horticultural wastes [J]. Process Biochemistry, 2006, 41(6): 1438-1443.
    [79] Ouwerkerk D, Klieve A V. Bacterial diversity with in feed lotmanur [J].Anaerobe, 2001, 7(2):59-66.
    [80] Gaind S, Pandey A K, Lata. Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants [J]. Journal of Basic Microbiology, 2005, 45(4): 301-311.
    [81] Saharinen M H, Vuorinen A H, Kostikka M. Effective cation exchange capacity of manure compost of varying stages determined by the saturation-displacement method [J]. Communication in Soil Science and Plant Analysis, 1996, 27(15/17): 2917-2923
    [82] Cayuela M L, Mondini C, Sánchez-Monedero M A, et al. Chemical properties and hydrolytic enzyme activities for the characterizations of two-phase olive mill wastes composting [J]. Bioresource Technology, 2008, 99(10): 4255-4262
    [83]石其伟,刘强,荣湘民,等.不同微生物菌剂对水稻秸秆发酵效果的影响[J].湖南农业大学学报(自然科学版), 2006, 32(3): 264-268
    [84]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社, 1999. 49-57
    [85]张海涵,唐明,陈辉,等.不同生态条件下油松(Pinus tabulaeformis)菌根根际土壤微生物群落[J].生态学报, 2007, 27(12): 5463-5470.
    [86]冯宏,张新明,李华兴,等.接种菌剂对堆肥微生物利用碳源能力的影响[J].华南农业大学学报, 2005, 26(4): 19-22.
    [87]关松荫.土壤酶及其研究法[M].北京:农业出版社, 1983: 260-339.
    [88] Grove J A, Kautola H, Javadpour S, et al. Assessment of changes in the microorganism community in a biofilter. Biochemical Engineering Journal, 2004, 18: 111-114
    [89]Fisk M C, Ruether K F, Yavitt J B. Microbial activity and functional composition among northern peat land ecosystems [J]. Soil Biology & Biochemistry, 2003, 35(4): 591-602
    [90]徐华勤,肖润林,邹冬生,等.长期施肥对茶园土壤微生物群落功能多样性的影响[J].生态学报, 2007, 27(8): 3355-3361.
    [91] Benitez E, Nogales R, Elvira C, et al. Enzyme activities as indicators of the stabilization of sewage sludge composting with Eisenia foetida[J]. Bioresource Technology, 1999, 67(3): 297-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700