氘氚中子发生器脉冲束线与中子能谱测量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核科学的研究和应用对强流氘氚中子发生器需求巨大,但具有脉冲功能的强流氘氚中子发生器尤其缺乏。设计建设一台具有脉冲/直流两用型强流氘氚中子发生器和相关的核测量装置对于发展先进核能相关技术具有重要意义。本文的主要研究内容是:(1)强流氘氚中子发生器HINEG(Highly Intensified Neutron Generator)的脉冲束线物理设计(2)HINEG的源中子分析(3)中子能谱测量研究,包括中子飞行时间测量系统、Bonner多球谱仪、能谱反卷积算法。
     首先完成HINEG脉冲束线的物理设计。脉冲束线分为束流传输系统和脉冲化装置两部分分别进行设计。为保证氘束流能够顺利传输到靶,使用Transport和LEADS两种束流光学程序计算脉冲束线的束流包络图。脉冲化装置设计采用解析公式和经验完成初步参数的确定,而后使用LMOVE程序和数值模拟方法进行了详细计算,并最终基于数值模拟方法进行优化。最终完成的脉冲束线物理设计能够在离子源引出2mA流强的情况下,到靶束流达到如下指标:束斑控制在4.6~7.4mm,最大流强达到164μA,脉冲宽度为1.26ns,均达到了设计指标。
     随后论文分析了HINEG所产生的源中子情况。在源中子分析中,氚浓度深度分布是必需的参数,通常假设为均匀分布,经过评估后发现这种假设对于源中子分析会引入较大的误差。由此提出一种使用伴随α粒子能谱数据反演氚浓度深度分布数据的方法,并基于已报道的伴随α粒子能谱对该方法进行了测试,反演结果基本符合物理事实,在此基础上,完成了HINEG脉冲束线的T(d,n)4He源中子分析,并考虑了D(d,n)3He源中子、到靶束流参数等因素的影响。
     最后对中子能谱测量技术进行研究。完成中子飞行时间测量系统建设,并进行了相关的实验刻度。对于Bonner多球谱仪,提出一种基于奇异值分解和信息熵理论的设计方法。对于关键的中子能谱反卷积算法,提出一种多模型单输出的人工神经网络反卷积方法,测试结果表明该方法优于目前常用的最大熵法,并具有能群误差独立的优点。
There was a strong demand for the high-intensity neutron generator in the research and application of nuclear science, especially for the high-intensity neutron generator with pulse function. The design and construction of a DC/pulse high-intensity neutron generator and the nuclear measurement systems were of great significance for the development of advanced nuclear energy technology and relevant technology. This dissertation's main works were as follows:(1) the physical design of pulse line of Highly Intensified Neutron Generator (HINEG)(2) the analysis of source neutron of HINEG (3) the neutron spectrum measurement technologies, including time of flight measurement system, Bonner spheres spectrometer and the spectra unfolding methods.
     The design of the pulse line of HINEG was divided into the beam transport system design and the pulsed system design respectively. In order to guarantee the deuteron beam can be smoothly transport to the target, the beam envelope of pulse line was calculated by the Transport and LEADS program. As to the design of the pulsed system, which was critical equipment for realizing nanosecond pulses, used the analytical formulas and experience to complete the preliminary design of the chopper and buncher. Then followed by detailed calculations conducted by numerical simulation and LMOVE codes and design was optimized based on the results of numerical simulation. Using the optimized design, in case the initial bema intensity from ion source was2mA, the spot diameter on the target was4.6-7.4mm, the maximum deuteron intensity on the target was over164u A, and the FWHM(full width at half maximum) of pulse beam on the target was1.26ns. All the parameters were better than designed specifications.
     Subsequently the source neutron generated by HINEG was analyzed. The source neutron analysis required tritium concentration depth profile in the tritium target, which was under uniform distribution assumption in the previous analysis. The evaluation results showed that this assumption would introduce remarkable error into the source neutron analysis. Then a method based on the alpha spectrum from associated particle method for acquiring the depth profile of tritium in the target was presented, also this method was tested and the test result was consistent with the physical facts. Then the analysis of T(d,n)4He source neutrons of HINEG was finished and increased consideration of D(d,n)3He unexpected neutrons and the parameters of deuteron beam.
     Finally, the equipment and methods for measuring neutron spectra were studied. For the neutron time of flight measurement system, after the design and the construction of systems, timescale of the channel width, experimental calibration and n-y screening were tested. For the Bonner sphere spectrometers, a design method based on singular value decomposition and information entropy theory was proposed. As to the neutron spectra inverse problem, a multi-model single-output artificial neural network unfolding method was presented, and the test results showed that this method was superior to the maximum entropy method. Also it was found that this method with the unique feature that error of each energy-bin was independent.
引文
[1]Oyama, Y., S. Yamaguchi, and C. Konno. An intense DT neutron source and test conditions for fusion nuclear technology research[J]. Fusion Engineering and Design,1989.10(0):p. 103-107.
    [2]Csikai, J. Utilization of intense neutron generators in science and technology[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1989.280(2-3):p.233-250.
    [3]Wan Baonian., Li jiangang, and Wu Yican. Progress in technology and experiment of superconducting tokamaks in ASIPP[J]. Fusion Engineering and Design[J],2010.85(7-9):p. 1048-1053.
    [4]Wu Yican. Overview of liquid lithium lead breeder blanket program in China[J]. Fusion Engineering and Design,2011.86(9-11):p.2343-2346.
    [5]Wu Yican. and FDS team. CAD-based interface programs for fusion neutron transport simulation[J]. Fusion Engineering and Design,2009.84(7-11):p.1987-1922.
    [6]Wu Yican, Zhu, Xaioxiang, Zheng Shangliang. Neutronics analysis of the dual-cooled waste transmutation blanket for the FDS[J]. Fusion Engineering and Design,2002.63-64(0):p. 133-138.
    [7]吴宜灿,李莹,卢磊等.蒙特卡罗粒子输运计算自动建模程序系统的研究与发展[J].核科学与工程,2006.26(1):p.20-27.
    [8]Chai Zhuxin, Huang Qunyin, Wu Yican, et al. An integrative radiation protection control system based on a CAN bus for the HT-7U tokamak fusion device[J]. Journal of Radiological Protection,2004.24(2):p.147.
    [9]Chen Yixue., Wu Yican, and Huang Qunyin. Monte Carlo based operational and shutdown dose rate calculations of HT-7U tokamak[J]. Fusion Engineering and Design,2004.70(2):p. 155-162.
    [10]柴竹新,吴宜灿,刘伯学.核聚变装置EAST高可靠性辐射防护控制系统[J].核电子学与探测技术,2005.25(1):p.28-31.
    [11]陈义学,吴宜灿,黄群英.核聚变实验装置HT-7U停机辐射剂量率三维计算与分析[J].核科学与工程,2004.24(1):p.49-55.
    [12]陈义学,吴宜灿,黄群英.核聚变装置HT-7U环境辐射剂量蒙特卡罗模拟计算与分析[J].核技术,2005.28(1):p.83-88.
    [13]黄群英.核聚变实验装置HT-7U及大厅活化分析[J].核技术,2000.23(8):p.513-518.
    [14]吴亮亮,应栋川,邱岳峰,等.三维停堆剂量率计算程序研发及其在EAST上的应用核科学与工程[J],2011.3 1(1):p.80-85.
    [15]苏桐龄.强流中子发生器及其应用[J].核技术,1989.21(8-9):p.553-556.
    [16]Heikkinen, D.W. The rotating target neutron source II facility:Operational summary[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1989.40-41 (Part 2):p.1162-1164.
    [17]Booth R, Davis J. C, Hanson, C. L., et al. Rotating target neutron generators[J]. Nuclear Instruments and Methods,1977.145(1):p.25-39.
    [18]Markovskij D. V, Forrest R. A, Kovalchuk V. D., et al. Experimental activation study of some Russian vanadium alloys with 14-MeV neutrons at SNEG-13 facility[J]. Fusion Engineering and Design,2001.58-59(0):p.591-594.
    [19]Kovalchuk, V. D. Mostovoy, V. V. Tereshkin, V. I., et al. Activation study at SNEG-13 facility of the candidate ferritic steel 10X9VFA[J]. Fusion Engineering and Design,1998. 42(1-4):p.343-348.
    [20]NISHITANI TAKEO, O.K., YOSHIDA SHIGEO, TANAKA RYOHEI, WAKISAKA MASASHI, et al, D-T Neutron Skyshine Experiments at JAERI/FNS[J]. Journal of Plasma and Fusion Research,2003.79:p.282-289.
    [21]Kenji Sumita, Akito Takahashi, and T.l.a.J. Yamamoto. Status of OKTAVIAN Ⅰ and Proposal for OKTAVIAN Ⅱ [J]. Nuclear Science and Engineering,1990:p.249-265.
    [22]卫增泉,马惠芳,吴定清.K-600中子发生器的氚净化装置[J].环境科学学报,1989.9:p.356-360.
    [23]辐射防护组.K-600中子发生器的辐射安全工作总结[J].辐射防护,1985.5(2):p.99-104.
    [24]祖秀兰,娄本超,杨海素,等.ns-200中子发生器束流脉冲化技术研究及束流传输模拟计算[J].核电子学与探测技术,2006.26(6):p.963-965.
    [25]刘荣,亢武,周长庚.纳秒脉冲/直流强中子发生器及其性能测试[J].中国.工程物理研究员科技年报(2008年版),2009.p.39.
    [26]王黎明.2007.高压倍加器14MeV实际中子场研究[D]:[硕士].北京,原子能科学研究院,
    [27]朴禹伯,牛占歧,王学智,等.分析束强流中子发生器中子比产额及靶寿命[J].原子能科学技术,1993.03:p.193-197.
    [28]Conard, E.M., High intensity accelerator for a wide range of applications[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1994.353(1-3):p.1-5.
    [29]Carlson, A. D. Badikov, S. A. Chen, Zhenpeng, et al. Covariances Obtained from an Evaluation of the Neutron Cross Section Standards[J]. Nuclear Data Sheets,2008.109(12):p. 2834-2839.
    [30]Carlson, A. D. Pronyaev, V. G. Smith, D. L., et al. International Evaluation of Neutron Cross Section Standards[J]. Nuclear Data Sheets,2009.110(12):p.3215-3324.
    [31]丁大钊,叶春堂,赵志祥.中子物理学.2001:原子能出版社.
    [32]Klix A, Ochiai K Verzilov Y, Nishitani, et al. Tritium breeding experiments with blanket mock-ups containing -enriched lithium titanate and beryllium irradiated with DT neutrons[J]. Fusion Engineering and Design,2005.75-79(0):p.881-884.
    [33]Yury Verzilov, Satoshi Sato, Kentaro Ochiai, Masayuki Wada, et al. The integral experiment on beryllium with D-T neutrons for verification of tritium breeding[J]. Fusion Engineering and Design,2007.82(1):p.1-9.
    [34]Jakhar, Shrichand A, bhangi, Mitul, Rao, C. V. S., et al. Measurement of tritium production rate distribution in natural LiAlO2/HDPE assembly irradiated by D-T neutrons[J]. Fusion Engineering and Design,2012.87(2):p.184-187.
    [35]Sharma, Amit Raj, Chandra, Debasis, Chaturvedi, Shashank., et al. Re-investigations of integral neutron multiplication experiments with 14 MeV neutrons in lead[J]. Fusion Engineering and Design,2001.55(4):p.501-512.
    [36]Granier, T. Pangault, L. Ethvignot, T., et al. Measuring neutron-induced fission cross-section of shortlived actinides using a lead neutron-slowing-down spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2003.506(1-2):p.149-159.
    [37]Fang, Kaihong Lan, Changlin, He, Yupeng, et al. Measurement of fission cross section for 232Th(n,x)89Rb reaction induced by neutrons around 14MeV[J]. Applied Radiation and Isotopes,2012.70(10):p.2295-2297.
    [38]Oberstedt, S. Oberstedt, A. Birgersson, E.d, et al. First results on the neutron-induced fission cross-section of 231 Pa for incident neutron energies En>MeV[J]. Annals of Nuclear Energy, 2012.43(0):p.26-30.
    [39]段绍节.中子学宏观实验[M].国防工业出版社,2008.
    [40]Fischer, U. Batistoni, P. Ikeda, Y.., et al. Neutronics and nuclear data:achievements in computational simulations and experiments in support of fusion reactor design[J]. Fusion Engineering and Design,2000.51-52(0):p.663-680.
    [41]江兴流,刘锐,王怀义等.冷核聚变十五年[J].原子核物理评论,2004.21(4):p.422-424.
    [42]李兴中,刘斌,魏清明等.核聚变中核物理问题[J].核聚变与等离子物理,2004.24(1):p.29-32.
    [43]卢希庭.原子核物理修订版[M].原子能出版社,2001.
    [44]Frankenberg-Schwager, M. Review of repair kinetics for DNA damage induced in eukaryotic cells in vitro by ionizing radiation[J]. Radiother Oncol.1989.14(4):p.307-20.
    [45]Rasey, J.S. The response of experimental animal tumors to neutron radiation therapy. Int J Radiat Oncol Biol Phys,1977.3:p.235-42.
    [46]Rithidech, K.N. and B.R. Scott. Evidence for Radiation Honnesis After In Vitro Exposure of Human Lymphocytes to Low Doses of Ionizing Radiation[J]. Dose Response,2008.6(3):p. 252-71.
    [47]Peng Wang, Haining Zhen, Xinbiao Jiang, et al. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax[J]. BMC Cancer,2010.10:p.661.
    [48]Jones B, Underwood TS, Carabe-Fernandez A, et al. Fast neutron relative biological effects and implications for charged particle therapy[J]. Br J Radiol,2011.84(Special_Issue_1):p. S011-8.
    [49]段志凯,郭万龙,刘建功.中子辐射生物效应研究进展[J].辐射防护通讯,2008.5:p.19-22.
    [50]Wambersie A, Hendry J, Gueulette J, et al. Radiobiological rationale and patient selection for high-LET radiation in cancer therapy. (0167-8140 (Print)).
    [51]Wambersie, A. Neutron Therapy:From Radiobiological Expectation to Clinical Reality. Radiation Protection Dosimetry, [J] 1992.44(1-4):p.379-395.
    [52]洪忠悌.加速器在快中子治癌中的应用[J].核物理动态,1992.9(4):p.27-32.
    [53]贾文宝,姚泽恩,苏桐龄,等.14MeV 中子治癌机中治疗头屏蔽体的优化设计[J].核技术,2000.23(11):p.824-827.
    [54]Wambersie A, Jones D. T. L, Gueulette, J., et al. What can we learn from the neutron clinical experience for improving ion-beam techniques and high-LET patient selection? [J]. Radiation Measurements,2010.45(10):p.1374-1380.
    [55]Dinescu, L.C. and O.G. Duliu. Heavy metal pollution of some Danube Delta lacustrine sediments studied by neutron activation analysis[J]. Appl Radiat Isot,2001.54(5):p.853-9.
    [56]杨伟涛,2007,中子活化分析技术在房山区大气颗粒物污染研究中的应用[D]:[硕士].成都,成都理工大学.
    [57]张敏,李欣年.中子活化分析在环境研究中应用[J].化学工程师,2004.5:p.39-41.
    [58]http://en.wikipedia.org/wiki/Neutron_activation_analysis.
    [59]郑金美,王炳林,温琛林,等.建立防中子和X辐射材料屏蔽性能的测量装置[J].原子能科学技术,1997.5:p.472-476.
    [60]VALENTIN, J. ICRP Publication 103 The 2007 Recommendations of the International Commission on Radiological Protection[R].
    [61]Aleksandrov, V.D., et al. Application of neutron generators for high explosives, toxic agents and fissile material detection[J]. Appl Radiat Isot,2005.63(5-6):p.537-43.
    [62]黄群英,李春京,李艳芬,等.中国低活化马氏体钢CLAM研究进展[J].核科学与工程,2007.01:p.41-50.
    [63]黄群英,郁金南,万发荣,等.聚变堆低活化马氏体钢的发展[J].核科学与工程,2004(01):p.56-64.
    [64]赵飞,万奎贝,乔建生,等.低活化马氏体钢的微观结构与力学性能[J].核科学与工程,2007(01):p.59-63.
    [65]金继荣,金新,韩永胜,等.低通量慢中子辐照对高T-c超导体正常态电阻的影响及其机理探讨[J].物理学报,1993.08:p.1346-1351.
    [66]李际周,刘蕴韬,肖红文,等.热中子辐照提高掺硼YBaCuO超导体Jc的研究[J].原子能科学技术,1999.03:p.28-31.
    [67]刘弘景.2007.辐射环境下聚合物材料的绝缘击穿研究[D]:[硕士]天津,天津大学.
    [68]Fujine Shigenori, Yoneda Kenji, Yoshii Koji, et al., Development of imaging techniques for fast neutron radiography in Japan[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1999.424(1): p.190-199.
    [69]V.O. de Haana, T.H.J.J. van der Hagen, A. Fedorov, et al. Conceptual design of a novel high-frame-rate fast-neutron radiography facility[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2005.539(1-2):p.321-334.
    [70]Eberhardt J. E, Rainey S, Stevens R. J, et al. Fast neutron radiography scanner for the detection of contraband in air cargo containers[J]. Applied Radiation and Isotopes,2005. 63(2):p.179-188.
    [71]裴宇阳,唐国有,郭之虞,中子照相技术及其应用[J].新技术应用,2004.5:p.17-22.
    [72]唐彬,影响中子射线照相性能的主要因素[J].核电子学与探测技术,2004.24(4):p.387-340.
    [73]张宇.2011.D-T/D-D中子发生器技术研究[D]:[博士士].兰州,兰州大学.
    [74]Bernard A, Cloth P, Conrads H, et al. The dense plasma focus—A high intensity neutron source[J]. Nuclear Instruments and Methods,1977.145(1):p.191-218.
    [75]洗鼎昌.反应堆中子、散裂中子及同步辐射的源和应用比较.2006,http://www.docin.com/p-11813483.html.p.http://www.docin.com/p-11813483.html.
    [76]韦杰.中国散裂中子源简介[J].现代物理知识,2007.6:p.22-28
    [77]王学智.中子物理讲义(研究生讲座教材)[M].兰州大学物理学院
    [78]http://www.aip.org/tip/INPHFA/vol-9/iss-6/p22.html.
    [79]邓玉福.用活化法测量自成靶陶瓷中子管的中子发生率[J].核技术,1998.21(8):p.507-510.
    [80]魏宝杰,岳成波,李文生,等.自成陶瓷靶中子管的主要技术特点[J].东北师范大学学 报(自然科学版),1994.01(8):p.83-86.
    [81]乔亚华.中子管的研究进展及应用[J].核电子学与探测技术,2008.28(6):p.1134-1139.
    [82]Reijonen J, Gicquel F, Hahto SK, et al. D-D neutron generator development at LBNL[J]. Appl Radiat Isot,2005.63(5-6):p.757-63.
    [83]Reijonen, J, Neutron generators developed at LBNL for homeland security and imaging applications[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007.261(1-2):p.272-276.
    [84]Verbeke, J.M., K.N. Leung, and J. Vujic, Development of a sealed-accelerator-tube neutron generator[J]. Applied Radiation and Isotopes,2000.53(4-5):p.801-809.
    [85]Reijonen, J, et al. First PGAA and NAA experimental results from a compact high intensity D-D neutron generator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2004.522(3):p.598-602.
    [86]http://www.lbl.gov/tt/techs/lbn11764.html.
    [87]https.//share.sandia.gov/news/resources/news_releases/neutron_generator/.
    [88]http://www.thermoscientific.com/ecomm/servlet/productsdetaill_1152___11962775_-1
    [89]AGENCY, I.A.E., Manual for troubleshooting and upgrading of neutron generators [R].1996, INTERNATIONAL ATOMIC ENERGY AGENCY.
    [90]J. C. Davis, E.O. J, and R.B.a.C.H. Logan. Rotating target neutron source II:process report[A]. in the Second ANS Topical Meeting on The Technology of Controlled Nuclear Fusion.1976.
    [91]Lonan, D.W.H.a.C.M. RTNS-Ⅱ:Present Status[J]. in The Sixth Conference on the Application of Accelerators in Research and Industry.1980.
    [92]袁宇飞.2008.ECR离子源主要参数对离子束流影响的研究[D]:[硕士生].兰州,兰州大学.
    [93]M Pillon, et al. Characterization of the source neutrons produced by the Frascati Neutron Generator[J]. Fusion Engineering and Design,1995.28:p.683-688.
    [94]张立山,关遐令,毛孝勇,等.600kVns脉冲中子发生器的一些相关问题的研究[J].原子能科学技术,1997.4:p.289.
    [95]沈冠仁,关遐令,陈洪涛CPNG脉冲化装置的研制[J].核技术,2002.25(9):p.730-736.
    [96]沈冠仁,中子飞行时间方法及其应用.2007:原子能出版社.
    [97]J. Pivarc, S. Hlavac, J. Kral, et al. Multipurpose intense 14 MeV neutron source at Bratislava: Design study in IAEA Consultants' Meeting on Neutron Source Properties[R].1980.
    [98]岳伟明,D-T中子发生器中子产额、能谱、角分布及中子伽玛混合场的模拟研究[D]:[硕士].2008,兰州大学.
    [99]吕建钦.北大4.5MeV静电加速器束流脉冲化系统[J].原子能科学技术,1995.2(29):p.102-108.
    [100]安世忠张天爵吴隆成,等.脉冲化实验系统中束流切割器的设计[J].中国原子能科学研究院年报,2006:p.63-64.
    [101]周立鹏,关暇令.低能强流氚束脉冲系统研制[J].原子能科学技术,2008.42:p.262-265.
    [102]沈冠仁,关遐令.陈洪涛,等.2001. 强流ns脉冲化装置的重新研制.http://cds.cern.ch/record/748218/files/34007023.pdf
    [103]姚泽恩,陈尚文,董明义,等.离子溅射对氚钛靶寿命的影响[J].原子能科学技术,2003.01:p.25-27.
    [104]金大志,石磊,戴晶怡,等.中子发生器中二次电子抑制问题[A].2006全国荷电粒子源、粒子束学术会议论文集.2006.
    [105]姚泽恩,岳伟明,罗鹏,等.厚靶T(d,n)4He反应加速器中子源的中子产额、能谱和角分布[J].原子能科学技术,2008.42(5):p.400-403.
    [106]吕建钦,带电粒子束光学[M].2004:高等教育出版社.
    [107]L.BROWN, K., A First- and Second-Order Matrix Theory for the Design of Beam Transport Systems and Charged Particle Spectrometers[M].1982.
    [108]李增海,肖美琴,茅乃丰.用干束流输运计算的微型计算机程序TRANSPORT-EM/ PC[J].核技术,1987.10:p.33-34+60.
    [109]吕建钦.图形显示直线加速器与静电加速器粒子动力学计算程序LEADS[J],核技术,1994.09:p.564-568.
    [110]吕建钦,李金海.三级近似束流光学计算程序[J].高能物理与核物理,2006.S1:p.25-27.
    [111]jinghai, L.j.a.L., A computer code for beam optics calculation-third order approximation[J]. Progress in Nuclear Science,2006.16(6):p.667-670.
    [112]周长庚,娄本超,祖秀兰,等.200keV直流/脉冲中子发生器束流输运模拟计算[J].中国核科技报告,2004.02:p.11-17.
    [113]祖秀兰,周长庚,娄本超,等,中子发生器束流传输光学系统研究及模拟计算[J].强激光与粒子束,2009.21(3):p.451-454.
    [114]牛铭,李胜利.ns脉冲中子发生器切割板电压计算[J].原子能科学技术,2001.35(3):p.245-249.
    [115]史维东.用于脉宽压缩的Mobley磁铁均匀场和边缘场的测量及均匀度的提高[J].核技术,1986.12:p.27-31+56.
    [116]安世忠,张天爵,吴隆成,等.束流脉冲化系统中聚束器的设计与计算.[J]中国原子能科学研究院年报,2006.
    [1]7] 陈佳洱.静电加速器的脉冲化装置与有关的束流品质问题[R].1978,北京大学.
    [118]张焱,关遐令.单漂移聚束器的非标准聚束模式[J].原子能科学技术,1993.27(1):p.1-8.
    [119]祖秀兰,杨海素,娄本超,等.正弦波速调管聚束理论在ns-200加速器上的应用[J].强激光与粒子束,2004.16(7):p.950-952.
    [120]吕建钦.聚束系统设计与计算程序[J].原子能科学技术,1992.26(6):p.36-41.
    [121]Ziegler, J.F., M.D. Ziegler, and J.P. Biersack, SRIM-The stopping and range of ions in matter (2010) [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2010.268(11-12):p.1818-1823.
    [122]罗顺忠,杨本福,龙兴贵.中子发生器用氚靶的研究进展[J].原子能科学技术,2002.36(4/5):p.290-296.
    [123]Ldvestam, E.B.a.G, NeuSDesc-Neutron Source Description, Instruction Manual[M].2008.
    [124]Angelone M, Pillon M, Batistoni P, et al. Absolute experimental and numerical calibration of the 14 MeV neutron source at the Frascati neutron generator[J]. Review of scientific instruments. Review of Scientific Instruments,1996.67(6):p.2189-2196.
    [125]Trkov, A.M.a.A., Modelling of the Production of Source Neutrons from Low-Voltage Accelerated Deuterons on titanium-Tritium Targets[J]. Science and Technology of Nuclear Installations,2008.2008:p.1-7.
    [126]Perevezentsev A. N, Bell, A. C, Rivkis, L. A, et al., Comparative study of the tritium distribution in metals[J]. Journal of Nuclear Materials,2008.372(2-3):p.263-276.
    [127]J. C. Davis and J.D. Anderson, Tritium Depth Profiling by Neutron Time-of-Flight, in 21st National Symposium of the American Vacuum Society.1974. http://www.osti.gov/bridge/servlets/purl/4250969/4250969.pdf
    [128]Drosg, M, DROSG-2000, codes and database for 59 neutron source reactions, documented in the IAEA report IAEA-NDS-87[M].2003.
    [129]李景德,谢大全,陈淑英,等.用飞行时间法测量氚的深度分布[J].核技术,1987.07:p.22-23+38-61.
    [130]董艾平,李文杰,王强.氚轰击下氚靶中氚浓度深度分布的变换[J].东北师范大学报自然科学版,1991.2:p.35-38.
    [131]Ryves, T.B. and K.J. Zieba, A measurement of the energy of neutrons from the T(d,n)4He reaction using a silicon detector[J]. Nuclear Instruments and Methods,1979.167(3):p. 449-453.
    [132]仇九子,袁俊谦.T(d,n) 4He中子源出射中子能量的单色性与最佳出射角[J].核物理评论,1997.14(1):p.50-52.
    [133]蒋励,2003,工程模拟实验中D-T 中子源的非期望中子研究[D]:[博士].绵阳,中国工程物理研究院.
    [134]朴禹伯,牛占歧,王学智,等.分析束强流中子发生器中子比产额及靶寿命[J].原子能技术,1993.27(3):p.193-197.
    [135]苟全补,王学智.3.3×1012n/s强流中子发生器中子能谱测量[J].兰州大学学报,1991.02:p.185-187.
    [136]叶邦角, N.H., Kobayashi T, Tsuno S, Hasuko K. NE213闪烁体的n-r分辨[J].核技术, 2003.26:p.505-508.
    [137]IAEA, Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes 2001[R], INTERNATIONAL ATOMIC ENERGY AGENCY.
    [138]陈军.核动力堆安全壳内外中子能谱和剂量测量[J].原子能科学技术,2004.38(2):p.134-138.
    [139]Reginatto, M. Overview of spectral unfolding techniques and uncertainty estimation [J]. Radiation Measurements,2010.45(10):p.1323-1329.
    [140]Matzke, M. Unfolding Methods[R], Physikalisch-Technische Bundesanstalt. http://matzke-bs.de/heprow/Dateien/Theory.pdf
    [141]Reginatto, M. and P. Goldhagen. MAXED, a computer code for maximum entropy deconvolution of multisphere neutron spectrometer data[J]. Health Phys,1999.77(5):p. 579-583.
    [142]Brittingham, J.M,2010, The Effect of Bonner Sphere Borehole Orientation on Neutron Detector Response[D]:[Master]. University of Tennessee.
    [143]Vega-Carrillo H.R, Ortiz-Rodriguez J.M, Martinez-Bianco M.R, et al. Artificial Neural Networks in Spectrometry and Neutron Dosimetry.[A] AIP Conference Proceedings,2010. 1310(1):p.12-17.
    [144]Vega-Carrillo H.R, Hernandez-Davila VM, Manzanares-Acuna E, et al. Neutron spectrometry using artificial neural networks[J]. Radiation Measurements,2006.41(4):p. 425-431

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700