浅埋砂层隧道变形特征及综合施工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于浅埋软弱地层隧道施工难度大,洞室变形量大,稳定性差,其变形特征和施工技术一直是岩土工程界研究的焦点。关角隧道Ⅰ、Ⅱ线西宁进口段存在约450m长的浅埋砂层隧道,地层工程力学性质差,受一定的山体偏压影响,施工风险较高,且隧道工期压力大,因此开展浅埋砂层隧道开挖洞室稳定性和安全施工技术研究具有现实的工程意义。本文具体研究内容为:
     1.论文首先介绍了浅埋砂层隧道的施工与变形机理的国内外研究现状,总结了砂层隧道施工中成熟、先进的施工经验和理论成果。
     2.论文在介绍关角隧道入口段的工程地质及水文地质等的前提下,针对该区段提出了三种备选施工方法——明挖法、盾构法和暗挖法。对于三种备选方法筛选,论文运用了模糊评判理论,从入口段浅埋砂层隧道的工程特点出发,对三种隧道施工方法的适宜性从施工安全、施工进度、社会经济效益和对环境影响等角度进行了综合评判,按照最大隶属度原则,选出了隧道入口段最优施工方法,即推荐关角隧道浅埋砂层进口段采用暗挖法施工方法。
     3.对于暗挖法施工下隧道围岩的变形特征研究,本文选用了数值模拟手段,分析了关角浅埋砂层隧道在不同应力释放率下围岩变形和塑性区变化规律,结合突变理论,定义了隧道的极限状态和极限位移,即当应力释放率达到80%时,围岩稳定状态为极限状态,对应的位移(拱顶下沉为90mm,水平收敛为160mm)定义为极限位移。
     4.为了掌握隧道施工过程中位移变化规律和支护受力情况,建立了三维有限元数值模型,对四台阶施工方案进行了模拟,得出施工过程中围岩最大拱顶下沉量和最大水平收敛量分别为35mm和64mm;支护结构最大拉、压应力基本上位于横撑与支护结合部位,大小分别为1.89MPa和-13.6MPa,皆小于C25混凝土极限强度。表明在该施工方案下,洞室稳定,支护结构安全。
     5.最后,通过实际的工程实践和探索,形成了浅埋砂层隧道的关键施工技术:①设置长大超前水平管棚,全断面设置超前小导管;②采用超短台阶法开挖;③设置临时横向水平钢支撑控制边墙变形。
     6.现场的地表下沉、内空变形监测结果表明,与原设计方案相比,采用改进后的四台阶方案施工的洞室变形明显减小,稳定性增强。
The deformation behavior and construction technology of the shallow-buried sandy stratum tunnel have been the research focus in the Geotechnical engineering field due to its difficulty to construct, large deformation and poor stability. There have been shallow-buried sandy stratum of 450 metres long in the Xining entry segment of Guanjiao Tunnel. Because of the poor mechanical behavior of rockmass and the unsymmetrical pressure condition, there has been high danger to construct. So it has realistic engineering value to carry out research on the stability and construction technology of the shallow-buried sandy stratum tunnel. The detailed contents are as fellows:
     1. Firstly, the study actuality of internal and overseas were introduced about the construction and deformation behavior of shallow-buried sandy Stratum tunnel. The relative mature, advanced construction practice and theory achievements were also summarized. Then the Geotechnical and hydrological geology were three introduced, alternative construction methods - cut-and-cover method, shield method and mining method were presented .
     2. Based on the engineering charaters of the shallow-buried sandy stratum in the entry segment of Guanjiao tunnel, Fuzzy Judgment theory was adopted to evalue the three optional construction methods. By comprehensive evaluement of the three methods form aspects of safety, construction process, economic benefit and environmental influence, the optimal method was choosed. Mining method was recommended to the entry segment of Guanjiao Tunnel.
     3. Numerical simulation method was adopted to analyse the deformation and plastic area changing rule of surrounding rock under different stress release rate of Guanjiao Tunnel. Based on above results and catastrophic theory, limit state and limit displacement were defined . When the stress release rate reach to 80%, the state of surrounding rock was defined as limit state, and the corresponding displacement(i.e. settlement of vault is 90mm, interior horizontal convergence is 160mm ) was defined as limit displacement.
     4. Based on 3D finite element numerical model, the modified construction method was simulated and the displacement of surrounding rock and stress distribution of support structure were analysed. The maximal settlement and horizontal converge of surrounding rock were respectively 35mm and 64mm . And the maximal tension and compression stress of primary support were respectively 1.89MPa and -13.8MPa. It was concluded that new construction technology could control deformation of tunnel, improve the stability and assure the safety of support structure of tunnel.
     5.At last, the key construction technologies of shallow-buried sandy stratum tunnel were formed by practical engineering practice and exploration, i.e.①setting long and large advanced horizontal roof pipes and full-face advanced ductule;②mini four-steps excavation;③setting temporary horizontal steel brace to control deformation of surrounding rock.
     6.From monitoring measurement of ground settlement and interior deformation, it was concluded that the deformation of tunnel markedly minished and stability improved compared with the former design scheme.
引文
[1]史文杰.饱和粉质砂土内浅埋暗挖法施工降水技术[J].隧道建设,2005,25(2):34-35.
    [2]韩莉.水平旋喷搅拌桩在含水砂层超浅埋地铁隧道中的应用[J].广东土木与建筑,2004,8:6-7.
    [3]肖昌军、徐海燕.北京地铁10号线劲松站粉细砂层中暗挖导洞施工技术[J].铁道标准设计,2008,12:120-123.
    [4]林群义.地铁区间隧道过砂层段施工技术措施[J].科技创新导报,2008,9:57-58.
    [5]石雷.超浅埋暗挖大跨度隧道过饱和富水砂层开挖与支护[J].铁道建设,2006,4:36-43.
    [6]李冬杰,纪海荣,朱学洲.粉砂地层浅埋隧道施工技术[J].西部探矿工程,2001,03:103-104.
    [7]李迎春.富水砂层大跨度平顶浅埋暗挖隧道施工技术[J].国防交通工程与技术,2007,4:61-63.
    [8]韩清,米仓.砂层地质条件下的浅埋暗挖开挖施工工艺[J].南水北调与水利科技,2007,5(sup):79-82.
    [9]张建民.砂土的可逆性和不可逆性剪胀规律[J].岩土工程学报,2000,22(1):12-17.
    [10]周小文,濮家骝,包承钢.砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学学院学报,1999, 16 (4):9-14.
    [11]骞大峰,王兵,谢大昌.土砂互层中浅埋隧道破裂角及破坏试验研究[J].兰州铁道学院学报,1999,18(3):25-29.
    [12]彭泽瑞,侯景岩,贺长俊.城市地铁隧道施工中砂土悬涌塌方机理分析[J].市政技术,2003,21(1):1-4.
    [13]彭芳乐,小竹望,龙冈文夫.土工格栅加筋砂土的变形与破坏机理解析[J].岩土力学,2004,25(6):843-848.
    [14]张敏江,张丽萍,姜秀萍,等.弱胶结砂层突涌机理及预测研究[J].金属矿山,2002,10:48-50.
    [15]李力.粉细砂地层大跨浅埋隧道注浆管棚数值分析[J].隧道建设,2008,28(6):656-659.
    [16]吴波,刘维宁,高波,等.城市浅埋隧道施工性态的时空效应分析[J].岩土工程学报,2004,26(3):340-343.
    [17] Terzaghi, K. Stress distribution in dry and in saturated sand above a yielding trap-door. In: Proceedings of the International Conference on Soil Mechanics, vol. 1. Harvard University. Press, Cambridge, MA, 1936, 307–311.
    [18] Adachi, T., Kimura, M., Kishida, K. Experimental study on the distribution of earth pressure and surface settlement through threedimensional trapdoor tests[J]. Tunnelling and Underground Space Technology, 2003,18 (2), 171–183.
    [19] Chambon, P., Corte, J.F., Garnier, J.Face stability of shallow tunnels in granular soils. Proceedings of an International Conference on Centrifuge. A.A. Balkema, Rotterdam, 1991, 99–105.
    [20] Sterpi, D., Cividini, A., Sakurai, S., Nishitake, S. Laboratory model tests and numerical analysis of shallow tunnels. In: Barla, G. (Ed.), . In: Proceedings of the International Symposium on Eurock‘96—ISRM, Torino, vol. 1. Balkema, Rotterdam, ,1996, 689–696.
    [21] Kamata, H., Masimo, H. Centrifuge model test of tunnel face reinforcement by bolting[J]. Tunnelling and Underground Space Technology , 2003,18 (2), 205.
    [22] Lee, Y., Yoo, C. Behavior of a bored tunnel adjacent to a line of load piles. Tunnelling and Underground Space Technology, 2006,21 (3), 370.
    [23] Sharma, J.S., Bolton, M.D., Boyle, R.E. A new technique for simulation of tunnel excavation in a centrifuge[J]. Geotechnical Testing Journal , 2001,24 (4), 343–349.
    [24] Nomoto, T., Imamura, S., Hagiwara, T., Kusakabe, O., Fujii, N. Shield tunnel construction in centrifuge[J]. Journal of Geotechnical and Geoenvironmental Engineering 1999,125 (4), 289–300.
    [25] Park, S.H., Adachi, T. Laboratory tests and FE analyses on tunneling in the unconsolidated ground with inclined layers[J]. Tunnelling and Underground Space Technology,2002, 17, 181–193.
    [26] Kasper, T., Meschke, G. A 3D finite element simulation model for TBM tunnelling in soft ground[J]. Int. J. Numer. Anal. Meth. Geomech , 2004,28, 1441–1460.
    [27] Kimura, H., Itoh, T., Iwata, M., Fujimoto, K. Application of new urban tunneling method in Baikoh tunnel excavation[J]. Tunnelling and Underground Space Technology , 2005,20, 151–158.
    [28] Tannant, D.D., Wang, C.G. Thin tunnel liners modelled with particle flow code[J]. Eng. Computation , 2004,21, 318–342.
    [29] Chen, S.G., Zhao, J. Modeling of tunnel excavation using a hybrid DEM/BEM method[J]. Computer-Aid. Civil Infrastruct. Eng , 2002,17, 381–386.
    [30] Graziani, A., Boldini, D., Ribacchi, R. Practical Estimate of Deformations and Stress Relief Factors for Deep Tunnels Supported by Shotcrete[J]. Journal Rock Mechanics and Rock Engineering, 2005,38 (5),345–372.
    [31] Kaiser, P.K. Effect of stress history on the deformation behaviour of underground openings[C]. In: Proceedings of the Thirteenth Canadian Rock Mechanics Symposium, edited by the Canadian Institute of Mining and Metallurgy, Montreal, Canada, 1980,. 133–140.
    [32] Kontogianni, V.A., Stiros, S.C. Predictions and observations of convergence in shallow tunnels: case histories in Greece[J]. Engineering Geology, 2002,163 (3), 333.
    [33] Wong, R.C.K., Kaiser, P.K. Performance assessment of tunnels in cohesionless soils[J]. Journal of Geotechnical Engineering (ASCE), 1991,117(12), 1880–1901.
    [34] C. González-Nicieza, A.E. A lvarez-Vigil , A. Menéndez-Díaz c, C. González-Palacio. Influence of the depth and shape of a tunnel in the application of the convergence–confinement method[J]. Tunnelling and Underground Space Technology,2008,23:25-37.
    [35]资仲雄.模糊数学及其应用[M].天津:天津科技出版牡,1985.
    [36]凌复华.灾变理论及其应用[M].上海交通大学出版社,1986.
    [37] P.T.桑德斯著,凌复华译.突变理论入门[M].上海科学技术文献出版社,1983.
    [38]改建铁路青藏线西宁至格尔木段增建第二线关角隧道预设计说明书,中铁第一勘察设计院集团有限公司[M].西安:2008,7.
    [39]李学成,张顶立.地铁隧道注浆范围对地层沉降影响的数值模拟[J].市政技术(增刊),20o4,22(6):324—326.
    [40]李成学.注浆技术在含水粉细砂地层隧道中的应用研究[D].北京:北京交通大学,2005:10—65.
    [41]黄德华.粉砂地层小间距浅埋暗挖隧道穿越铁路施工技术[J].隧道建设,2004,24(1):40-43.
    [42]李代军,彭振华.浅埋暗挖法在饱和粉砂地层中的应用技术[J].铁道修建技术,2004(5):34-37.
    [43]黄正荣,朱伟,梁精华,等.浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J].岩土工程学报,2006,28(11):2005-2009.
    [44]黄芳林、白丽.饱和水砂质粉土地层中浅埋隧道暗挖施工技术[J].地基处理,2007,18(2):31-34.
    [45]赵菁.浅埋平顶大跨隧道穿越流沙层暗挖施工技术[J].隧道建设,2008,5:613-615.
    [46]任镇寰.第四纪地质学[D].北京:地震出版社,1983.
    [47]夏正楷.第四纪环境学[D].北京:北京大学出版社,2000.
    [48] F.J.佩蒂庄,P.E.波特,R.西弗.砂和砂岩.北京:科学出版社出版,1977.
    [49]郑颖人,赵尚毅,孔位学,等.极限分析有限元讲座-岩土工程极限分析有限元法[J].岩土力学,2005,26(1): 163-168.
    [50]郑颖人.岩土塑性力学的新发展-广义塑性力学[J].岩土工程学报,2003,25(1):1-10.
    [51]郑颖人,赵尚毅,邓楚键,刘明维等.有限元极限分析法发展及其在岩土工程中的应用[J].中国工程科学,2006,8(12): 39-62.
    [52]许传华,任青文.围岩稳定性分析的熵突变准则研究[J].岩土力学,2004.25(3):437-440.
    [53]朱紊平,周楚良.地下圆形隧道围岩稳定性的粘弹性力学分析[J].同济大学学报,1994(9):229- 233.
    [54]程桦,孙钧.软弱围岩复合式隧道衬砌力学机理非线性大变形数值分析[J].岩石力学与工程学报,1997(4):327- 336.
    [55]谭云亮,王泳嘉.巷道围岩塑性状态判定分析方法[J].工程地质学报,1996(2):63- 68
    [56]张尚根,陈灿寿,夏炎.深基坑支护方案的模糊优选模型及其应用[J].岩石力学与工程学报,2004,23(12):2046-2048.
    [57]刘春,白世伟.岩体风化程度两级模糊综台评判研究[J].岩石力学与工程学报,2005,24(2):252- 257.
    [58]李文秀,梁旭黎,赵胜涛.地下水影响下裂隙岩质边坡变形的Fuzzy测度分析[J].岩石力学与工程学报,2005,24(2):302-305.
    [59]许传华,任青文.地下工程围岩稳定性的模糊综合评判法[J].岩石力学与工程学报,2004,23(11):l 852-1 855.
    [60]莫元彬,张清.围岩分类号家系统中的小确定性推理方法[J].土木工程学报,1985,23(1):54 -56.
    [61]铁路隧道设计规范,铁道第二勘察设计院,2005,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700