冻结条件下岩石力学特性实验研究及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤炭需求的增加,矿井建设逐步向深井方向发展,在深厚表土或岩石中建设井筒,冻结法是较为有效的建井方法。在冻结法井筒施工中,除遇到深厚土层外,近年来也遇到了富水岩层,而我国在冻结岩石相关方面的理论研究与实践经验都比较欠缺。开展人工冻结岩石的试验研究,探讨冻结岩石的相关物理力学特性对井筒冻结设计具有重要的指导意义。
     本文以陕西彬长矿区胡家河煤矿立井冻结工程为背景,选取了两种典型岩石,煤岩和砂岩,进行了系统的单轴、三轴压缩实验。通过实验,分析了煤岩和砂岩在不同冻结温度、不同受力状态条件下的力学特性和变形特性,并对他们的同一性和差异性进行了比较分析。在此基础上进一步研究了两种岩石的单轴抗压强度、弹性模量和泊松比在不同低温条件下的大小和变化规律。在对砂岩的三轴实验中探讨了砂岩的三轴强度特性与围压和温度的关系,以此为基础通过莫尔~库伦准则得出了砂岩在不同低温条件下粘聚力和内摩擦角与围压和温度的关系。
     在分析国内外冻结壁外载的确定方法和冻结壁厚度设计方法的基础上,结合胡家河煤矿冻结工程实际,以弹塑性理论为基础,采用了卸载状态下冻结壁外载的确定公式,对其主、副井冻结壁的厚度、工作状态以及外载进行了计算和分析。对于冻结壁的设计有一定的指导意义。
Along with the increase of coal demands, the construction of mine develops gradually deeper and deeper, The artificial freezing method is a effective method in constructing the shaft in the deep surface soil or the rock, In the freezing process of shaft construction, we meet not only the deep soil layer, but also the rock layer containing much water in recent years, In this area, the fundamental theory and the experience are quite defective. Developing the experimental study of artificial freeze rock, and discussion about physical and mechanics characteristic of freezing rock, have the important guiding sense to the shaft freeze design.
     This article takes the Hu Jia river coal mine vertical shaft freezing project in Shanxi BingChang mining area as a background, has selected two kinds of typical rocks, the coal and the sandstone, carries on a systematic single axle, three axle compressing experiment. Through the experiment, we have analyzed the mechanics characteristic and the distortion characteristic of the coal and the sandstone in the different freezing temperatures or under the different stressful condition, and analyzed the identity and the difference between the two rock.. Based on this analysis, we have studied the size and the change rule of the two rock in single axle compressive strength, the elasticity coefficient and the Poisson ratio under the different low temperature. In the three axle compressing experiment of the sandstone, we have discussed the relationship between the three axle compressive strength with the encircle presses and the temperature. Based on this discussion, through the Mohr-Coulomb criteria, we have elicited the relationship between the cohesive strength and the internal friction angle with the encircle presses and the temperature under the different low temperature.
     After analyzing the definite method of the out-load on the freezing wall and the method in designing the thickness of the freezing wall in domestic and foreign areas. linking to the Hu Jia river coal mine freezing project reality, taking the elastic-plasticity theory as the foundation, we have used the formula which under the unloading condition in freezing wall. Calculated and Analyzed the freezing wall's thickness, active status and out-load of the host and auxiliary shaft. Regarding certain guiding sense to the freezing wall's design .
引文
[1]崔广心深土冻土力学一冻土力学发展的新领域.冰川冻土,1998,20(2): 97-100.
    [2]陈湘生地层冻结技术40年.煤炭科学技术,1996,24(1):13-15
    [3]陈瑞杰,程国栋,李述训等.人工地层冻结应用研究进展和展望.岩土工程学报,2000,22(1):40-44.
    [4]崔广心.我国人工冻结工程研究现状及展望,第五届全国冰川冻土学大会论文集(下).兰州:甘肃文化出版社,1996.843-851.
    [5] H.A.Tsytovich. Instructions for determining the cohesive strength of frozen soil USA Cold Regions Research and Engineering Laboratory , Draft Translation162. AD715072, 1954.
    [6] Sayles, F.H., and D.Haines . Creep of frozen silt and clay. U.S. Army Cold Regions Research and Engineering Laboratory ,1974,Technical Report 252.
    [7] Nixon,J.F., and .Lem ,G. .Creep and strength testing of frozen saline fine grained soils. Canadian Geotechnical Journal,1974,21:518-529
    [8] Bragg ,R. A. and Andersland, O.B. Strain rate, temperatures and sample size Effects on compression and tensile properties of frozen sand Engineering. Geology, 1981,18:35-46.
    [9] Parameswaran, VR. And Jones,S.J. Triaxial testing of frozen sands. Jounal of Glaciology , 1981,27(95):147-155.
    [10] Chen Xiangsheng . Mechanical characteristics of artificially frozen clays under triaxial stress condtion. Proceedings of 5th international Symposium on Grounding Freezing . 1998, Nottingham, England:173-179
    [11] Ladanyi, B. An engineering theory of creep of frozen soils. Canadian Geotechnical Journal, 1972,9(1):63-80.
    [12]丑万禧.冻结壁的有限元分析.安徽理工大学学报,1984,1.
    [13]马英明,郭端平.冻结凿井中冻结壁位移规律及影响因素的研究.冰川冻土,1989.1
    [14]吴金根张双楼矿主副井冻结壁设计及施工煤炭工程,1989,2
    [15]张向东.考虑强度弱化及蠕变特性确定结冻壁厚度.辽宁工程技术大学学报,1990,2.
    [16]汪仁和.粘土冻结壁的变形与计算.冰川冻土,1996,18(1):47-52. [17」陈湘生.深冻结壁时空设计理论.岩土工程学报,1998,20(5):13-16.
    [18]陈湘生.对深冻结井几个关键问题的探讨.煤炭科学技术,1999,27(1): 36-38
    [19]汪仁和,李栋伟,王绣喜.井筒开挖下非线性冻结壁的应力场和位移场计算.上海交通大学学报,2005,39(11):1862-1865.
    [20]乔京生,陶龙光,饵尚银地铁隧道水平冻结施工地表变形特性的模拟研究岩石力学与工程学报,2004,23(15):2643-2646.
    [21]崔广心.论深厚表土层中确定地下结构物外载的基础理论——深土力学.煤炭学报,1999,(2):123-126.
    [22]杨俊杰.深厚表土地层冻结井筒外层井壁结构选型分析建井技术,2003,5.
    [23]沈仁为. 530m特厚冲积层冻结法凿井关键技术分析.煤炭技术,2005.10.
    [24]杨平.深井冻结壁变形计算的理论分析.淮南工业学院学报,1994,2
    [25]付厚利.深厚表土层中冻结壁可靠性设计理论初探.建井技术,1999,32-34.
    [26]徐光苗.寒区隧道温度场、渗流场及应力场耦合问题的非线性分析[D][博士学位论文.2006.中国科学院武汉岩石力学研究所;武汉. [27〕崔广心特殊地层条件竖井井壁破裂机理建井技术,1998.02.
    [28]崔广心.深厚冲积层中冻结壁厚度的研究冰川冻土,1995,17(Special issue):26-34.
    [29]崔广心,杨维好,吕恒林.深厚表土层中的冻结壁和井壁.中国矿业大学出版社.1998.
    [30] Orlando B. And ersland and Branko Ladanyi. Frozen ground engineering, Second edition, ASCE. John Wiley & Sons,Inc.2003.
    [31]陈希哲.土力学地基基础.(第3版).清华大学出版社,1998.
    [32]陈仲颐,周景星,王洪瑾.土力学.北京:清华大学出版社,1994.
    [33] Goughnour,R.R., and ORAndersland. Mechanical properties of a sand-ice system. J.SoilMech. Found.Div.ASCE, 1968,94(SM4):923-950.
    [34] Parameswaran,VR. Deformation behaviour and strength of frozen sand. Can. Geotech.J.1980,17(1):74-88.
    [35] Bragg,R.A., and O.B. Andersland. Strainrate, temperature, and samplesize effects on compression and tensile properties of frozen sand. In Ground Freezing 1980: Developments in Geotechnical Engineering, Vol.28, ed. E.Frivik,N. Janbu . Saetersdal, and L.1.Finbouurd. Amsterdam: Elsevier, pp.35-46
    [36] Haynes,F.D., and J.A.Karalius. Effect of temperature on the strength of frozen silt. U.S. Army Cold Regions Research and Engineering Laboratory, CRREL Report. 1977.CR77-103
    [37] Haynes,F.D. Strength and deformation of frozen silt. InProc.3rd Int. Conf . on Permafrost, 1978, Edmonton ,Alberta, Canada. Ottawa: National Research Councilof Canada, Vol.I ,pp. 656-661.
    [38] Bourbonnais,J,and B.Ladanyi. The mechanical behavior of frozen sand down to cry ogenic temperatures. Inproc.4th Int. Symp. On Ground Freezing, Sapporo, Japan. 1985. Rotterdam: A.A.Balkema, Vol.1, pp.235-244.
    [40] Chamberlain,E.,C.Groves, and R.Perham. The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions.Geotechnique,1972, 22(3):469-483.
    [41] Alkire,B.D., and 0.B.Andersland. The effect of confining pressure on the mechanical properties of sand-ice materials. J.Glaciology, 1973,12(66): 469-481.
    [42] Parameswaran, VR., and Jones, S.J. Triaxial testing of frozen sand. Journal of Glaciology, 1981, 27(95):147-155.
    [43] MaWei, WuZiwang, Zhang Lixin, el al. Analyses of process on the Strength decrease in frozen soils under high confining pressure[J]. Cold Regions Science and Technology, 1999,29(1):1-7
    [44]马巍,吴紫汪,张立新,常小晓.高围压下冻土强度弱化的机理分析.冰川冻土,1999, 21(1):27-32.
    [45] Tsytovich,H.A.冻土力学(张长庆,朱元林译).科学出版社.1985.
    [46] Zhu,YL.,and D.L.Carbee. Uniaxial compressive strength of frozen silt under constant deformation rates. Cold regions science and technology,1 984,9:3-15.
    [47] Kuribayashi,E.,M. Kawamura and YYui. Stress-strain characteristics of artificially frozen san in uniaxially compression tests. In proc.4th Int. Symp. On Ground Freezing, Sapporo, Japan. 1985. Rotterdam: A.A.Balkema, Vol.2,pp. 177-182.
    [48] Shibata, T. ,T .Adachi, A. Yashima, T.Takahashi, and 1.Yoshioka. Time-dependence and volumetric change characteristic of frozen sand under triaxia lstress condition .In proc. 4th Int. Symp. On Ground Freezing, Sapporo, 1985. Japan. Rotterdam: A.A.Balkema, Vol.1,pp.137-179
    [49]马巍,朱元林,马文婷,常小晓.冻结粘土的变形分析冰川冻土,2000, 22(1):43-47.
    [50]何平,程国栋,杨成松,赵淑萍非饱和冻土的强度分析.冰川冻土,2002, 24(3):260-263.
    [51]吴紫汪,马巍.冻土的强度与蠕变.兰州大学出版社.1993.
    [52] Ladanyi,B. In-situ determination of undrained stress-strain behaviour of sentitive clays with the pressure meter. Can.Geotech.J. 1972,9(3):313-319.
    [53] Assur,A. Some Promising trends in ice mechanics. Physics and Mechanics ofice. 1980.Berlin:Springer-Verlag,1一15.
    [54] Fish, A. M. Kinetic nature of the long-term strength of frozen soils. In Proceedings of the Second International Symposiumon Ground Freezing. Trondheim: Norwegian Institute of Technology,1980,95-108.
    [55] Arenson,L.U., and Springman, S. M. Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples. Canadian Geotechnical Journal, 2005,42: 412-430.
    [56] Arenson,L.U., and Springman,S.M. Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0℃. Canadian Geotechnical Journal, 2005, 42:431-442.
    [57]蔡中民,朱元林,张长庆.冻土的粘弹塑性本构模型及材料参数的确定.冰川冻土,1990,12(1):31-40.
    [58]朱元林,张家熊,彭万巍,沈忠言,苗丽娜,冻土的单轴压缩本构关系.冰川冻土,1992, 14(3):210-217.
    [59]ZhuYuanlin, ZhangJiayi. Constitutive relations of frozen soil inuniaxial compression. Proe. Of 6th ISGF,1991, Beijing, China.
    [60]盛煌,吴紫汪,朱元林,马巍.应用蠕变理论对冻土在增应力过程中蠕变规律的几何分析.冰川冻土,1995,17($1):47-53.
    [61]盛爆,吴紫汪,苗丽娜,马巍冻土单轴压缩蠕变的归一化模型.自然科学进展,1996,6(3):357-360.
    [62]王廷栋,武建军,赵希淑,吴紫汪,刘永智.有圆形孔的冻土蠕变的光粘弹性模拟实验.冰川冻土,1996,18(4):312-318.
    [63]苗天德,魏雪霞,张长庆.冻土蠕变过程的微结构损伤理论,中国科学(B). 1995,25(3):309-316.
    [64]刘增利,张小鹏,李洪升.基于动态CT识别的冻土单轴压缩损伤本构模型.岩土力学,2005,26(4):542-546.
    [65]宁建国,王慧,朱志武,孙远翔.基于细观力学方法的冻土本构模型研究.北京理工大学学报,2005,25(10):847-851.
    [66]中国矿业大学主编.1985.特殊凿井法.煤炭工业出版社.
    [67]李昆,王长生,陈湘生三轴试验中深部冻土固结问题.冰川冻土,1993, 15(2):322-324.
    [68]盛煌,苗丽娜,马巍.前期荷载对冻土蠕变强度的影响.第一届全国寒区环境与工程青年学术会议论文集.pp:49-62.兰州大学出版社,1994.
    [69] Vialov, S. S. , Grigorieva VQ ZaretskiiYuK, et al. . The strength and creep of frozen soil sand calculations for ice-soil retaining structures. Annual Report of US Army Cold Regions Research and Engineering Laboratory. Translation76[R], Hanover: US Army Corps of Engineers,1962.225.
    [70] Vialov,S.S. Determination of strength and creep for artificially frozen soils. Leningrad: LeningrOtdelenie,1981
    [71]马巍,E.古里扬洛夫.应力路径对冻土强度与变形的影响.第一届全国寒区环境与工程青年学术会议论文集,pp:44-48.兰州大学出版社.1994.
    [72] E古里扬洛夫,马巍.加荷与卸荷过程中冻土的强度特性.冰川冻土,1995, 18(1):53-57.
    [73]E.Guryanov, MaWei. Strength of frozen soils under loading and unloading. Int Symp On Cold Regions Engineering (Harbin).1996.
    [74]马巍,吴紫汪,常小晓.固结过程对冻土应力一应变特性的影响.岩土力学,2000,21(3):198-200.
    [75] MaWei, etal. Analyses of strength and deformation of an artificially frozen soil wall in underground dengineering. Cold Regions Science and Technology, 2002, (1):11一17.
    [77]马巍,常小晓两种不同试验模式下人工冻结土强度与变形的对比分析,冰川冻土,2002, 24 (2):149-154.
    [78]崔广心,李毅含水土结冰温度的初步研究.冰川冻土,1993,15(2): 317-321
    [79]崔广心,李毅.有压条件下湿砂结冰温度的研究.冰川冻土,1994,16(4): 31-33.
    [80]崔广心,杨维好,李毅.受载荷的湿土结冰温度饱和规律的研究.冰川冻土,1997, 19(4):321-327.
    [81]徐学祖,王家澄,张立新。冻土物理学[M].2001.北京:科学出版社
    [82]杨位洸.地基及基础[M].1998.北京:中国建筑出版社.
    [83] Winkler,E.M.Frost damage to stone and concrete: geological considerations [J]. Engineering Geology.1968.2(5):p.315-323
    [84] Yamabe.T.and K. M. Neaupane. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature conditions [J].International Journal of Rock Mechanics & Mining Science. 2001. 38 (7):p.1029-1034.
    [85] Park. C.J.H.Synn. and D.S.Shin.Experimental study on the thermal characteristics of rock at low temperatures [J]. International Journal of Rock Mechanics & Mining Science. 2004.4 (Supp.1): p.81-86
    [86] Nekrasov.LB.LM.Misnik.and S.D.Movshina.eds.Technical and economic evaluation of high-frequency electrical thermo-hammers for breakingh frozen rocks(In Russian).Development of Minning Resoures of the North[M].1972:Leningrad.
    [87] Misnik.LU.and ND.kiev.Basic problems of frozen rock excavation by electric thermal drills(In Russian)[R].1969.New Investigations in Mining Lenin grad p.143-150
    [88]Neaupane.K.M.T.Yamabe.and R.Yoshinaka.Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock [J]. International Journal of Rock Mechanics and Mining Sciences. 1999. 36 (5):p.363-580
    [89] Goriaev.VE.V.V.Reiner.and N. D. Kiev. Studying frozen ground excavation by thermal means (In Russian ) [A].in Thermomechanical methods of rock shattering[C].1972.
    [90]李宁,张平,程国动.冻结裂隙砂岩地周循环动力特性试验研究[J].自然科学进展.2001.11(11):p.1175-1180
    [91]杨更社,张全胜,蒲毅彬.冻结温度对岩石细观损伤特性的影响[J].西安科技学院学报.2003.23(2):p.139-142
    [92]杨更社,张全胜,蒲毅彬.冻结温度下岩石细观损伤演化CT扫描[J].长安大学学报:自然科学版.2004.24.(6):p.40-46
    [93]杨更社,张全胜,任建喜,等.冻结温度对铜川砂岩损伤CT数变化规律研究[J].岩石力学与工程学报.2004.23.(24)p.4099-4104
    [94]赖远明.寒区隧道温度场、渗流场及应力场耦合问题的非线性分析[D][博士学位论文].1999.中国科学院兰州冰川冻土研究生;兰州
    [95] Lemaitre J , Chaboche JL, Mechanics of Solid Materials .Cambridge Uiversity Press 1990
    [96]江崇鲜.高围压下不饱和冻土三轴强度特征的试验研究.中国煤炭学会青年科学技术研讨会论文集[J]P.136-139
    [97]朱建明,徐秉业,岑章志.岩石类材料峰后滑移剪膨变形特征研究[J].力学与实践, 2001, 23(5): 19-22.
    [98]葛修润,对岩石峰后特性的新见解。中国矿业,No2.1992
    [99]吴刚,何国梁,张磊,邱一平.大理岩循环冻融试验研究[J].岩石力学与工程学报,2006,25(4):2929-2938
    [100]徐光苗,刘泉声,彭万巍,常小晓.低温作用下岩石基本力学性质试验研究[J]岩石力学与工程学报, 2006,(12) .
    [101]刘慧.基于CT图像处理的冻融岩石细观损伤特性研究[D]西安科技大学, 2006 .
    [102]任建喜.冻结裂隙砂岩单轴压缩损伤特性CT试验[A]第九届全国岩石动力学学术会议论文集[C], 2005 .
    [103]杨更社,张全胜,任建喜,蒲毅彬.冻融循环条件下砂岩细观损伤特性研究[A]第八次全国岩石力学与工程学术大会论文集[C], 2004 .
    [104]杨更社,张全胜,蒲毅彬.冻结温度对岩石细观损伤扩展特性影响研究初探[J]岩土力学, 2004,(09) .
    [105]徐光苗,刘泉声,张秀丽.冻结温度下岩体T H M完全耦合的理论初步分析[J]岩石力学与工程学报,2004,23(21):3709-3713.
    [106]刘慧,杨更社,田俊锋,徐江.冻结岩石细观结构及温度场数值模拟研究. [J]地下空间与工程学报,2007,3(6).
    [107]王开林,杨圣奇,苏承东,冻结状态多级应变速率下凝灰岩力学特性的试验研究[A]矿山建设工程新进展——2006全国矿山建设学术会议文集(下册)[C].
    [108]吕书清.冻结状态下软岩隧道冻胀力分析. [J]哈尔滨师范大学自然科学学报, 2008, 4(17)
    [109]张继周,缪林昌,杨振峰.冻融条件下岩石损伤劣化机制和力学特性研究. [J]岩石力学与工程学报.,2008,27(8):1688-1694.
    [110]谭贤君,陈卫忠,贾善坡,吕森鹏.含相变低温岩体水热耦合模型研究. [J]岩石力学与工程学报.,2008,27(7): 1455-1461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700