滆湖ecopath模型构建及围网放养鲢鳙的生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滆湖是苏南地区第二大淡水湖,面积164km2,是太湖流域较大的湖泊,具有蓄水、养殖、供水、航运、旅游等多种社会和生态功能。最近20多年来,滆湖流域工农业发展极为迅速,成为中国最具经济活力的地区之一。然而伴随着经济的繁荣,进入滆湖的营养负荷逐年增加,滆湖的渔业捕捞强度不断攀升,滆湖生态环境遭到极大破坏。
     鲢鳙是我国传统水产养殖的主要种类,也是世界上引种最多的种类之一。自从非经典生物操纵治理蓝藻水华的理论提出以后,对鲢鳙在湖泊中的生态地位的研究逐渐增多,多家研究单位的多个研究人员通过围隔、室内受控水体等对鲢鳙滤食藻类、对氮磷循环的影响等进行了研究。本论文利用ecopath模型,比较分析了1986-1989和2010年两个时期滆湖生态系统的特征。并在滆湖敞水区建立了2050亩的围网养殖区域,研究鲢鳙对湖泊水质、浮游植物、底栖动物和沉积物中氮、磷的影响。
     1滆湖生态系统的ecopath模型研究
     利用1986~1989年的生态调查和渔业统计数据,构建了一个具有21个功能组的ecopath模型,利用软件自带的基本分析(Basicestimates)和网络分析(Networkanalysis)功能,对1986-1989年滆湖生态系统的结构和功能进行了量化和系统分析。对模型分析结果表明,1986-1989年滆湖生态系统包含7个营养级,主要的营养物质流动发生在前4个营养级。功能组的营养级从1~3.584。系统总流量为12131.76t·km~(-2)·year-1,其中第I营养级的流量占总流量的74.91%。系统总净初级生产力为3722.117t·km~(-2)·year-1,其中水草生产量占总生产量的33.31%。平均捕捞营养级为2.78,大部分渔业目标群体(青鱼、草鱼、中华绒螯蟹、鲢、鳙、鲤、团头鲂等)的EE(EcotrophicEfficience,EE)都较高,表明这些鱼类种群增长受到渔业和捕食的联合作用限制。P/R(Production/Respiratory,P/R)值为2.76,P/B(Production/Biomass,P/B)值为1.76,Finn's循环指数为14.76%,依据Odum对成熟生态系统特征的描述,作者认为滆湖在1980年代后期是相对成熟的生态系统。
     利用2010年滆湖的生态调查和渔业统计数据,构建了滆湖在2010年生态系统的ecopath模型。模型包含17个功能组,对模型进行分析的结果表明,2010年滆湖生态系统包含7个营养级,各功能组的营养级范围为1~3.691,其营养物质流动主要发生在前4个营养级;系统总生产力为1974.82t·km~(-2)·year-1,总流量为8562.544t·km~(-2)·year-1,联结指数、系统杂食系数、Finn’s循环指数以及Finn’s平均路径长度分别为0.219、0.189、7.99%和2.841;P/R、P/B分别为2.189和3.509;平均捕捞营养级为2.56。通过对1986-1989年和2010年滆湖ecopath生态模型的总流量、P/R、P/B、Finn′s循环指数、联接指数、食物网优势食物链等特征的比较可知,和1986-1989年相比,2010年的滆湖生态系统处于从成熟期退化的过程中,渔业资源衰退,系统中K-对策者比例减小而r-对策者比例增加,即渔业也是湖泊富营养化的受害者。根据混合营养效应分析,鲢鳙现有生物量不能有效控制滆湖藻类的生物量。
     2围网放养鲢鳙对水质和浮游植物的影响
     在滆湖南部支河口以西2km处建立了面积为2050亩的围网,分为3个实验组,放养鲢的密度分别为194、206和242尾/亩,放养鳙的密度分别为133、148和186尾/亩。在围网内外共设置了17个监测点,从2009年12月至2010年12月每月一次对浮游生物、水质、底栖动物和沉积物理化特征进行监测分析。结果表明,放养鲢鳙可以有效降低围网内的叶绿素含量,而对于总磷、总氮和氨氮来说,围网内数值稍低于围网外,但是差异不显著。
     对于浮游植物,围网内密度显著低于围网外,而生物量则是围网内稍低于围网外,差异不显著。围网内不同鲢鳙密度对叶绿素a含量没有显著影响。围网外优势种主要有铜绿微囊藻、微小色球藻、梅尼小环藻、小空星藻和四尾栅藻等,围网内主要有铜绿微囊藻、微小色球藻、针状蓝纤维藻、尖尾蓝隐藻、二形栅藻等;即优势种以蓝藻门、绿藻门和硅藻门种类为主,围网内外优势种没有明显区别。
     3围网放养鲢鳙对底栖动物的影响
     鲢鳙对底栖动物的影响主要是通过改变营养循环、影响底栖动物生存环境等起作用。通过近1年的监测,在围网区域共发现底栖动物16种,分属于环节动物门、节肢动物门和软体动物门。其中环节动物门最多,有11种,占67%;节肢动物门次之,有4种,占28%;软体动物门仅有1种。霍甫水丝蚓、铜锈环棱螺、苏氏尾鳃蚓为围网养殖区域的优势种。围网外底栖动物密度显著高于围网内,生物量则是围网内稍高于围网外。优势种基本相同,围网外皮氏管水蚓(Aulodrilus pigueti)重要值更高。
     4围网放养鲢鳙对沉积物中氮磷的影响
     围网内沉积物中总氮低于围网外,但差异不显著;围网内沉积物中总氮呈上升趋势,而围网外沉积物中总氮则呈下降趋势。围网内沉积物中总磷显著高于围网外,且内外都表现出下降的趋势,但是围网内沉积物中总磷下降更快。鲢鳙对沉积物中氮磷表现出一种复杂的影响,表面上看来,放养鲢鳙会导致沉积物中总磷含量减少(相对于围网外,围网内沉积物中的总磷含量下降得更快),而总氮含量增加。结合围网内水层氮磷比逐渐增高,那么一个可能的原因是从化学计量学的角度来解释,即鲢鳙作为氮、磷的汇,将更多的磷固定在鱼体内,并且促进了沉积物中磷的释放。
     虽然本次研究中围网规模和全湖相比仍然较小,加上湖流的影响,鲢鳙难以对整个湖泊产生深刻的影响,鲢鳙对富营养化湖泊的影响还需要更大规模的实验数据支持,但本论文对于理解鲢鳙在湖泊营养循环中的作用机制是一个有益的探索。
Lake Gehu is the secondary big freshwater lake in South Jiangsu province, China.With the area of164km2, Lake Gehu is relative lager in watershed of Lake Taihu andplay multiple roles of social and ecological such as irrigation, aquaculture, water supply,shipping and tourism. Development of agriculture and industry in Lake Gehu watershedwas so quick and Lake Gehu has becoming one of the most vigorous area in China inthe past two decades. Otherwise more and more nutrients loading entered Lake Gehuand fisheries density continue increasing, accompanied economic booming, made LakeGehu suffered serious ecological damage.
     To find out reasons of deteriation of Lake Gehu ecology and the recovery ways,resolve problems of retreat of fisheries resource and degradation of environment, manyinstitutes investigated the environment, geograph, ecology, fisheries and biology andaccumulated plenty of foundamental data. During “eleven five” plan, many sub-projectsof state water pollutant control and handle programm were related to Lake Gehu andplenty of work has made. But most of these researches was carried out from one aspectof ecosystem and lake of systematic decision and behavior under the frame ofecosystem architecture. Computer model of food web based on mass balance couldanalysis ecosystem holistic and integrate basic research data and documents. Domesticscholars have conducted a preliminary study using computer models on the ecosystemof Taihu Lake and East China Sea. In this thesis we constructed a EwE model on behalfof the Gehu ecosystem history and current situation by synthesizing theory and methodsfrom biology, ecology, ecological stoichiometry and computer science, analysized andquantified the food web composition, distribution of trophic levels, ecosystem maturityand stability, influence of fisheries policy. Results would future guiding fisheries policydevelopment and ecological restoration of Gehu. This contribution first constructedmodel of Gehu and made a comparison with model in1986-1989and found that Gehuwas under degradation compare to1986-1989.
     Silver and bighead carp are major kindes in china traditional aquaculture and oneof the most introduced fishes in the world. Since the theory of non-classicalbiomanipulation of control cyanobacterial blooms was put forward, researches aboutniches of silver carp and bighead carp in the lakes is gradually increased, a number of researchers in different institutes studied filtration on algae and influence on nitrogenand phosphorus cycling of silver and bighead carp through enclosure, indoor controlledexperinments. The researchers draw different and even opposite conclusions for theyused different experimental methods and in different environments. About140hectarepen culture with structure improved set up in the open area of Gehu, stocking differentdensity of silver carp and bighead carp, to verify influence that the silver carp andbighead carp in natural water bodies on the lake ecology, provide guidance on controlcyanobacterial blooms and eutrophication recovery.
     1Ecopath model study of Lake Gehu ecosystem
     An ecopath model with21functional groups was constructed based on the data ofecological investigation and fisheries statistics of1986-1989. Structure andcharacteristics of Gehu ecosystem was analysized by network analysis moduleembedded in ecopath. The analysis results demonstrated that ecosystem in1986-1989included seven trophic levels and major trophic flow occurred in the first four levels.Range of groups from within1-3.584. Total system throughput was12131.76t·km~(-2)·year-1, among this flow originated from first trophic level accounted for74.91%.Total net system primary production was3722.117t·km~(-2)·year-1, among thismacrophyte production accounted for33.31%. Mean catched trophic level was2.78.Ecotrophic efficience of most target fishes were high, indicated that most of these fisheswere constrained by combination of fisheries and predatory. Value of P/R(Production/Respiratory, P/R) was2.76, value of P/B (Production/Biomass, P/B) was1.76, Finn's cycling index was14.76%. According criteria from Odum of matureecosystem, we considered that Gehu ecosystem in1986-1989was mature.
     Another ecopath model of Lake Gehu on2010was constructed using data ofinvestigation and fisheries statistics. The model included seventeen groups. Analysisresults indicate that ecosystem of2010Gehu Lake comprised of seven trophic level.Range of trophic level of these groups was1-3.691and major flow occurred in the firstfour trophic level. Total system production was1974.82t·km~(-2)·year-1, total systemthroughput was8562.544t·km~(-2)·year-1, connectance index, system omnivore index,Finn’s cycling index and Finn’s mean path length were0.219,0.189,7.99and2.841respectively. Values of P/R and P/B were2.189and3.509respectively. Mean catchedtrophic level was2.56. Through comparison of total system throughput, P/R, P/B,Finn’s cycling index, connectance index and dominant food chain between1986-1989and2010, we could conclude that Gehu was degrading from mature status, resouces offisheries declined, K-strategists decreasing and r-strategists increasing, present biomassof silver and bighead carp could not control biomass of algae.
     2Experinment study of influence of silver carp and bighead carp onphotoplankton
     Pen culture was set up in the west of Zhihekou, south of Gehu, with the area ofabout140hectares. Three treatments with different density of silver and bighead carpwas carried out. Density of silver carp were2910,3090and3630/hm2respectively anddensity of bighead carp were1995,2220and2775/hm2respectively. Seventeensampling sites were configured outside and inside the pen culture. Investgatedplankton, water quality, zoobenthos and nitrogen and phosphorus in sediment montyly.The analysis results showed that stocking of silver and bighead carp could decreasingchlorophyll a significantly, but could not decrease total nitrogen, togal phosphorus andammonia nitrogen significantly. Density of phytoplankton ouside of the pen culturewas significant greater than that of inside the pen culture but there is no significantdifference of biomass betweeen inside and outside of the pen culture.
     3Influence of silver carp and bighead carp on zoobenthos
     Silver and bighead carp influenced zoobenthos mainly through altering nutrientscycling and modifying habitat of zoobenthos. We found16zoobenthos in the area ofpen culture within studied period and they belonged to Annelida, Arthropoda andMollusca. Among these zoobenthos11belonged to annelida,67%;4belonged toArthropoda,28%; and1belonged to Mollusca. Limnodrilus hoffmeisteri, Aulodriluspigueti and Bellamya aeruginosa are dominant species in the pen culture area.
     4Influence of silver carp and bighead carp on nitrogen and phosphorus insediment
     Total nitrogen inside the pen culture was lower than that of outside of thepenculture but there was no significant difference. Total phosphorus inside of the penculture was significant greater than that of outside the pen culture. The conclusion wasthat stock of silver carp and bighead carp could decrease phosphorus accumulation inthe sediment and had no vital influence on nitroten.
     This contribution was a positive explore to understand the mechanism that silvercarp and bighead carp played in the lake nutrients cycling. Limitatios of this study wasthat the area of pen culture was small compare to the whole lake, with the interere of lake currence the silver carp and bighead carp could influenced the whole lake profund.Research on this field still need data come from bigger scale.
引文
[1] Frost W. H. and Streeter H. A Study of the Pollution and Natural Purification of the Ohio River.II. Report on Surveys and Laboratory Studies[M].1924
    [2] Kim D., Jeong K., McKay R., et al. Machine Learning for Predictive Management: Short andLong term Prediction of Phytoplankton Biomass using Genetic Algorithm Based RecurrentNeural Networks[J]. Int. J. Environ. Res,2012,6(1):95-108.
    [3] Christensen V. and Walters C. J. Ecopath with Ecosim: methods, capabilities andlimitations[J]. Ecological modelling,2004,172(2-4):109-139.
    [4] Wolff M. and Taylor M. Steady State Models of Ecological Systems: EcoPath Approach toMass-Balanced System Descriptions[J]. Modelling Complex Ecological Dynamics,2011:55-66.
    [5] Moreau J., Mavuti K. and Daufresne T. A synoptic Ecopath model of biomass flows during twodifferent static ecological situations in Lake Nakuru (Kenya)[J]. Hydrobiologia,2001,458(1):63-74.
    [6] Christensen V. Ecosystem maturity--towards quantification[J]. Ecological modelling,1995,77(1):3-32.
    [7] Harvey C. J., Williams G. D. and Levin P. S. Food Web Structure and Trophic Control inCentral Puget Sound[J]. Estuaries and Coasts,2012:1-18.
    [8] Tomczak M., Niiranen S., Hjerne O., et al. Ecosystem flow dynamics in the BalticProper—Using a multi-trophic dataset as a basis for food–web modelling[J]. Ecological modelling,2012,230:123-147.
    [9] Liu Q. G., Chen Y., Li J. L., et al. The food web structure and ecosystem properties of afilter-feeding carps dominated deep reservoir ecosystem[J]. Ecological modelling,2007,203(3-4):279-289.
    [10]武震,贾佩峤,胡忠军,等.基于Ecopath模型分析分水江水库生态系统机构和功能[J].应用生态学报,2012,23(3):812-818.
    [11] Li Y. K., Chen Y., Song B., et al. Ecosystem structure and functioning of Lake Taihu (China)and the impacts of fishing[J]. Fisheries Research,2009,95(2-3):309-324.
    [12]李云凯,宋兵,陈勇,等.太湖生态系统发育的Ecopath with Ecosim动态模拟[J].中国水产科学,2009,16(002):257-265.
    [13] Wang Y., Li S., Duan L., et al. Fishery policy exploration in the Pearl River Estuary based onan Ecosim model[J]. Ecological modelling,2012,230:34-43.
    [14] Elser J. J., Andersen T., Baron J. S., et al. Shifts in lake N: P stoichiometry and nutrientlimitation driven by atmospheric nitrogen deposition[J]. Science,2009,326(5954):835.
    [15] Elser J. J. Ecological stoichiometry: From sea to lake to land[J]. Trends in Ecology andEvolution,2000,15(10):393-394.
    [16] Hessen D. O., Andersen T., Larsen S., et al. Nitrogen deposition, catchment productivity,and climate as determinants of lake stoichiometry[J]. Limnology and Oceanography,2009,54(6):2520-2528.
    [17] Elser J. J., Sterner R. W., Gorokhova E., et al. Biological stoichiometry from genes toecosystems[J]. Ecology Letters,2000,3(6):540-550.
    [18] Van der Molen D. and Portielje R. Multi-lake studies in The Netherlands: trends ineutrophication[J]. Hydrobiologia,1999,408:359-365.
    [19] Kronvang B., Jeppesen E., Conley D. J., et al. Nutrient pressures and ecological responsesto nutrient loading reductions in Danish streams, lakes and coastal waters[J]. Journal ofHydrology,2005,304(1-4):274-288.
    [20] Elser J. J. and Hassett R. P. A stoichiometric analysis of the zooplankton-phytoplanktoninteraction in marine and freshwater ecosystems[J]. Nature,1994,370(6486):211-213.
    [21]谢平.太湖蓝藻的历史发展与水华灾害[M].北京:科学出版社,2008
    [22]史小丽,秦伯强.长江中下游地区湖泊的演化及生态特性[J].宁波大学学报(理工版),2007,20(2):221-226.
    [23]盛建明,费志良,葛家春.洪灾对湖泊生态环境的影响[J].南京林业大学学报:自然科学版,2000,(0z1):112-115.
    [24]谢平.鲢、鳙与藻类水华控制[M].北京:科学出版社,2003
    [25]刘其根.千岛湖保水渔业及其对湖泊生态系统的影响.上海:华东师范大学,2005
    [26]史为良,金文洪.放养鲢鳙对水体富营养化的影响[J].大连水产学院学报,1989,4(003):11-24.
    [27]阮景荣,戎克文,王少梅.微型生态系统中鲢,鳙下行影响的实验研究-1,浮游生物群落和初级生产力[J].湖泊科学,1995,7(3):226-234.
    [28] Januszko M. The effect of three species of phytophagous fish on algae development[J]. Pol.Arch. Hydrobiol,1974,21:431-454.
    [29] Kajak Z., Rybak J., Spodniewska I., et al. Influence of the planktonivorous fishHypophthalmichthys molitrix (Val.) on the plankton and benthos of the eutrophic lake[J]. Pol. Arch.Hydrobiol,1975,22(2):301-310.
    [30]李琪,岳茂国.放养鲢鱼(Hypophthalmichys molitrix C et V)对水库围隔浮游生物群落的影响[J].生态学报,1993,13(001):30-37.
    [31]刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜[J].长江流域资源与环境,1999,8(003):312-319.
    [32]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学,2003,22(003):193-198.
    [33] J rgensen S. E. and Bendoricchio G. Fundamentals of ecological modelling[M]. ElsevierScience,2001
    [34] Austin M. Spatial prediction of species distribution: an interface between ecological theoryand statistical modelling[J]. Ecological modelling,2002,157(2-3):101-118.
    [35] Sparre P. Introduction to multispecies virtual population analysis[R].1991
    [36] Angelini R. and Moloney C. L. Fisheries, Ecology and Modelling: an historical perspective[J].Pan-American Journal of Aquatic Sciences,2007,2(2):75-85.
    [37] Fath B. D., Scharler U. M., Ulanowicz R. E., et al. Ecological network analysis: networkconstruction[J]. Ecological modelling,2007,208(1):49-55.
    [38] Polovina J. J. Model of a coral reef ecosystem[J]. Coral Reefs,1984,3(1):1-11.
    [39] Ulanowicz R. E. Growth and development: ecosystems phenomenology[M]. iUniverse,2000
    [40] Dalsgaard J., Lightfoot C. and Christensen V. Towards quantification of ecologicalsustainability in farming systems analysis[J]. Ecological engineering,1995,4(3):181-189.
    [41] http://www.ecopath.org/about
    [42] Janjua M. and Gerdeaux D. Preliminary trophic network analysis of subalpine Lake Annecy(France) using an Ecopath model[J]. Knowledge and Management of Aquatic Ecosystems,2009,(392):2-2.
    [43] Xu S., Chen Z., Li C., et al. Assessing the carrying capacity of tilapia in an intertidalmangrove-based polyculture system of Pearl River Delta, China[J]. Ecological modelling,2011,(222):846-856.
    [44] Christensen V. and Pauly D. Flow characteristics of aquatic ecosystems[J]. Trophic modelsof aquatic ecosystems,1993,26:338-352.
    [45] BEKL O LU M. and MOSS B. A review on the control of eutrophication in deep and shallowlakes[J]. Turkish Journal of Zoology,1999,23:327-336.
    [46] Ansari A. A., Gill S. S. and Khan F. A. Eutrophication: Threat to Aquatic Ecosystems[J].Eutrophication: causes, consequences and control,2011:143-170.
    [47] Frisk M. G., Mille T. J., Latour R. J., et al. Assessing biomass gains from marsh restoration inDelaware Bay using Ecopath with Ecosim[J]. Ecological modelling,2011,(222):190-200.
    [48] Yang Y., Chen H. and Yang Z. Assessing changes of trophic interactions during onceanthropogenic water supplement in Baiyangdian Lake[J]. Procedia Environmental Sciences,2010,2:1169-1179.
    [49] Calkins H. A. Linking silver carp habita selection to phytoplankton consumption in theMississippi River. B.S., University of Missouri-Columbia,2010
    [50]倪寿文,桂远明,刘焕亮.草鱼,鲤,鲢,鳙和尼罗非鲫淀粉酶的比较研究[J].大連海洋大學學報,1992,7(1):24-31.
    [51] Cremer M. C. and Smitherman R. Food habits and growth of silver and bighead carp incages and ponds[J]. Aquaculture,1980,20(1):57-64.
    [52]谢从新.池养鲢,鳙鱼摄食习性的研究[J].华中农业大学学报,1989,8(4):385-394.
    [53]曾青兰.鲢,鳙鱼对扁裸藻消化利用的研究[J].安徽农业科学,2001,29(4):549-552.
    [54]段金荣,张宪中,刘凯,等.鲢鳙鱼和藻类治理关系的初步研究[J].中国农学通报,2009,25(20):327-330.
    [55]朱新英,张华,赵远辉,等.克孜赛水库浮游生物与鲢,鳙鱼生产潜力的研究[J].水产学杂志,2000,13(1):11-14.
    [56] Turker H., Eversole A. G. and Brune D. E. Comparative Nile tilapia and silver carp filtrationrates of Partitioned Aquaculture System phytoplankton[J]. Aquaculture,2003,(220):449-457.
    [57] Bitterlich G. Digestive enzyme pattern of two stomachless filter feeders, silver carp,Hypophthalmichthys molitvix Val., and bighead carp, Avistichthys nobilis Rich.[J]. J. Fish Biol.,1985,(27):103-112.
    [58] Sharma N. K., Tiwari S. P., Tripathi K., et al. Sustainability and cyanobacteria (blue-greenalgae): facts and challenges[J]. J Appl Phycol,2010,23(6):1059-1081.
    [59] Kang Y. H., Jung S. W., Joo J. H., et al. Use of immobilized algicidal bacteria to controlnatural freshwater diatom blooms[J]. Hydrobiologia,2012:1-12.
    [60] Gulati R. D. and Liere L. Water quality research in Loosdrecht lakes: the salient features[J].Hydrobiologia,1992,233(1):171-177.
    [61] Dunst R. C., Born S. M. and Uttormark P. D. Ecology and Natural Resources Collection[M].1974
    [62] Shapiro J., Lamarra V. and Lynch M. Biomanipulation: an ecosystem approach to lakerestoration[M].1975
    [63] Catalano M. J., Allen M. S., Schaus M. H., et al. Evaluating short-term effects of omnivorousfish removal on water quality and zooplankton at a subtropical lake[J]. Hydrobiologia,2010,(655):159-169.
    [64] An K.-G., Lee J.-Y., Kumar H. K., et al. Control of Algal Scum Using Top-DownBiomanipulation Approaches and Ecosystem Health Assessments for Efficient ReservoirManagement[J]. Water Air Soil Pollut,2010,(205):3-24.
    [65] B ing W. J., Wagner A., Voigt H., et al. Phytoplankton responses to grazing by Daphniagaleata in the biomanipulated Bautzen reservoir[J]. Hydrobiologia,1998,(389):101-114.
    [66] Wright D. I. Lake restoration by biomanipulation: Round Lake, Minnesota, the first twoyears[J]. Freshwater Biology,1984,14(4):371-383.
    [67] Jeppesen E., Meerhoff M., Jacobsen B. A., et al. Restoration of shallow lakes by nutrientcontrol and biomanipulation—the successful strategy varies with lake size and climate[J].Hydrobiologia,2007,581:269-285.
    [68] Zhang X., Xie P. and Huang X. A review of nontraditional biomanipulation[J].TheScientificWorldJOURNAL,2008,8:1184-1196.
    [69] Ke Z., Xie P. and Guo L. Controlling factors of spring–summer phytoplankton succession inLake Taihu (Meiliang Bay, China)[J]. Hydrobiologia,2008,607(1):41-49.
    [70] Hamilton D. P. and Landman M. J. Preface: Lake restoration: an experimental ecosystemapproach for eutrophication control[J]. Hydrobiologia,2011,661:1-3.
    [71] Onkal-Engin G., Demir I. and Engin S. N. Determination of the relationship between sewageodour and BOD by neural networks[J]. Environmental Modelling&Software,2005,20(7):843-850.
    [72] Moss B. Ecological challenges for lake management[J]. Hydrobiologia,1999,395:3-11.
    [73] Scheffer M. and Rinaldi S. Minimal models of top‐down control of phytoplankton[J].Freshwater Biology,2000,45(2):265-283.
    [74]杨铭威,石亚东,孙志,等.太湖蓝藻爆发引发无锡供水危机的思考[J].水利经济,2009,27(003):36-38.
    [75]秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J].地球科学进展,2007,22(9):896-906.
    [76] State Environmental Protection Administration of China S."Water pollution prevention andcontrol on the three rivers and three lakes" by the State Environment Protection Administration ofChina (in Chinese)[M]. Beijing: State Environmental Protection Administration of China Press,2000
    [77]倪彬,王洪波,李旭东,等.湖泊饮用水源地水环境健康风险评价[J].环境科学研究,2010,(001):74-79.
    [78]彭晶倩,李琳,曹雯,等.城市湖泊水环境安全评价研究[J].环境保护科学,2010,36(005):62-64.
    [79]吴召仕,蔡永久,陈宇炜,等.太湖流域主要河流大型底栖动物群落结构及水质生物学评价[J].湖泊科学,2011,23(5):686-694.
    [80]蔡永久,姜加虎,张路,等.长江中下游湖泊大型底栖动物群落结构及多样性[J].湖泊科学,2010,22(006):811-819.
    [81]蔡永久,龚志军,秦伯强.太湖大型底栖动物群落结构及多样性[J].生物多样性,2010,18(1):50-59.
    [82]潘继征,熊飞,李文朝,等.抚仙湖浮游植物群落结构,分布及其影响因子[J].生态学报,2009,29(010):5376-5385.
    [83]吴庆龙,谢平,杨柳燕,等.湖泊蓝藻水华生态灾害形成机理及防治的基础研究[J].地球科学进展,2008,23(11):1115-1123.
    [84]王铭玮,徐启新,车越,等.淀山湖蓝藻水华暴发的气象水文因素探讨[J].华东师范大学学报:自然科学版,2011,(001):21-31.
    [85]张路,范成新,王建军,等.长江中下游湖泊沉积物氮磷形态与释放风险关系[J].湖泊科学,2008,20(3):263-270.
    [86]姜霞,王秋娟,王书航,等.太湖沉积物氮磷吸附/解吸特征分析[J].环境科学,2011,32(5):1285-1291.
    [87]宋益峰,兰林,吴江.我国典型浅水湖泊蓝藻水华治理技术研究进展[J].中国水运,2010,10(8):154-155.
    [88]李静会,高伟,张衡,等.除藻剂应急治理玄武湖蓝藻水华实验研究[J].环境污染与防治,2007,29(1):60-62.
    [89]陆贻超,王国祥,李仁辉.超声波和改性粘土集成技术在去除蓝藻水华上的应用[J].湖泊科学,2010,22(003):421-429.
    [90]赵为民,李端璐.江苏南部滆湖成因演化的初步认识[J].江苏地质,2006,30(2):106-111.
    [91]张彤晴.滆湖浮游植物群落结构及其动态研究滆湖渔业高产模式及生态渔业研究论文集朱成德,王玉纲,余宁1997北京:中国农业出版社. p.133-143
    [92]陈立婧.滆湖富营养化对浮游生物影响的生态学研究.上海:上海海洋大学,2008
    [93]朱成德.滆湖浮游动物的数量动态研究滆湖渔业高产模式及生态渔业研究论文集朱成德,王玉纲,余宁1997北京:中国农业出版社. p.144-148
    [94] http://news.cz001.com.cn/2008-12/10/content_150594.htm
    [95] Smikle S., Christensen V. and Aiken K. A review of caribbean ecosytems and fisheryresources using ECOPATH models[J]. études caribéennes,2010,(15):1-14.
    [96] Steele J. H. and Ruzicka J. J. Constructing end-to-end models using ECOPATH data[J].Journal of Marine Systems,2011,87:227-238.
    [97] Hossain M. M., Matsuishia T. and Arhonditsisb G. Elucidation of ecosystem attributes of anoligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)[J]. Ecological modelling,2010,(221):1717-1730.
    [98]宋兵.太湖渔业和环境的生态系统模型研究[D].上海:华东师范大学,2004
    [99] Polovina J. J. An overview of the ECOPATH model[J]. Fishbyte,1984,2(2):5-7.
    [100] Palomares M. and Pauly D. A multiple regression model for prediction the foodconsumption of Marine Fish populations[J]. Marine and Freshwater Research,1989,40(3):259-273.
    [101] Park R. A. A generalized model for simulating lake ecosystems[J]. Simulation,1974,23(2):33.
    [102] Scavia D., Bloomfield J. A., Fisher J. S., et al. Documentation of CLEANX: a generalizedmodel for simulating the open-water ecosystems of lakes[J]. Simulation,1974,23(2):51.
    [103]闫云君,梁彦龄.扁担塘底栖动物群落的能量流动[J].生态学报,2003,23(3):527-538.
    [104] Halfon E., Schito N. and Ulanowicz R. E. Energy flow through the Lake Ontario food web:conceptual model and an attempt at mass balance[J]. Ecological modelling,1996,(86):1-36.
    [105] Winberg G. Rate of metabolism and food requirements of fishes[J]. Fish. Res. Bd. Can.Trans. Ser.,1956,194:1-202.
    [106] Brett J. and Groves T.6Physiological Energetics[J]. Fish physiology,1979,8:279-352.
    [107] EwE6UserGuide[J].
    [108] Leontief W. W. The structure of American economy,1919-1939: an empirical application ofequilibrium analysis[M]. International Arts and Sciences Press White Plains, NY,1951
    [109] Hannon B. The structure of ecosystems[J]. Journal of Theoretical Biology,1973,41(3):535-546.
    [110] Hannon B. and Joiris C. A seasonal analysis of the southern North Sea ecosystem[J].Ecology,1989:1916-1934.
    [111] Ulanowicz R. and Puccia C. Mixed trophic impacts in ecosystems[J]. Coenoses,1990,5(1):7-16.
    [112] Boughey A. S. Fundamental ecology[M]. Intext Educational Publishers Scranton, Pa.,1971
    [113] Colinvaux P. and Barnett B. Lindeman and the ecological efficiency of wolves[J]. AmericanNaturalist,1979:707-718.
    [114] Libralato S., Coll M., Tudela S., et al. Novel index for quantification of ecosystem effects offishing as removal of secondary production[J]. Marine Ecology Progress Series,2008,355:107-129.
    [115] J rgensen S. E., Patten B. C. and Stra kraba M. Ecosystems emerging:::4. growth[J].Ecological Modelling,2000,126(2-3):249-284.
    [116] James W. F., Barko J. W. and Eakin H. L. Internal phosphorus loading in Lake Pepin,Upper Mississippi River[J]. Journal of Freshwater Ecology,1995,10(3):269-276.
    [117] S ndergaard M., Jensen J. P. and Jeppesen E. Role of sediment and internal loading ofphosphorus in shallow lakes[J]. Hydrobiologia,2003,506(1):135-145.
    [118] Rossi G. and Premazzi G. Delay in lake recovery caused by internal loading[J]. WaterResearch,1991,25(5):567-575.
    [119] Gao L., Zhou J. M., Yang H., et al. Phosphorus fractions in sediment profiles and theirpotential contributions to eutrophication in Dianchi Lake[J]. Environmental Geology,2005,48(7):835-844.
    [120] Vasconcellos M., Mackinson S., Sloman K., et al. The stability of trophic mass-balancemodels of marine ecosystems: a comparative analysis[J]. Ecological modelling,1997,100(1-3):125-134.
    [121] Odum E. P. The strategy of ecosystem development[J]. Science,1969,(104):262-270.
    [122] Odum E. P. and Barrett G. W. Fundamentals of ecology[M].1971
    [123]刘其根,汪建敏,何光喜.千岛湖鱼类资源[M].上海:上海科学技术出版社,2011
    [124] Jia P., Hu M., Hu Z., et al. Modeling trophic structure and energy flows in a typicalmacrophyte dominated shallow lake using the mass balanced model[J]. Ecological modelling,2012,233:26-30.
    [125]刘恩生.生物操纵与非经典生物操纵的应用分析及对策探讨[J].湖泊科学,2010,22(003):307-314.
    [126] Smith D. W. Biological control of excessive phytoplankton growth and the enhancement ofaquacultural production[J]. Canadian Journal of Fisheries and Aquatic Sciences,1985,42(12):1940-1945.
    [127] Zhou G., Zhao X., Bi Y., et al. Effects of silver carp (Hypophthalmichthys molitrix) on springphytoplankton community structure of Three-Gorges Reservoir (China): results from anenclosure experiment[J]. J. Limnol,2011,70(1):26-32.
    [128] Blanco S., Romo S., Fernández-Aláez M., et al. Response of epiphytic algae to nutrientloading and fish density in a shallow lake: a mesocosm experiment[J]. Hydrobiologia,2008,600(1):65-76.
    [129]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202.
    [130] Sereda J. M., Hudson J. J., Taylor W. D., et al. Fish as sources and sinks of nutrients inlakes[J]. Freshwater Biology,2008,53(2):278-289.
    [131] Redfield A., Ketchum B. and Richards F. The influence of organisms on the composition ofsea-water[J]. The sea: Ideas and observations on progress in the study of the seas,1963,2:
    [132] Wetzel R. Limnology[M]. Philadelphia: Saunders College Publishing,1983
    [133] Neel J. K., Peterson S. A. and Smith W. L. Weed harvest and lake nutrient dynamics[M].For sale by the Supt. of Docs., US Govt. Print. Off.,1973
    [134] Shostell J. and Bukaveckas P. A. Seasonal and interannual variation in nutrient fluxes fromtributary inputs, consumer recycling and algal growth in a eutrophic river impoundment[J].Aquatic Ecology,2004,38(3):359-373.
    [135] Vijverberg J. and Frank H. The chemical composition and energy contents of copepodsand cladocerans in relation to their size[J]. Freshwater Biology,1976,6(4):333-345.
    [136] Sterner R. W. and Schulz K. L. Zooplankton nutrition: recent progress and a realitycheck[J]. Aquatic Ecology,1998,32(4):261-279.
    [137] Downing J. A. and McCauley E. The nitrogen: phosphorus relationship in lakes[J].Limnology and Oceanography,1992:936-945.
    [138]黄祥飞,孙鸿烈,刘光菘.湖泊生态调查观测与分析[M].北京:中国标准出版社,2000
    [139]张觉民,何志辉.内陆水域渔业自然资源调查手册[M].北京:农业出版社,1991
    [140]胡鸿均,魏印心.中国淡水藻类——系统,分类及生态EM[M].北京:科学出版社,2006
    [141]周凤霞,陈剑虹.淡水微型生物图谱[M].北京:化学工业出版社,2005
    [142]梁象秋,方纪祖,杨和荃.水生生物学:形态和分类[M].北京:中国农业出版社,1996
    [143]朱浩然.中国淡水藻类志,(第7卷),色球藻纲[M].北京:科学出版社,1991
    [144]施之新,王全喜,谢树莲.中国淡水藻类志[M].北京:科学出版社,1999
    [145] Zhaoli X. and Yaqu C. Aggregated Intensity of Dominant Species of Zooplankton in Autumnin the East China Sea and Yellow Sea [J][J]. Chinese Journal of Ecology,1989,4:
    [146] Pielou E. C. Ecological diversity[M]. Wiley New York,1975
    [147] Margalef R. Perspectives in ecological theory[M]. University of Chicago Press Chicago,1968
    [148] Akbar M. F., Haq M. A., Yasmin N., et al. Management of Potato Leaf Hopper (Amrascadevastans Dist.) with Biopesticides in Comparison with Conventional Pesticides on AutumnPotato Crop[J]. Pakistan J. Zool,2012,44(2):313-320.
    [149] Scheffer M. Ecology of shallow lakes[M]. Dordrecht, the Netherlands: Kluwer AcademicPublishers,2001
    [150] Borics G., Grigorszky I., Szabó S., et al. Phytoplankton associations in a small hypertrophicfishpond in East Hungary during a change from bottom-up to top-down control[J]. Hydrobiologia,2000,424(1):79-90.
    [151]郭明新.养鱼池水的叶绿素含量[J].淡水渔业,1982,005:19-22.
    [152] Van Nieuwerburgh L., W nstrand I. and Snoeijs P. Growth and C: N: P ratios in copepodsgrazing on N-or Si-limited phytoplankton blooms[J]. Hydrobiologia,2004,514(1):57-72.
    [153] Ma H., Cui F., Liu Z., et al. Effect of filter-feeding fish silver carp on phytoplankton speciesand size distribution in surface water: A field study in water works[J]. Journal of EnvironmentalSciences,2010,22(2):161-167.
    [154]刘建康.高级水生生物学[M].北京:科学出版社,1999
    [155]吴铁军,王大鹏,何安尤,等.西津水库网箱养殖区浮游植物特征及水质营养状态[J].广东海洋大学学报,2009,29(004):89-94.
    [156]王大鹏,陈晓汉,何安尤,等.西津水库网箱养殖对水质的影响分析[J].广西水产科技,2007,(1):10-13.
    [157]林永泰,张庆.黑龙滩水库网箱养鱼对水环境的影响[J].水利渔业,1995,(006):6-10.
    [158]许巧情,过龙根,刘绍平.网箱养殖对底栖动物丰度和生物量的影响[J].长江大学学报(自然科学版),2009,6(3):35-38.
    [159]张国华,曹文宣,陈宜瑜.湖泊放养渔业对我国湖泊生态系统的影响[J].水生生物学报,1997,21(3):271-280.
    [160]崔福义,安东,孙兴滨,等.水体中摇蚊幼虫的孳生规律及其控制途径[J].环境污染治理技术与设备,2004,5(7):1-4.
    [161]王丽珍,李砥,刘永定,等.滇池摇蚊科幼虫和水丝蚓属的生物学特性分析[J].水利渔业,2004,24(2):48-50.
    [162]闫云君,李晓宇,梁彦龄.草型湖泊和藻型湖泊中大型底栖动物群落结构的比较[J].湖泊科学,2005,17(2):176-182.
    [163] Milbrink G. Oligochaete communities in pollution biology: the European situation withspecial reference to lakes in Scandinavia[J]. Aquatic Oligochaete Biology. Plenum Press, NewYork,1980,433:455.
    [164] Milbrink G., Timm T. and Lundberg S. Indicative profundal oligochaete assemblages inselected small Swedish lakes[J]. Hydrobiologia,2002,468(1):53-61.
    [165]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000
    [166] Sondergaard M., Kristensen P. and Jeppesen E. Phosphorus release from resuspendedsediment in the shallow and wind-exposed Lake Arres, Denmark[J]. Hydrobiologia,1992,228(1):91-99.
    [167] Jeppesen E., S ndergaard M., Meerhoff M., et al. Shallow lake restoration by nutrientloading reduction—some recent findings and challenges ahead[J]. Shallow Lakes in a ChangingWorld,2007:239-252.
    [168] Pitsch M., Awassi V., Susko E., et al. Effects of zooplankton dynamics on epilimneticphosphorus loss[J]. Freshwater Biology,2012,57(4):704-715.
    [169]逄勇,颜润润,余钟波,等.风浪作用下的底泥悬浮沉降及内源释放量研究[J].环境科学,2008,29(9):2457-2464.
    [170]谢丽强,谢平,唐汇娟.武汉东湖不同湖区底泥总磷含量及变化的研究[J].水生生物学报,2001,25(4):305-310.
    [171] Cyr H. and Face M. L. Magnitude and patterns of herbivory in aquatic and terrestrialecosystems[J]. Nature,1993,361(6408):148-150.
    [172] Polis G. A. and Strong D. R. Food web complexity and community dynamics[J]. AmericanNaturalist,1996:813-846.
    [173] Crawley M. J. Plant–herbivore dynamics[J]. Plant ecology,1997:401-474.
    [174] Schindler D. W. Experimental perturbations of whole lakes as tests of hypothesesconcerning ecosystem structure and function[J]. Oikos,1990:25-41.
    [175] Harmon M. E., Franklin J. F., Swanson F. J., et al. Ecology of coarse woody debris intemperate ecosystems[J]. Advances in ecological research,1986,15(133):302.
    [176] Moore J. C., Berlow E. L., Coleman D. C., et al. Detritus, trophic dynamics andbiodiversity[J]. Ecology Letters,2004,7(7):584-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700