硫同位素在地球化学异常成因判别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球化学异常成因研究是评价其成矿前景、矿化类型及部署勘查、勘探工作的前提,但是在以往地球化学勘查工作中很少涉及。本文借鉴稳定同位素示踪成矿物质来源的方法和原理,利用内蒙古自治区乌奴格吐山、星山、白乃庙试验区、江西城门山试验区硫同位素组成资料,尝试利用硫同位素组成特征来判断地球化学异常成因,取得了预期成果。
     乌奴格吐山试验区硫同位素组成为.1.3‰~+3.2‰;白乃庙试验区硫同位素组成-2.8‰~+13.8‰;城门山试验区硫同位素组成为-0.3‰~+5.7‰;垦山试验区硫同位素组成变化为+3.2‰~+4.3%0。
     通过各个试验区Cu矿化体、Cu异常地段硫同位素组成特征对比研究发现,在每个试验区内,与Cu矿化有关的矿化体和异常地段硫的来源基本一致,各试验区矿体及外围围岩中的成矿物质与异常物质组分来自同一源区。对在相同地质作用过程中形成的矿床和异常而言,与其共生的硫同位素组成基本是一致的,说明形成矿床的成矿物质和形成异常的异常组分物质来源基本是一致的,这为利用硫同位素组成特征判断地球化学异常成因提供了依据,同时也证实利用硫同位素组成特征探讨地球化学异常成因是可行的。乌奴格吐山试验区矿体、矿化围岩的成矿物质及外围同岩中异常的组分物质来自下地壳;白乃庙试验区矿体、蚀变带中的成矿物质及外围围岩中异常的组分物质的硫来自地壳深部,并受到了循环地壳和海水的混染;城门山试验区矿体、矿化围岩的成矿物质及外围围岩中异常的组分物质来自下地壳或上地幔;垦山试验区的异常组分物质来自下地壳,且受到后期热液作用的影响。
     研究发现,垦山试验区和乌奴格吐山、白乃庙、城门山试验区的硫同位素组成存在明显差异,根据该区硫同位素组成推断该试验区的Cu等多金属地球化学异常是由后期热液作用形成的,从而认为该区不具备形成斑岩型矿床的条件,此前有研究者推断此Cu异常的成因与斑岩矿化有关,由此针对该异常的地质找矿及工作部署应该围绕热液矿床进行,为该区下一步勘查工作部署提供了依据。
     本文通过对硫同位素组成特征的探讨,认为硫同位素作可以作为异常成因判断指标应用在矿产勘查阶段,为异常成矿前景评价提供依据,为异常区地质勘查工作部署提供指导,不仅拓展了硫同位素在地质学研究中的应用领域,更重要的是为地球化学异常成矿前景评价提供了有利证据,对提高地球化学勘查应用基础理论水平及找矿效果具有重要意义。
The Genesis of geochemical anomaly, one of the key factor for the evaluation of its exploration potential, minerlization type, and deployment to prospecting and exploration work, has not been taken into account in the past geochemical exploration. Based on the method and principle of the tracing in the source of mineralization material from the stable isotope, we use the sulfur isotopic indexes from Wunugetushan, Kenshan, Bainaimiao,Inner Mongolia, and Chengmenshan area in Jiangxi, and try to use the characteristics of sulfur isotopic composition (δ~(34)S) to determine the causes of geochemical anomalies. Further more, some expected results have been obtained.
     The sulfur isotopic analysis shows that the pyrite from Wunugetushan area haveδ~(34)S values that range between -1.3 and +3.2‰, it indicate that the sulfur from the lower crust. Theδ~(34)S values abtained from Bainaimiao area have a range between -2.8 and +13.8‰, and most of them are negatives, which indicate that the sulfur of this area had suffered the mixing of crustal and marine pollution.Chengmenshan area haveδ~(34)S values that range between -0.3 and +3.2‰, it indicate that the sulfur from the lower crust or upper mantle. Theδ~(34)S values abtainede from Kenshan area have a range between +3.2 and +4.3‰, it indicate that the sulfur source is lower crust and has suffered the influence of hydrothermal fluids activities of the later stage.
     By comparing the characteristics of sulfur isotopic composition in Cu mineralization and Cu abnormality from one region with others, we have found that the related source of sulfur in element in Cu mineralization and Cu abnormality are primarily unanimous in earch testing region. For a deposit or abnormality which was formed in the same geological processes, the sulfur isotopic composition of symbiotic are particularly same, which indicated that the mineralization material and abnormality materal were from the same source area. This provides a basis for using the sulfur isotope composition to determine the causes of geochemical anomalies, and it indicates that using sulfur isotopic composition to determine the causes of geochemical anomalies is feasible. In the Wunugetu Moutain region, some researches showed that the metallogenic material of the orebodies and mineralized wallrocks came from the lower crust, as well as the composition of anomalies in the external wallrocks. In another region-Bainaimiao, the similar situation occurred that the sulfurs from the metallogenic material of the orebodies and mineralized wallrocks and the composition of the anomalies in the external wallrocks was resulted from the deep section of the crust, while they were contaminated by the crust cycle and the seal water. In the last two test region also showed the similar situation.In the Chenmenshan region, the metallogenic material of the orebodies and mineralized wallrocks came from the lower crust or the upper mantle, as well as the composition of anomalies in the external wallrocks.In the Kenshan test region, the composition of anomalies, which was influenced by the hydrothermal of later stage, came from the lower crust.
     The result shows that sulfur isotopic compositon in Kenshan area are significantly different from Wunugetushan, Bainaimiao and Chengmenshan area. According to the characteristics of sulfur isotopic composition, mineralogy and geochemistry in these area, and inferred that such as Cu multi-element anomalies are formed by the late hydrothermal. Furtherly, the area does not have the conditions for the formation of porphyry deposit; in addition, some prewiews researchs show that the Cu abnormities are relatd to porphyry mineralization. Geological prospecting and deployment for these abnormities should be carried out around the hydrothermal deposit; this will provide the basis for the next exploration.
     Based on the characteristics of sulfur isotope composition, it can be used in mineral exploration as a indicator applied to determine the causes of geochemical anomalies. More over, it provides the basis for evaluating the prospect of its mineralization, and the guidance for the geological survey work in anormaly area. Not only it expands the applications of sulfur isotopes in geology studies, but also provides a favorable evidence for evaluating the prospects of the geochemical anomalies. Besides that, it obviously improve the prospect results and the level of basic theory of geochemical exploration.
引文
[1].王学求.勘查地球化学:过去的成就与未来的挑战[J].地学前缘(中国地质大学-北京),2003,10(1):239-248.
    [2].郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社.2000:218-244
    [3].David J.Vaughan.Sulfide Mineralogy and Geochemistry:Introduction and Overview[J].Review in Mineralogy and Geochemistry.2006,61:1-5.
    [4].陈岳龙,杨忠芳,赵志丹.同位素地质年代学与地球化学[M].北京:地质出版社,2005:262-276.
    [5].陈骏,王鹤年.地球化学[M].北京:科学出版社,2005:129-135.
    [6].丁悌平.稳定同位素测试技术与参考物质研究现状及发展趋势[J].岩矿测试,2002,21(4):291-300.
    [7].郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质,2001,20(1):57-69.
    [8].Thode,Macnamara,McElcheran.Natrual variations in the isotopic content of sulphur and their signififcance[J].Can J Res 1949,B27:361-373.
    [9].Szabo A,Tudge A,Mcanamara J,Thode HG.The distribution of ~(34)S in nature and the sulfur cycle[J].Science,1950,111:644-645.
    [10].Peter B.Cosmic-ray produced radioactive isotopes as tracer for studying large-scale atmospheric circulation[J].J Atmos Terr Physics,1959,13:351-370.
    [11].Macnamara J,Thode HG.Comparison of the isotope Consitution of terrestrial and meteoritic sulphur[J].Phys Rev,1950,78:307-308.
    [12].Sakai.H.Fractionationofsulfurisotopes in nature.Geochem CosmochimActa,1957,12:150-169.
    [13].Thode HG,Monster J,Dunford HB.Sulfur isotope geochemistry[J].Geochim Cosmochim Acta,1961,25:159-174.
    [14].Nielsen H,Pilot J,Grinenko LN,Grinenko VA,Lein AY,Smith JW,Pankina RG.Lithospheric sources of sulphur.In:Stable Isotopes in the Assessment of Natural and Anthropogenic Sulphur in the Environment[M].1991,Krouse HR.Grinenko VA(eds)scope 43,J wily and Sons.p65-132.
    [15].Krouse HR,Coplen TB.Repoting of relative sulfur isotopt-rate date[J].Pure Appl Chem,1997,69:293-295.
    [16].Kulp JL,Ault WU,Feely HW.Sulfur isotope abundances in sulfide minerals[J].Econ Geol(1956),51:139-149.
    [17].M.L.Jensen. Sulfur Isotopes and Hydrothermal Mineral Deposits[J]. Economic Geology,1959,54:374-394.
    [18]Thode HG, Kleerekoper H, McElcheran D.Isotope fractionation in the bacterial reduction of sulphate[J]. Research, London.1951 ,4:581-582.
    [19].Ohmoto H, Rye RO.Isotopes of sulfur and carbon. In: Geochemistry of Hydrothermal Ore [M].Deposits.Barnes HL (ed) J Wiley and Sons, 1979, 509-567.
    [20]郝立波,戚长谋.地球化学原理.北京:地质出版社. 2004:79-80.
    [21].Holt BD, Engelkemeier AG Thermal decomposition of barium sulfate to sulfur dioxide for mass spectrometric analysis[J]. Anal Chem ,1970,42:1451-1453.
    [22].Haur A, Hladikova J, Smejkal V. Procedure of direct conversion of sulfates into SO_2 for mass spectrometric analysis of sulfur[J]. Isotopenpraxis,1973,18: 433-436.
    [23].Coleman ML, Moore MP.Direct reduction of sulfates to sulfur dioxide for isotopic analysis[J] Anal Chem,1978,50:1594-1595.
    [24].Hulston JR, Thode HG. Variations in the ~(33)S, ~(34)S, and~(36)S contents of meteorites and their relation to chemical and nuclear effects[J]. Geophys Res,1965a ,70:3475-3484.
    [25].Puchelt H,Sabels BR,Hoering TC. Preparation of sulfur hexafl uoride for isotope geochemical analysis[J].Geochim Cosmochim Acta,1971,35:625-628.
    [26].Thode HG, Rees.CE.Measurements of sulphur concentrations and the isotope ratios ~(33)S/~(32)S, ~(34)S/~(32)S and~(36)S/~(32)S in Apollo 12 samplesfj]. Earth Planet Sci Lett, 1971,12:434-438.
    [27].Eldridge CS, Compston W, Williams IS, Both RA, Walshe JL,Ohmoto H. Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe SHRIMP: I. an example from the Rammelsberg orebody[J]. Econ Geol,1988,83:443-449.
    [28].Paterson BA, Riciputi LR, McSween HY Jr. A comparison of sulfur isotope ratio measurement using two ion microprobe techniques and application to analysis of troilite in ordinary chondrites[J].Geochim Cosmochim Acta, 1997,61:601-609.
    
    [29].McKibben MA, Riciputi LR.Sulfur isotopes by ion microprobe[M].In Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology,Vol.7. McKibben MA, Shanks WC III, Ridley WI (eds) Soc Econ Geol, 1998,p 121-139.
    [30].Crowe DE,Valley JW,Baker KL.Micro-analysis of sulfur-isotope ratios and zonation by laser microprobe[J]. Geochim Cosmochim Acta, 1990,54:2075-2092.
    [31].Shanks WC Ⅲ,Crowe DE,Johnson C.Sulfur isotope analyses using the laser microprobe.In:Applic ations of Microanalytical Techniques to Understanding Mineralizing[M]Processes.Reviews in Economic Geology,Vol.7.McKibben MA,Shanks WC Ⅲ,Ridley WI(eds) Society of Economic Geologists,1998,p 141-153.
    [32].D.J.DePaolo,G.J.Wasserburg.Inferences About Magma Sources and Mantle Structure from Variations of ~(143)Nd/~(144)Nd[J].Geophysical Research Letters,1976,3(12):5.
    [33].毛景文,张作衡,张招崇.北祁连山小柳沟钨矿床中辉钥矿Re-Os年龄测定及其意义[J].地质评论(Geological Review),1999,45(4):412-417.
    [34].毛景文,杜安道.广西宝坛地区铜镍硫化物矿石982Ma-Re-Os同位素年龄及其地质意义[J].中国科学(D辑),2001,31(12):992-998.
    [35].梅燕雄,毛景文,李进文,杜安道.安徽铜陵大团山铜矿床层状夕卡岩矿体中辉钼矿Re-Os 年龄测定及其地质意义[J].地球科学,2005,26(3):327-331.
    [36].D.J.Depaolo.Nd Isotopic Studies:Some New Perspectives on Earth Structure and Evolution[J].EOS,1981,62(14):137-140.
    [37].PK.O'nions,P.J.Hamilton,N.M.Evensen.Variations in ~(143)Nd/~(144)Nd and ~(87)Sr/~(86)Sr Rations in Oceanic Basalts[J].Earth and Planetary Science Latters,1977.34:9.
    [38].Hofmann.A.W.Early Evolution of Continents[J].Science,1997,275(24):498-499.
    [39].阮天键,朱有光.地平均奖化学找矿[M].北京:地质出版社,1985:202-203.
    [40].Sangameshwar,S.R.R.Trace Element and Sulphur Isotope Geochemistry of Sulphide Deposits from Flin Flon and Snow Lake Areas of Saskatchewan and Manitoba[D].Canada,University of Saskatchewan.1972.
    [41]Paul Polito K K,David Lawie,Steven Cook,Chris Oates.Application of Sulphur Isotopes to Discriminate Cu-Zn VHMS Mineralization from Barren Fe Sulphide Mineralization in The Greenschist to Granulite Facies Flin Flon-Snow Lake-Hargrave River region,Manitoba,Canada[J].Geochemistry:Exploration,Environment,Analysis,2007,7:9-12.
    [42].冯健行.多宝山铜矿硫同位素空间分布特征[J].地质与勘探,2008,44(1):46-49.
    [43].梁婷,王登红,蔡明海,陈振宇,郭春丽,黄惠民.广西大厂锡多金属矿床S、Pb同位素组成对成矿物质来源的示踪[J].地质学报,2008,82(7):967-977.
    [44].Ohmoto.Hydrogen and Oxygen Isotope Compositions of Fluid Inclusions in The Kurko Deposit[J].Japan Economic Geology,1974.69:947-953.
    [45].Sheppard.Hydrogen and Oxygen Isotope Evidence For The Origins of Water in The Boulder Batholith and The Butte Ore Deposits[J].Montana Econ Geol,1974,69:926-946.
    [46].Taylor.The Application of Oxygen and Hydrogen Isotope Studies to Problem of Hydrothermal Alteration and Ore Deposit[J].Econ Geol,1974,69:843-883.
    [47].张理刚.广东莲花山斑岩型钨矿稳定同位素地球化学[J].矿床地质,1985,4(1):53-63.
    [48].陈振胜.论特高180热液蚀变岩石与矿床[J].地质与勘探,1995,31(3):38-42.
    [49].魏俊浩,王学平.铅、氧同位素在矿产勘查中的应用[J].地球科学--中国地质大学学报,1998,23(2):
    [50].汪明启.铅同位素地球化学勘查方法及其应用[J].地质地球化学,1991:37-43.
    [51].黄斌.铅同位素在找矿勘探中的应用[J].地质与勘探,1990,26(12):29-33.
    [52].陈好寿.同位素地球化学研究.杭州:浙江大学出版社,1994.
    [53].常向阳,朱炳泉,邹日.铅同位素系统剖面化探与隐伏矿深度预测-以云南金平龙脖河铜矿为例[J].中国科学(D辑),2000,30(1):33-39.
    [54].包志伟,赵振华,张佩华,王一先.东坪式金矿床铅同位素组成特征及其化探评价[J].地球化学,2000,29(3):223-230.
    [55].李中来,崔学军,刘红英,王冉,徐力峰.铅同位素方法在隐伏矿深度与资源量定力预测中的应用研究-以北祁连西段含山金矿为例[J].大地构造与成矿学,2007,31(4):441-451.
    [56].崔学军,李中来,朱炳泉,姜晓伟,王冉,徐力峰.铅同位素方在矿产资源评价中的应用--以甘肃省鹰山嘴金矿区为例[J].矿床地质,2008,27(1):87-100.
    [57].徐志刚,陈毓川,王登红,陈郑辉,李厚民.中国成矿区带划分方案.北京:地质出版社,2008:1-10,45-109.
    [58].李宪臣,孟昭君.内蒙古乌奴格土山-哈拉胜成矿富集区铜多金属资源潜力评价[J].矿产与地质,2003,17(97):294-297.
    [59].万天丰.中国大地构造学纲要[M].北京:地质出版社,2004:251-253.
    [60].秦克章,田中亮吏,王之田.内蒙古满洲里地区印支期花岗岩存在的Rb-Sr等时线年代学研究[J].岩石矿物学杂志,1998,17(3):135-140.
    [61].王之田,秦克章.乌奴格吐山下壳源斑岩铜钼矿床地质地球化学特征与成矿物质来源[J].矿床地质,1988,7(4):3-15.
    [62].秦克章,李惠民等.内蒙古乌奴格土山斑岩铜钼矿床的成岩成矿时代[J].地质论评,1999,45(2):180-185.
    [63].王之田,秦克章.REE在判别斑岩体含矿性上的应用[J].地质科技情报,1991,10(2):37-41.
    [64].秦克章,王之田,王莉娟,鲍玉环,李延民.乌奴格吐山斑岩铜钼矿床热液对流、蚀变叠加与成矿作用[J].有色金属矿产与勘查,1993,2(3):136-143.
    [65].陈殿芬,艾永德,李荫清.乌奴格吐山斑岩铜钼矿床中金属矿物的特征[J].岩石矿物学杂志,1996,15(4):346-354.
    [66].叶欣,王莉娟.乌奴格吐山斑岩铜钼矿床流体包裹体与成矿作用研究[J].地质与勘探,1986,(06):14-21.
    [67].李诺,陈衍景,赖勇,李文博.内蒙古乌奴格吐山斑岩铜钼矿床流体包裹体研究[J].岩石学报,2007,23(9):2178-2188.
    [68].李进文,赵士宝,黄光杰,马润.内蒙古白乃庙铜矿成因研究[J].地质与勘探,2007,43(5):1-5.
    [69].聂凤军,裴荣富等.内蒙古自治区白乃庙地球岩浆活动与金属成矿作用[M].北京:1993:
    [70].孟良义,李德伦,鲁守柱.白乃庙铜矿成矿模式[J].长春地质学院学报,1992,22:99-106.
    [71].施林道.华北陆块北缘及其北邻褶皱区有色金属矿床的区域成矿规律[M].见芮宗瑶,施林道,方如恒.华北陆块北缘及其北邻褶皱区有色金属矿床的区域成矿规律[J].北京:地质出版社,1994,489-553.
    [73].辛河斌.内蒙古白乃庙铜多金属矿床地质特征及成因讨论[J].地质找矿论丛,2006,21(4):236-240.
    [73].陈德兴.内蒙古白乃庙斑岩铜铝矿床黄铁矿中微量元素的分配特征及其意义[J].地球科学-武汉地质学院学报,1987,12(6):599-603.
    [74].李文博,陈衍景,赖勇,季建清.内蒙古白乃庙铜金矿床的成矿时代和成矿构造背景[J].岩石学报,2008,24(4):890-898.
    [75].李文博,赖勇,孙希文,王保国.内蒙古白乃庙铜金矿床流体包裹体研究[J].岩石学报,2007,23(9):2165-2176.
    [76].聂凤军,裴荣富,吴良仕.内蒙古白乃庙地区铜(金)和金矿床铷、锶和铅同位素研究[J].矿床地质,1994,13(4):331-344.
    [77].NIE Fengjun,ZHANG Hongtao,CHEN Qi,MENG Liangyi,QIU Ganlin,LI Delun.The Zircon U-Pb Age of Metamorphosed Basic Volcanic Rocks From the Bainaimiao Group in Inner Mongolia[J].Chinese Science Bulletin,1991,36(9):738-742.
    [78].NIE Fengjun,PEI Rongfu,WU Liangshi,Arne Bjr(?)lykke.Sm-Nd Isotopic Study on Wenduermiao-sedimentary Rocks of Wenduermiao Group,Inner Mongolia,People's Republic of China[J].Chinese Science Bulletin,1994,39(16):1368-1371.
    [79].聂凤军,裴荣富,吴良仕.内蒙古白乃庙地区铜(金)和金矿床铷、锶和铅同位素研究[J].矿床地质,1994,13(4):331-344.
    [80].聂凤军,裴荣富,吴良仕.内蒙古白乃庙地区绿片岩和花岗闪长斑岩的铷和锶同位素研究[J].地球学报,1995,1:36-44.
    [81].黄恩邦,孟良义,张乃堂等.城门山武山铜矿地质.矿床专著-有色金属矿产No:45,1990:
    [82].曹钟清,田邦生,章平.九瑞地区铜矿资源预测与勘查[J].东华理工学院学报,2006,增刊:38-43.
    [83].李进文,李旭辉,裴荣富,梅燕雄等.江西武山铜矿南矿带辉钼矿Re2Os同位素年龄及其地质意义[J].地质学报,2007,81(6):801-807.
    [84].罗小洪.九瑞地区中生代岩浆活动及其大地构造意义[J].东华理工学院学报,2006,29(2):121-126.
    [85].罗建安.城门山铜矿床表生变化及次生富集作用的研究[J].江西有色金属,2003,17(2):11-13.
    [86].谭辉跃,息朝庄.江西城门山铜钼矿床特征与成因研究[J].矿业快报,2008,总473:46-50.
    [87].罗建安,杨国才.江西城门山铜矿床地质特征及矿床成因[J].矿产与地质,2007,21(3):284-288.
    [88].吴良士,邹晓秋.江西城门山铼-锇同位素年龄研究[J].矿床地质,1997,16(4):376-381.
    [89].黄恩邦,孟良义,张乃堂等.城门山武山铜矿地质.矿床专著-有色金属矿产No:45,1990:
    [90].赵劲松,赵斌,张重泽,王冉.大冶-城门山矽卡岩矿床石榴子石和辉石中熔融包裹体成分研究[J].地球化学,2003,32(6):540-550.
    [91].张海心.内蒙古乌奴格吐山铜钼矿床地质特征及成矿模式[D].长春,吉林大学.1-24.2006.
    [92].芮宗瑶.国内外斑岩型铜矿研究进展[M].北京:中国地质调查局,2002:19-20.
    [93].孟良义,黄恩邦.城门山铜、钼矿床稳定同位素地质成[J].长春地质学院学报,1988,18(3):269-276.
    [94].孟良义.江西城门山铜矿床硫同位素组成[J].科学通报,1996,41(3):233-234.
    [95].Robert R.Seal.Sulfur Isotope Geochemistry of Sulfide Minerals[J].Review in Mineralogy and Geochemistry.2006,61:633-677.
    [96].孟良义.侵入型块状硫化物矿床的稳定同位素组成特征[J].科学通报,1996,41(9):808-810.
    [97].邵跃.热液矿床岩石测量(原生晕法)找矿[M].北京:地质出版社.1997:12.
    [98].黄薰德,吴郁彦.地球化学找矿[M].北京:地质出版社,1986:139-142.
    [99].罗先熔,文美来等.勘查地球化学矿[M].北京:冶金工业出版社,2008:65-72.
    [100].刘英俊,邱德同.勘查地球化学[M].北京:地质出版社,1987:80-81.
    [101].邹长毅.乌奴格吐山斑岩型铜钼矿床土壤测量方法技术试验研究[J].地质找矿论丛,2002,17(3):198-202.
    [102].李惠.新西兰近代热液系统及金的矿化作用[A].见:金矿床地球化学勘查理论和方法译文集[M].1982:66-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700