强流ECR质子源及束流引出和传输特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强流ECR (Electron Cyclotron Resonance)离子源作为加速器系统的前端注入设备,其核心部件的设计是影响其工作性能以及产生束流品质的关键。ECR离子源具有结构紧凑,可产生高密度等离子体,性能稳定,可重复性好等优点。然而,由于其系统组成的特点,各个核心部件的性能都会影响产生束流的品质,尽管研究者们对于离子源的调试已经做过很多有借鉴意义的工作,但对影响其关键性能的主要因素和相关理论还不能做出令人信服的解释,因此我们需要在进行离子源的设计中,试图对能反映束流品质的关键部件和离子源中的等离子体参数进行正确的描述和理解。这种基于等离子体诊断来研究束流性能的方法也是目前国内外强流ECR离子源设计与研究领域所欠缺和需要的。为解决这一问题,本文以ECR质子源为研究对象,对ECR氢等离子体进行了发射光谱诊断和碰撞辐射模型研究。借助实验检验,优化了ECR质子源核心部件的设计,研究了束流引出以及传输特性。其创新之处体现在:
     一、将发射光谱诊断方法应用到ECR质子源中对ECR氢等离子体Blamer系氢原子的发射光谱进行诊断,依托辐射碰撞模型对氢等离子体的电子密度和温度进行计算,比较了连续和脉冲微波源工作模式下的氢等离子体密度随微波源参数的变化,工程上首次指出一个脉宽内激发态氢原子发射光谱随时间的变化规律,在时间尺度上对束流的脉冲化结果及脉冲微波源的设计提供了参考。
     二、在束流引出时,利用等离子体发射光谱诊断的方法有效地将不同微波功率下等离子体密度与束流强度的变化规律联系起来,并找到质子源引出束流的最佳气压值范围并探究其成因,提高了质子源的工作效率。
     三、初步研究了束流引出状态下不同引出电压及抑制电压对等离子体发射光谱的影响,以及束流引出时其对等离子体参量的影响,丰富了离子源关于束流引出的物理内容,对进一步提高束流强度和离子源工作的稳定性具有指导意义。本文还通过建造一套结构紧凑的质子源和低能输运段系统并对其核心参数进行理论计算和实验比较,系统地分析了系统关键部件的设计方法,优化其核心参数。利用发射光谱诊断方法,得到ECR氢等离子体参数随质子源核心部件和实验参数的变化规律,为提高ECR质子源的工作性能提供了参考。
As the front-end accelerator system injection device, the design of high-currentECR ion source plays an important role in the performance of the whole system.Especially the design of its core components is the key to affect their work performanceand extracted beam quality. Being a beam production equipment, ECR ion source has acompact structure that can produce high density plasma with stable performance andgood repeatability. However, for the ECR ion source system compositioncharacteristics, each core components’ performance will affect the quality of producedbeam. Although researchers have done lots of works on the souce experiments, theconvincing explanation of the main factors and relative theories about affecting thesource performance are still not given. For this reason, we need to have a correctdescription and understanding about the key components that relate to the beam qualityand the ion source plasma parameters during the design of the ion source. This researchmethod about the performance of the beam based on plasma diagnostics is right whatwe lack in the research field of high-current ECR ion source design and experiment athome and abroad.
     In this paper the ECR hydrogen plasma produced in the ECR proton source isinvestigated by using the emission spectra diagnostics tools based on the collisionalradiative model. By comparing their results, the design of the key components of ECRproton source, the beam extraction and transmission characteristics are optimized. Theinnovation is reflected as follows:
     1. The use of emission spectroscopy diagnostics on ECR proton source to measure theECR hydrogen plasma emission spectra, especially the blamer lines of hydrogenatomic emission spectrometry varies with the experimental conditions. Caculatingthe plasma parameters like electron density and electron temperature by using asimple collision radiation model of the hydrogen plasma. Besides, we comprare theECR hydrogen plasma parameters in cw mode to which in pulse mode ofmicrowave generator, we point out the vatiation of hydogen plasma emissionspectra intensity along with time in one duration of microwave signal for the firsttime from an engineering view, providing an effective reference to the pulse beam extraction and the design of microwave generator parameters in the time scale.
     2. This diagnostic method effectively connects the plasma parameters with beamcurrent intensity in the condition of different microwave power, providing andexplaining an important reference of the optimum pressure range during the beamextraction, as a result, the efficiency of the ion source is improved.
     3. The emission spectra of ECR hydrogen plasma varation with the extracted andsuppressed voltage along with the influence of beam to plasma parameters duringthe beam extraction are preliminary investigated with the aim of shedding light onthe mechanism for beam extraction, it is instructive for futher improving the beamintensity and the stability of the ion source.
     We manufact a new compact ECR proton source and LEBT (Low Energy beamtransport) system, the design method of the key components for this system arediscussed systematically using theoretical simulation and experimental comparison onthe core parameters, thus optimizing their key parameters. By using the emissionspectroscopy method, relations are obtained between ECR hydrogen plasma parametersand key components of the proton source as well as different experimental parameters,and thus influences the intensity of beam extraction.
引文
[1] R.Geller. Electron Cyclotron Resonance Ion Sources and ECR Plasmas, Institute of PhysicsPublishing, UK,1996,1:331~346.
    [2] Sakudo.N, Tokiguchi.K, Koike.H, et al. Microwave Ion Source for High-Current Implanter,Rev. Sci. Instrum.,1978,49(7):941~943.
    [3] Bernhard.W. Handbook of Ion Source. Boca Raton, Fla: CRC Press,1995:109~148.
    [4] R. Gobin, P.Y. Beauvais, R. Ferdinand, et al., Improvement of beam emittance of the CEAhigh intensity proton source SILHI, Rev Sci Instrum,1999,70(6):2652~2654.
    [5] L.Hansborough, J.Sherman, H.Smith, et al. An injector and LEBT for the AAA accelerator,proceedings of2001Paticle Accelerator Conference,2001, chicago.
    [6] J.Sherman, et al, A75keV,140mA proton injector. Rev.Sci.Instrum,2002,73(2):P917~921.
    [7] P. Roychowdhury, D. P. Chakravarthy. High intensity electron cyclotron resonance protonsource for low energy high intensity proton accelerator. Rev Sci Instrum,2009,80:123305.
    [8] H. W. Zhao, B. W. Wei, Z. W. Liu et al. Development of ECR Ion Sources in China. Rev. Sci.Instrum.,2000,71(2):646~650.
    [9] Xianlu Jia, Tianjue Zhang, Shan Luo,et al. Design of a compact, permanent magnet electroncyclotron resonance ion.pdf source for proton and H2+beam production. Rev Sci Instrum,2010,81:02A321.
    [10] S. X. Peng, Z. Z. Song, F. Qian, et al. An ECR oxygen source and a LEBT system developedfor1MeV ISR RFQ accelerator upgrade, High Energy Physics and Nuclear Physics,2007(31)(Suppl. I):63~65.
    [11] Jie Wei, Huaibi Chen, Cheng Cheng, et,al. The Compact Pulsed Hadron Source: A DesignPerspective,Journal of the Korean Physical Society,2010,56:6.
    [12] J. Wei, H.B. Chen, C. Cheng, et,al. The Compact Pulsed Hadron Source Construction Status,1st International Particle Accelerator Conference.2010, May23~28, Kyoto, Japan.
    [13] M.Matsuoka, K.Ono. Ion extraction from microwave plasma excited by ordinary andextraodinary waves and applications to the sputtering deposition, J.Vac.Sci.Technol.A,1990,9:3.
    [14] K. Yoshida, T. Nara, Y. Saitoh, et al. Stability study of all-permanent-magnet electroncyclotron resonance ion source. Rev Sci Instrum,2010,81:02A312.
    [15] L. Schachter, K. E. Stiebing, S. Dobrescu. Enhanced confinement in electron cyclotronresonance ion source plasma. Rev Sci Instrum,2010,81:02A330.
    [16]张萌.强流ECR离子源与低能输运系统的研究[博士毕业论文].北京:北京大学重离子物理研究所,2010.
    [17]明建川.电子回旋共振离子源引出系统的研究[硕士毕业论文].北京:北京大学重离子物理研究所,2004.
    [18] Vinogradov I. P., Jettkant B., Meyer D. et al. Spectroscopic Density Determination ofNitrogen Species in an ECR Discharge. J. Phys. D: Appl. Phys.,1994,27(6):1207~1213.
    [19] Shirkov G. D.. A Classical Model of Ion Confinement and Losses in ECR Ion Sources.Plasma Sources Sci. Tech.,1993,2(4):250~257.
    [20]刘明海. ECR等离子体源的计算机模拟研究[博士毕业论文]合肥:中国科学技术大学近代物理系,1997.
    [21] Fantz U. Basics of plasma spectroscopy. Plasma Sources Sci Technol,2006,15: S137~S147.
    [22] U Fantz, D Wunderlich. A novel diagnostic technique for H-(D-) densities in negativehydrogen ion sources. New Journal of Physics,2006,8:301~324.
    [23] U Fantz, B. Heger, D Wunderlich. Using the radiation of hydrogen molecules for electrontemperature diagnostics of divertor plasmas. Plasma Phys. Control. Fusion,2001,43:907~918.
    [24] U Fantz, S. Dietrich, D Wunderlich. Application of a collisional radiative model to atomichydrogen for diagnostic purposes. Journal of Quantitative Spectroscopy&Radiative Transfer,2009,110:62~71.
    [25] U Fantz, H. Falter, P. Franzen, et al, Spectroscopy—a powerful diagnostic tool in sourcedevelopment. Nucl. Fusion,2006,46: S297~S306.
    [26] Behringe K R, Fantz U. The influence of opacity on hydrogen excited-state population andapplications to low temperature plasmas. New J Phys,2000,2(23):1~19.
    [27]赵环昱. ECR等离子体的轫致辐射谱和极紫外光研究[博士毕业论文].兰州:中国科学院近代物理研究所,2008.
    [28] Zhe Feng, Xiaozhang Zhang, Xialing Guan, et,al. Design of the2.45GHz ECR Proton Sourceand LEBT in CPHS.25th International Linear Accelerator Conference,2010, September12-17, Tsukuba, Japan.
    [29] H. Y. Zhao, X. Z. Zhang, H. W. Zhao et al. A2.45GHz Singly Charged ECR Ion Source forRIB Production. Proceedings of16th International Workshop on ECR Ion Sources, AIPConference Proceedings,2004,749:165~167.
    [30] H. W. Zhao, X. Z. Zhang, Z. M. Zhang et al. ECR Ion Sources at the Institute of ModernPhysics: From Classical to Fully Superconduction Device. Rev. Sci. Instrum.,2002,73(2):525-527.
    [31] Z. M. Zhang, H. W. Zhao, X. Z. Zhang et al. A New ECR Ion Source for Atomic PhysicsResearch at Institute of Modern Physics. Rev. Sci. Instrum.,2002, Vol.73(2),580~581.
    [32] P.B.Mital. Broadband waveguide feed for parabolic reflectors, Active and Passive Elec.Comp.,1994,17:9~19.
    [33] S. X. Peng, R. Xu, J. Zhao, et al. The influence of magnetic field configuration on an electroncyclotron resonance ion source, Rev Sci Instrum,2008,79,02A310.
    [34] Kennel C. F., Engelmann F.. Velocity Space Diffusion from Weak Plasma Turbulence in aMagnetic Field. Phys. Fluids,1966,9(12):2377~2388.
    [35] R. Rácz, S. Biri, J. Pálinkás. Electron cyclotron resonance plasma photos. Rev Sci Instrum,2010,80:02B708.
    [36] J. E. Boers, An Interactive Version of the PBGUNS Program for the Simulation ofAxisymmetric and2-D, Electron and Ion Beams and Guns, proceedings of the1995ParticleAccelerator Conference, Dallas, TX,1995:2312.
    [37] Lieberman M A, Lichtenberg A J. Principles of plasma discharge and materials processing.2nd ed. New York: Wiley,2005.
    [38] P. R. Harris, F. W. Meyer. Plasma potential and energy spread determination using ion beamsextracted from an electron cyclotron resonance source. Rev Sci Instrum,2010,81:02A310.
    [39] U. Fantz, B. Heger. Spectroscopic diagnostics of the vibrational population in the ground stateof H2and D2molecules, Plasma. Phy. Control. Fusion.,1998,40:2023~2032.
    [40] Beheringer K. Diagnostics and modelling of ECRH microwave discharges. Plasma PhysControl Fusion,1991,33(9):997~1028.
    [41] B. J. Eastlund, D. Spero, M. Johnson, et al. Optical diagnostics of an ECRH plasma. J. Appl.Phy.,1973,44(11):4930~4935.
    [42] Zhu X M, Pu Y K. Nonequilibrium excited particle population distribution in low-temperatureargon discharges. J Phys D: Appl Phys,2009,42:182002.
    [43] Crolly G, Oechsner H. Comparative determination of the electron temperature in Ar-andN2-plasmas with electrostatic probes, optical emission spectroscopy OES and energydispersive mass spectroscopy EDMS. Eur Phys J Appl Phys,2001,15:49~56.
    [44] Zhu X M, Pu Y K. A molecular kinetic model for the optical emission spectroscopy techniquein inductively coupled nitrogen plasma. Phys Plasmas,2006,13(6):063507.
    [45] Pu Y K, Zhu X M. Simple models for complex plasmas.1st International Workshop onNon-equilibrium Flows,2007, December28~30, Hainan, China.
    [46] Zhu X M, Chen W C, Pu Y K. Gas temperature, electron density and electron temperaturemeasurement in a microwave excited microplasma. J Phys D: Appl Phys,2008,41:105212.
    [47] Zhu X M, Pu Y K. A simple collisional-radiative model for low-pressure argon discharges. JPhys D: Appl Phys,2007,40:2533~2538.
    [48] Feng Z, Guo Z G, Pu Y K. Preliminary investigation on a sheet plasma produced by a singlehot-filament cathode discharge. Plasma Sci technol.2010,4:100156.
    [49] Zhu X M, Pu Y K. A simple collisional-radiative model for low-pressure argon-oxygenmixture discharges. J Phys D: Appl Phys,2007,40:5202~5025.
    [50] Zhu X M, Chen W C, Li J, et al. Determining the electron temperature and the electrondensity by a simple collisional-radiative model of argon and xenon in low-pressure discharges.J Phys D: Appl Phys,2009,42:025203.
    [51] Zhu X M, Pu Y K. A novel method to determine electron density by optical emissionspectroscopy in low-pressure nitrogen plasmas. Phys Plasmas,2006,13(12):123501.
    [52] Zhu X M, Pu Y K. Determine the electron temperature in inductively coupled nitrogenplasmas by optical emission spectroscopy with molecular kinetic effects. Phys Plasmas,2005,12(10):103501.
    [53] Shirkov G. Multicomponent Consideration of Electron Fraction of Electron-CyclotronResonance Source Plsma. Rev. Sci. Instrum.,2000,71(2):850~852
    [54] H.R.Griem, A.C.Kolb, K.Y.Shen. Stark boardening of hydrogen lines in a plasma. PhysicalReview.,1959,16(1):4~16.
    [55] Ru-Juan Zhan, Xiaohui Wen, Xiaodong Zhu, et al. Adjustment of electron temperature inECR microwave plasma. Vacuum,2003,70:499~503.
    [56] V. Mironov, J. P. M. Beijers. Three-dimensional simulations of ion dynamics in the plasma ofan electron cyclotron resonance ion source. Physical Review Special Topics,2009,12:501~601.
    [57] C. Perret, A. Girard, H. Khodja, et al. Limitations to the plasma energy and density in electroncyclotron resonance ion sources. Physics of Plasma,1999,6(8):3405~3415.
    [58] M.Cavenago, A.Galata. Extraction of intense beams from ECR ion sources and electrostaticacceleration. Radiation Effects&Defects in Solids,2005,160:499~505
    [59] J.Torres, J.Jonkers, M.J.Sande, et al. An easy way to determine simultaneously the electrondensity and temperature in high-pressure plasmas by using stark boardening. J.Phys.D:Appl.Phys.,2003,36: L55~L59.
    [60] Pras R., Lamoureus M., Girard A. et al. Electrron Cyclotron Resonance Ion Source IonicCurrents (Both in the Stable and Periodic Regimes) Modeled in RelationWith the HotElectron Temperature via the Potential Dip. Rev. Sci. Instrum.,1998,69(2):700~702.
    [61] Yushi Kato, Shigeyuki Ishii. Plasma potential profile in a2.45GHz electron cyclotronresonance multicharged ion source. Rev. Sci. Instrum.,1998,69(2):1176~1178.
    [62]钱锋.小型永磁强流质子ECR离子源实验台的改造及该离子源引出系统的研究和改进
    [硕士毕业论文].北京:北京大学重离子物理研究所,2007.
    [63] L. Celona, S. Gammino, G. Ciavola, et al. Microwave to plasma coupling in electroncyclotron resonance and microwave ion sources. Rev Sci Instrum,2010,81:02A333.
    [64] S. Gammino, L. Celona, G. Ciavola, et al. Review on high current2.45GHz electroncyclotron resonance sources. Rev Sci Instrum,2010,81:02B313.
    [65]丁俊章,赵玉彬,刘占稳等,2.45GHz单电荷态电子回旋共振离子源,核技术,2001(24),43~46.
    [66] Tarvainen O., Suominen P., Koivisto H.. Effect of the Gas Mixing Technique on theProduction Efficiency of Ion Beams Extracted from an Electron Cyclotron Resonance IonSource. Nucl. Instrum. Meth. Phys. Res. B,2004,217:136~142.
    [67] R. Geller. Electron cyclotron resonance sources: Historical review and futureProspects(invited). Rev. Sci. Instrum.,1998,69(3):1302~1310.
    [68] Lieberman M. A., Lichtenberg A. J.. Theory of Electron Cyclotron Resonance Heating IILong Time and Stochastic Effects. Plasma Phys.,1973,15(2):125~150.
    [69] Girard A., Perret C., Melin G., et al. Modeling of Electron-Cyclotron-Resonance Ion Sourceand Scaling Laws. Rev. Sci. Instrum.,1998,69(2):1100~1102.
    [70] Girard A., Pernot C., Melin G., et al. Modeling of Electron-Cyclotron-Resonance-HeatingPlasmas. Phys. Rev. E,2000,62(1):1182~1189.
    [71] S.X.Peng, R.Xu, J.Zhao, et al. The influence of magnetic field configuration on an electroncyclotron resonance ion source,Rev. Sci. Instrum.,2008,79:02A310.
    [72] NIST. Physical Reference Data.[2010]. http://physics.nist.gov/PhysRefData/contents.html.
    [73]朱悉铭.低温等离子体的发射光谱诊断与碰撞辐射模型研究[博士毕业论文].北京:清华大学工程物理系,2009.
    [74] A. Girard. Plasma diagnosis related to ion sources. Rev. Sci. Instrum.,1992,63(4):2676~2682.
    [75] R. Hollinger, W. Barth, L. Dahl, M. Galonska, et al. High current proton beam investigationsat the SILHI-LEBT at CEA/SACLAY. Proceedings of LINAC2006, Knoxville, TennesseeUSA.
    [76] A. Lakatos, J. Pozimski, O. Meusel, et al. Study of space charge compensated LEBT for ESS.Proceedings of the1999Particle Accelerator Conference, New York, USA.
    [77] Tamba M., Amemiya H.. Production of H-in a New Type Compact Electron CyclotronResonance Ion Source. Rev. Sci. Instrum.,1990,61(1):247~249.
    [78] G.Ciavola, et al. The Trasco High Current Proton Source and Its LEBT. Proc. LINAC2002,Gyeongju, Korea, P676~678.
    [79] R.Geller. Electron cyclotron resonance sources: Historical review and future prospects. RevSci Instrum,1998,69(3):1302~1310.
    [80] ZHANG Xue-Zhen, SUN Liang-Ting, SUN Xiao-Jun, et al. A compact proton source forspace simulation. High energy physics and nuclear physics,2007,31:226~228.
    [81] B. X. Han, R. F. Welton, M. P. Stockli, et al. Evaluation and utilization of beam simulationcodes for the SNS ion source and low energy beam transport development. Rev. Sci. Instrum,2008,79:02B904.
    [82] ZHANG Xue-Zhen, SUN Liang-Ting, SUN Xiao-Jun, et al. A compact proton source forspace simulation. High energy physics and nuclear physics,2007,31:226~228.
    [83] B. X. Han, R. F. Welton, M. P. Stockli, et al. Evaluation and utilization of beam simulationcodes for the SNS ion source and low energy beam transport development. Rev. Sci. Instrum,2008,79:02B904.
    [84] Yushi Kato, Takeyoshi Watanabe, Yuuki Matsui, et al. Production of electron cyclotronresonance plasma by using multifrequencies microwaves and active beam profile control on alarge bore electron cyclotron resonance ion source with permanent magnets. Rev Sci Instrum,2010,81:02A313.
    [85] Barué C., Briand P., Girad A. et al. Hot Electron Studies in the Minimafios ECR Ion Soruce.Rev. Sci. Instrum.,1992,63(4),2844~2946
    [86] Garner R. C., Mauel M. E., Hokin S. A. et al. Warm Electron-Driven Whistler Instability inan Electron-Cyclotron-Resonance Heated, Mirror-Confined Plasma. Phys. Rev. Lett.,1987,59(16),1821~1824.
    [87] Mauel M. E.. Electron-Cyclotron Heating in a Pulsed Mirror Experiment. Phys. Fluids,1984,27(12),2899~2911.
    [88] Girard A., Klein J. P., Gaudart G. Et al. Electron Cyclotron Resonance Ion Source:Experiments and Theory. Proceedings of the12thInternational Workshop on ECR IonSources.1995, Tokyo, Japan,164~169.
    [89] Experimental study on ion beam emittance of ECR ion source. High energy physics andnuclear physics,2005,29(12):1179~1184.
    [90] L. Kenéz, A. Kitagawa, J. Karácsony, et al. Study of the biased-disc effect usingLangmuir-probes inserted in the hot region of the electron cyclotron resonance ion source(ECRIS) plasma. Physics Letters A,2008,(372):2887~2892.
    [91] Chun-Ku Chen, Ta-Chin Wei, Lance R Collins,et.al. Modelling the discharge region of amicrowave generated hydrogen plasma. J. Phys. D: Appl. Phys.,1999(32):688~698.
    [92] Keiji Sawada, Takashi Fujimoto. Effective ionization and dissociation rate coefficients ofmolecular hydrogen in plasma. J. Appt. Phys.,199578(5).
    [93] L. Kenéz, A. Kitagawa, J. Karácsony, et al. Study of the biased-disc effect usingLangmuir-probes inserted in the hot region of the electron cyclotron resonance ion source(ECRIS) plasma. Physics Letters A,2008,372:2887~2892.
    [94] Dirk Wunderlich. Berechnung von Teilchendichten furdie Diagnostik anNiedertemperaturplasmen. Dissertation zur Erlangung des Doktorgrades an der MathematischNaturwissenschaftlichen Fakult at der Universit at Augsburg,2004.
    [95] Yoshiaki Hirai, Yushi Kato, Fuminobu Sato, et al. Pulse modulated microwave operation onlarge bore electron cyclotron resonance ion source with cylindrically comb-shaped magneticfield configuration. Rev Sci Instrum,2010,81:02A325.
    [96] D. Mascali, L. Neri, S. Gammino,et al. Plasma ion dynamics and beam formation in electroncyclotron resonance. Rev Sci Instrum,2010,81:02A334.
    [97] O Tarvainen, T Ropponen, V Toivanen, et al. Plasma breakdown diagnostics with the biaseddisc of electron cyclotron resonance ion source. Plasma Sources Sci. Technol,2009,18:035018.
    [98]冯哲,张小章,刘占稳等,关于强流ECR质子源氢等离子体发射光谱的诊断研究,核技术,2010,33(12):933~936.
    [99] Niimura M., Lamoureus M., Goto A. et al. Dynamic Simulations of the Interchange Instability,Ion Production, and Electron Heating Processes in an Electron Cyclotron Resonance IonSource Plasma. Rev. Sci. Instrum.,2000,71(2):846~849.
    [100] S. K. Jain, Akhilesh Jain, P. R. Hannurkar, et al. Characterization of plasma parameters, firstbeam results, and status of electron cyclotron resonance source. Rev. Sci. Instrum.,2007,(78):053301.
    [101] Klaus Wiesemann, Some plasma aspects and plasma diagnostics of ion sources, Rev. Sci.Instrum.,2008,79:02B506.
    [102] P. Sp dtke. Model for the description of ion beam extraction from electron cyclotronresonance ion sources. Rev. Sci. Instrum.,2010,81:02B725.
    [103] Peter Sp dtke, J. W. Stetson, L. Celona. Prospects of ion beam extraction and transportsimulations. Rev. Sci. Instrum.,2008,79:02B716.
    [104] T. Nakagawa, Y. Higurashi, J. Ohnishi, et al. First results from the new RIKENsuperconducting electron cyclotron resonance ion source. Rev Sci Instrum,2010,81:02A320.
    [105] I. S. Hong, B. S. Park, J. H. Jang, et al. Design and construction of a compact microwaveproton source for a proton linac. Rev Sci Instrum,2010,81:02A314.
    [106] Shigeyuki Ishii, Hiroshi Amemiya. An ECR ion source with high proton ratio. Rev SciInstrum,1990,61(1):270~272.
    [107] G.D.Alton, D.N.Smithe. Design Studies for an Advanced ECR Ion Source. Rev. Sci. Instrum.,1994, Vol.65(4),775~787.
    [108] Biri S., Nakagawa T., Kidera M et al. Highly Charged Ion Production Using an Electronde inBiased and Floating Modes. Proceedings of the14thInternational Workshop on ECR SourcesECRIS99, CERN, Geneva, May1999,81~85
    [109] Evgeni D. Donets. Historical review of electron beam ion sources (invited). Rev. Sci. Instrum.,1998,69(2):614~619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700